ICCAT Atlantic-Wide Research Programme for Bluefin Tuna (GBYP) AERIAL SURVEY PROTOCOL 2015

1 Introduction

The objectives of the comprehensive ICCAT Atlantic-Wide Research Programme for Bluefin Tuna (GBYP) are to improve basic data collection and our understanding of key biological and ecological processes in the Mediterranean Sea, and to develop a robust scientific management framework.

An important element of this programme is to develop fisheries independent indices of population abundance. Therefore, since 2010 aerial surveys have been conducted in the Mediterranean on the most documented spawning grounds. The frequency and study areas of these surveys have been variable over the years, and because of this there are some statistical problems in obtaining accurate and comparable abundance estimates for this period of time.

There have also been some differences in the data collection protocols which have partly biased and affected further analyses and results. If yearly comparable abundance estimates are needed, it is essential to carry out surveys following exactly the same data collection and analysis methodology.

This aerial survey protocol will try to detect potential data collection problems in previous years and will be an agreed reference document that will have to be followed by all companies contracted by ICCAT in 2015.

1.1 Target species

The core objective of the ICCAT GBYP bluefin tuna survey is to provide annual relative abundance minimum estimates for bluefin tuna (Thunnus thynnus) spawners in the Mediterranean Sea. However, data will be also collected (when possible) for all species encountered (mainly other tunas and big fish, cetaceans, and turtle species) if this does not compromise data collection for the target species.

1.2 Overview of methodology

The ICCAT GBYP surveys will use line-transect DISTANCE sampling to estimate abundance. The survey aircrafts will follow pre-designed tracklines in the survey blocks as described in Cañadas \& Vázquez, 2015 (Figure 1).

The main idea of the line-transect DISTANCE sampling method is to obtain a precise abundance estimate of a highly representative sample area, and extrapolate its density to the total area in each survey block. In those studies where the objects of interest are sessile and easily detectable it is possible to define the sample area before carrying out the survey, whereas when observing non-easily detectable species such as other fish or cetaceans, the sample area must be estimated afterwards.

Therefore, it is essential to obtain a precise sample area to avoid bias during the extrapolation process.

Figure 1. Survey blocks for 2015.

1.3 How to estimate a sample area

The estimated sample area is calculated by collecting perpendicular distances to the study objects, bluefin tuna in this case. When spotting sessile objects, perpendicular distances (p) can be measured directly when the object is abeam (Figure 2A), but when working with moving animals, traditionally perpendicular distances (p) are calculated from angles (Θ) and radial distances (r) (Figure 2B).

Figure 2A

In shipboard line transect surveys the second method is usually used to estimate perpendicular distances. In contrast, in aircraft line transect surveys where the aircraft is travelling at a much faster speed and the observers are in the rear seats looking through the bubble windows, perpendicular distances are recorded when animals are detected abeam. In aerial surveys the observation platform is located above sea level, where animals are detected, and therefore declination angles (α) as provided by the inclinometer are recorded in order to estimate perpendicular distances between detected objects and the transect (Figure 3).

Figure 3. Traditional procedure to estimate perpendicular distances in aerial surveys using inclinometers.

The specifications on how the declination angle must recorded will be described later in this protocol.
After the survey has been conducted, the so-called "effective strip width" is calculated using DISTANCE software, by adjusting the shape of the perpendicular distance frequencies histogram to a mathematical "detection function". Once the sample area has been calculated, it is possible to obtain the sample density.

1.4 Why is it important to obtain accurate declination angles and perpendicular distances?

As explained earlier, in order to establish the sample area and density, it is necessary to record perpendicular distances. If declination angles, and therefore perpendiculars distances, are not recorded properly, significant bias can occur as shown in the next example.

Let us suppose that our block area is 100 square kilometres, our total transect length is 20 km and 45 schools have been detected during the survey carried out. If we estimate an "effective strip width" of 0.25 km each side of the aircraft, the sample area would be $20 \times 0.25 \mathrm{x} 2=10$ square kilometers. The sample density would be $45 / 10=4.5$ animals per square kilometre and in extrapolating this density value to the total block area the abundance would be 450 animals.

However, the declination angles and perpendicular distances can be overestimated. For example, for an "effective strip width" of 0.5 km , the sample area would be $20 \times 0.5 \times 2=20$ square kilometres and the sample density $45 / 20=2.25$ animals per square kilometer. Therefore the abundance in the total block area would be 225 . This is exactly half the number of animals.

IN CONCLUSION, IT IS ESENTIAL TO OBTAIN
 ACCURATE RECORDS OF DECLINATION ANGLES!

2. The team

The aircrafts must have upper wings and bubble windows. The survey must to be conducted at a constant speed (100 knots) and height (300 m).

The survey team consists of a pilot (having previous experience in bluefin tuna spotting activities), a professional spotter (with previous experience in bluefin tuna spotting activities), and two scientific spotters (with experience in aerial surveys, preferably in bluefin tuna ones).

Pilot (P): This person is the authority inside the aircraft, is responsible for flight safety and his/her decisions are mandatory for all the crew members.

- Before starting the journey, once all checks have been made, he/she will ensure that the aircraft is ready for flying.
- During the flight, his/her duties (among the usual ones) will be to keep the aircraft just on the trackline, at a constant speed (100 knots) and height (300 m). Once a school is detected, he/she will be informed should the need arise to leave the transect and fly over the school so as to better identify the species and data on size.
- $\mathrm{He} /$ she should also be a professional tuna spotter, even if his/her involvement in spotting will be minor compared to the usual duties of the pilot.
- After the journey he/she will be responsible for checking the forecast and for deciding when the next effort should be undertaken. The effort starting point must be discussed with the Scientific Spotter responsible for data collection.

Professional spotter (PS): This person is usually the most experienced in detecting bluefin tuna schools and estimating weight and school size. His/her task will be to search for BFT schools and give all the requested data to the scientific spotter (declination angle, species, group size and weight). He /she should train the other team members how to detect BFT schools and how to estimate weight and size. He/she will always be in the front right seat in "on effort" mode (Figure 4). He/she may take other seats only in "off effort" mode.

Although the target species is BFT, provided that the main objective of the survey is not compromised, he/she shall also give the same data when detecting other tuna species, big fish, cetaceans and turtle species.

Scientific spotter (SS): The most experienced SS will be the person mainly responsible for data collection, determining with the pilot the starting point for each day, and ensuring good effort coverage, as required by the DISTANCE sampling methodology. He/she will be the called "Cruise Leader (CL)". The other SS will help him/her.

In "on effort" mode, one of the SS will record the effort search conditions at every starting / finishing point and whenever any of the search conditions change. The two SS will alternate in carrying out this task.

The sighting data will be recorded by the SS who is on the opposite side from where the sighting is detected. The other SS shall provide or check the basic data on declination angle, species, group size and weight. When circling over the school, the SS on the side closer to the sea will be in charge of taking photos.

The SS will rotate every time the aircraft lands or at mid cruise time in case of long cruises.

Figure 4. Positions of each team member in the aircraft.

3. Conditions for survey

Generally, a sea state of 3 or less, in conjunction with other minimum requirements (e.g. minimum visibility of around 3.5 km) are necessary to have survey conditions good enough for BFT spotting. Bad weather conditions mean winds over 3 on Beaufort scale, or low clouds (less than 300 m), or heavy rain, or very limited visibility due to fog. Bad weather conditions prevent reliable observation of tuna schools close to the sea surface.

It is the responsibility of the CL to determine if conditions are acceptable from a scientific point of view and the pilot determines whether conditions are appropriate from a safety point of view; in case of discrepancy the pilot's decision is final.

The decision whether it is appropriate to carry out the survey on any particular day (or to abort a survey) will be taken by the CL and the pilot, based on the best available weather forecast and the prevailing conditions. Information for this can be obtained from a number of sources including airports, various internet sites, shipping forecasts, etc.

Operative time shall be limited by good light conditions.
In addition to the objective parameters (sea state, turbidity, cloud cover, glare, etc.), it has been found that "subjective" estimation of overall sighting conditions best correlate with actual sightings data. As BFT is the primary target species for the ICCAT GBYP aerial surveys, the estimation of overall sighting conditions is based on the observers' opinion as to the probability of seeing BFT in the primary search area (i.e. from dead ahead to abeam and out to a declination angle of 20°). Conditions may vary on either side of the plane (particularly, but not exclusively, due to glare). Three categories can be chosen (note that their definitions are necessarily vague as they represent a subjective estimation of a variety of factors):

Good: This is when the observer believes that the likelihood of seeing BFT within the search area is reasonably good. Normally, good subjective conditions will require a sea state of two or less and a turbidity of less than 2.

Moderate: This is when the observer believes that the likelihood of seeing any BFT within the search area is lower than good.

Poor: This is when the observer believes that it is unlikely to see any BFT within the search area, unless, for example, it is showing exuberant behaviour or is very close to the trackline.

In an ideal world, we would survey the whole area in "good" conditions, which should be the aim. However, there must be a balance between coverage in good conditions and the need to cover as much of the survey area as possible; it is better to cover an area in moderate conditions than not to cover it at all. Therefore, depending on the time available, it may be necessary to cover some areas in moderate conditions. This will ultimately be the cruise leader's decision, in consultation with the pilot.

There is no advantage in extensive flying in poor conditions hoping for improvements (of course, never circle in poor conditions). Data collected in poor conditions (on both sides of the trackline) will not be included in the analyses and thus extensive surveying in poor conditions is simply an inefficient use of expensive flying hours. Again, it is the cruise leader's responsibility, after consultation with the pilot, to decide to abandon surveying for the day.

4. Equipment

4.1 Essential equipment

- Clinometers (3 or 2) - mandatory
- Effort and sighting forms (ring binder preferred) - mandatory
- 2 GPS and rechargeable batteries - mandatory
- 1 camera with high sensitivity, and zoom lenses $70-200$ or $75-210$ or $80-200$, equipped with a polarized filter and memory cards - mandatory
- Laptop with external hard disk - mandatory
- 4 notebooks, 4 pens and 4 pencils
- 2 permanent waterproof marker and alcohol 96°
- 1 videocamera
- Binoculars 7x50
- Digital recorders

4.2 Personal equipment

- Passport (mandatory when the area includes non-EU countries) or national identity document - mandatory
- ICCAT ID cards - mandatory
- Sunglasses and watch
- Water and food
- Sickness pills
- Comfortable clothes
- Windscreen cleaners

5. Searching behaviour

DISTANCE sampling methodology suggests selecting the proper speed and altitude after some preliminary survey work. As shown in the 2013 survey reports, the altitude and speed during field work were approximately 1000 ft and 100 knots, respectively. As reference, Figure 5 shows the correlation between the key declination angles and perpendicular distances at 3 different altitudes (1000, 650, and 500 ft).

Figure 5. Correlation between the key declination angles and perpendicular distances at an altitude of $1000 \mathrm{ft}=300 \mathrm{~m}$.

Ideally, the altitude would be high enough so that the animals would be undisturbed, thus avoiding movement prior to detection. Nevertheless, the aircraft should be flown as low as possible to enhance detection of animals and ICCAT GBYP has decided on an altitude of 300 m . Line transect methods are appropriately named because the distance is critical; the closer to the vertical sighting the better the methodological approach and the quality. Search behaviour must try to optimize the detection of animals in the vicinity of the line, and search effort or efficiency should decrease smoothly with distance. The aims are to ensure that the detection function has a broad shoulder and the probability of detection at the line is unity (Buckland, et al., 1993).

According to this, observers must be trained in how to search for animals and which proportion of areas (declination angles) should be sampled with more intensity. Always concentrate most of the effort in the closest area, between 90° and 40°, and less effort for animals up to 20° (Figure 6). Occasional effort should be devoted in looking at a lower angle (higher distance) but never more than 7.5 km far from the aircraft.

Figure 6. Scheme of search behavior in aerial surveys.
Table 1 provides a list of distances from the perpendicular of the aircraft according to various declination angles at 300 m altitude. Sightings at a distance more than 7.5 km , even if recorded, will not be included in the analysis.

	Declination angle	Perpendicular distance (m)
$\mathbf{9 0}$	0	
$\mathbf{8 5}$	26	
$\mathbf{8 0}$	53	
$\mathbf{7 5}$	80	
$\mathbf{7 0}$	109	
$\mathbf{6 5}$	140	
$\mathbf{6 0}$	173	
$\mathbf{5 5}$	210	
$\mathbf{5 0}$	252	
$\mathbf{4 5}$	300	
$\mathbf{4 0}$	358	
$\mathbf{3 5}$	428	
$\mathbf{3 0}$	520	
$\mathbf{2 5}$	643	
$\mathbf{2 0}$	824	
$\mathbf{1 5}$	1120	
$\mathbf{1 0}$	1701	
$\mathbf{5}$	3429	
$\mathbf{2 , 3}$	7469	

Table 1. Correlation between declination angles and perpendicular distances.

6. Collecting data

It is mandatory to provide ICCAT GBYP with effort forms, sighting forms and all GPS track data in Excel format.

6.1 Effort data form

Aerial surveys are conducted at relatively high speed (100 knots), so generally effort conditions should not change in full "on effort" period. One of the SS shall fill out the effort form just before starting the transect, when the aircraft is at the right height and speed and on the correct course. If any of the search conditions changes in the "on effort" period, then a new "on effort" form must be completed by the SS. The effort form must also be filled at the end of each transect, while the aircraft is still at the same height and speed and on the same course.

Date	Enter the day/month.		
Time	Enter GMT Hour (hh:mm:ss)		
Event	ON: start effort. OFF: end effort. LA: flying over land. LE: leaving transect. RE: rejoin transect.		
LAT	Enter latitude (example: $35^{\circ} 14.45$ or 35.24583) decimals are preferred https://www.fcc.gov/encyclopedia/degrees-minutes-seconds-tofrom-decimaldegrees		
LON	Enter longitude (example: $2^{\circ} 18.33$ or 2.30916) decimals are preferred https://www.fcc.gov/encyclopedia/degrees-minutes-seconds-tofrom-decimaldegrees		
Subarea	Survey area in Figure1 (A, B, C, D, E, F, G). Outside and inside transects for areas $\mathrm{A}, \mathrm{C}, \mathrm{E}$ and G shall be clearly noted.		
Survey	Number of survey. Each flight is a new survey.		
Transect	Code of the transect that is going to be surveyed.		
Pilot	Enter the numeric code (XX) for the pilot		
Front spotter	Enter the numeric code (XX) for the spotter on the front seat.		
Spotter on the left rear sit	Enter the numeric code (XX) for the spotter on the left rear seat behind the pilot		
Spotter on the right rear seat	Enter the numeric code (XX) for the spotter on the right rear seat		
Altitude	Enter the flight altitude in meters		
Sea State	Enter the sea state following the Beaufort wind scale:		
	Beaufort Force	Sea State	Description
	0	Calm	Sea like a mirror
	1	Very Light	Ripples with appearance of scales, no foam crest
	2	Light breeze	Wavelets, small but pronounced. Crest with glassy appearance but do not break
	2.5		Start to appear some isolated whitecaps
	3	Gentle breeze	Large wavelets, crests begin to break. Glassy looking foam, occasional white horses
	4	Moderate breeze	Small waves becoming longer, frequent white horses
Haze	Enter the haze intensity. 0: no haze; 1: slight; 2: moderate; 3: diffused; 4: heavy/foggy		

Turbidity	Enter turbidity parameter based on the following: 0 - clear water: animals visible at many m depth 1 - moderately clear water: animals visible under the surface 2 - moderately turbid water (e.g. mud): animals visible just under the surface 3 - turbid: full lack of transparency
Clouds	Use the octaves system (i.e. full cloud cover $=8$, clear sky $=0$)
Glare Side	Enter the side where glare is: P: port; S: starboard.
Glare Sector	Use the 360° system (NB dead ahead is 360 not 0) with glare from XX° to XX° measured clockwise - e.g. 360° to 180° means the right side of the plane is covered in glare whereas 180° to 360° means the left side of the plane is covered by glare
Glare Intensity	Enter glare intensity based on the following: 0 - no glare 1 - slight glare - very little effects on observations 2 - moderate glare - may affect sightings in the sector 3 - strong glare - severely affecting sightings
Subjective Search Conditions	This represents each observer's subjective view of the likelihood that, given all of the conditions, they would see a BFT within the primary search area should one be present. The primary options are: Good (G): observer believes that the likelihood is good. Normally will require at least a sea state of two or less and a turbidity of less than 2 . Moderate (M): observer believes that the likelihood while not good, is not poor. Poor (P): when the observer believes that it is unlikely to see any BFT unless for example it is showing exuberant behaviour and/or is very close to the trackline.
Comments	Enter any relevant comment if needed.

6.2 Sighting data form

Aerial surveys are conducted at high speed, so the spotter has around 5 seconds to detect animals in the search area. Every crew member must know what to do when a sighting is announced. Some examples about who has to do what are explained below in point 6.

THE SIGHTING DATA MUST BE FILLED BY THE SCIENTIFIC SPOTTER LOCATED ON THE SIDE OPPOSITE FROM THE DETECTED ANIMALS.

Number	Enter the accumulated sighting number
Date	Enter the day/month.
Time	Enter GMT Hour (hh:mm:ss)
Event	Enter the event code. F: when animals first sighted, A: when animals abeam, C: when arriving over the animals for circling
LAT	Enter latitude (example: $35^{\circ} 14.45$ or 35.24583) https://www.fcc.gov/encyclopedia/degrees-minutes-seconds-tofrom-decimaldegrees
LON	Enter longitude (example: $2^{\circ} 18.33$ or 2.30916) https://www.fcc.gov/encyclopedia/degrees-minutes-seconds-tofrom-decimaldegrees
Angle abeam	Enter the angle abeam in degrees
Altitude	Enter the flight altitude in meters at the moment of taking the angle abeam
Observer	Enter the two numbers identifying each spotter (XX)
Cue	Enter cue code based on the following: SP: splash = fish jumping clear off the water or splashing on a side. RI: ripples = fish swimming just below the surface, with the dorsal side moving the surface. SH: shining = classical behaviour of spawners, when fishes come to the surface, swimming on a side for a few seconds, reflecting the sun light like mirrors. TR: travelling = fish going clearly in a certain direction. UN: underwater = body seen under water surface. SU: surface = body seen at surface. VG: vessel/gear = vessel or gear detected just before animals. BL: blow (cetaceans). JU: jump (cetaceans). SL: slick, flukeprint (cetaceans). BI: birds. CE: cetaceans. FI: fish. OT: other.

Species	Enter species identification code based on the following:		
	FISH SPECIES	CETACEAN SPECIES	OTHER MARINE SPECIES
	BTF: bluefin tuna	SPE: sperm whale	MOS: monk seal
	ALB: albacore	FIN: fin whale	CAR: loggerhead turtle
	SWO: swordfish	MIN: minkie whale	LEA: leatherback turtle
	SHA: shark	WHA: other whale	UNT: unidentified turtle
	MOB: manta	COD: common dolphin	OTH: other
	UNF: unidentified fish	SDO: stripped dolphin	
		BOT: bottlenose dolphin	
		RDO: roughtooted dolphin	
		UDO: unidentified dolphin	
		KIL: killer whale -Orca	
		RIS: Risso's dolphin	
		PIL: pilot whale	
		CUV: Cuvier's beaked whale	
		UMM: unidentified cetacean	
Size PS	Enter the school size estimated by the Professional Spotter		
Weight PS	Enter the weight in kilograms estimated by the Professional Spotter		
Size P/SS	Enter the school size estimated by the Pilot or Scientific Spotter		
Weight P/SS	Enter the weight in kilograms estimated by the Pilot or Scientific Spotter		
Leave?	Enter \mathbf{Y} : yes if have leaved the transect to get closer to animals, and \mathbf{N} : if not		
Photos?	Enter \mathbf{Y} : yes if photos of the school have been taken, and \mathbf{N} : if not		
Numbers	Enter the number of the first and last photo that have been taken, as in the LCD camera. Set the same time of the GPS.		
SCHOOL COMPONETS	Enter estimates (in number of individuals) based on the following: \% Small: individuals < 25 kg . \% Medium: individuals from 25 to 150 kg . \% Large: individuals from 150 to 300 kg . \% Giant: individuals > 300kg.		
Cetaceans	Enter \mathbf{Y} : yes if there were cetaceans associated with BFT, and \mathbf{N} : if not		
Birds	Enter \mathbf{Y} : yes if there were birds associated with BFT, and \mathbf{N} : if not		
Comments	Enter any relevant comment if needed		

7. Actions to follow when a sighting is detected

7.1 Case 1. The school is close enough to obtain all data

1. The crew member who sees the animals first shall communicate it to the others. The SS on the opposite side from where the animals were detected shall fill out the number, date, hour, event (F) lat and lon.
2. The aircraft keeps the course until animals are abeam. In that precise moment the SS on the side of the sighting shall take the declination angle. The other SS shall once again fill out the hour, event (A), lat, lon, angle, observer, cue, and species. If the school has been detected by the PS, SS shall fill out school size and weight values estimated by PS. In the case where the school has been detected by another crew member, SS shall note both separate estimates (from the pilot or the other SS plus the PS). The SS on the same side is in charge of taking photos when possible.
3. If it is considered that it is necessary to leave the transect to obtain a better estimate of the school weight and size, when the pilot gives the signal to leave, the SS shall note time, event (LE), lat and lon.
4. When arriving just over the school, the pilot shall notify the SS who will note again, time, event (C), lat and lon. This position shall correspond to the limit of the circle so the position of the sighting shall be calculated after the survey with GIS tools. Circles must always be clockwise; therefore the PS has the best view of the school. The PS shall look at the school for improved estimates and the SS on the same side can take better photos.
5. After 1 or 3 circles (depending on the difficulty of the estimate), the aircraft shall return to the point where it left the transect. During this short period, the SS ensures that all data have been properly recorded.
6. The pilot shall manoeuvre as shown in Figure 7 and shall notify the SS when that point is reached. SS shall note hour, event (RE), lat and lon.

Figure 7. How to proceed in a normal sighting situation.

7.2 Case 2. There is a high risk of losing the school before being abeam

TRANSECT

1. The crew member who sees the animals first shall communicate it to the others, pointing out that there is a high risk of losing the animals. The SS on the opposite side from where the animals are detected shall fill out the number, date, hour, event (F) lat and lon. The pilot shall notify when leaving the transect (please note that you are leaving the transect before sighting is abeam). When the aircraft leaves the transect the SS shall write in event (LE) and record time, lat, lon.
2. While the aircraft maintains the course towards the animals, the SS shall fill out observer, cue and species. If the school has been detected by the PS, the SS shall fill out school size and weight values estimated by the PS. In the case where the school has been detected by another crew member, the SS shall note both estimates, from the pilot or the other SS plus the PS. The SS on the same side shall be in charge of taking photos.
3. When arriving just over the school, the pilot shall notify the SS who will again note time, event (C), lat and lon. This position shall correspond to the limit of the circle so the position of the sighting shall be calculated after the survey with GIS tools. Circles must always be clockwise; therefore the PS will have the best view of the school. The PS shall look at the school for improved estimates and the SS on the same side can take better photos.
4. After 1 or 3 circles (depending on the difficulty of the estimate), the aircraft shall come back to the point where it left the transect. During this short period, the SS ensures that all data have been properly recorded.
5. The pilot shall manoeuvre as shown in Figure 8 and shall notify the SS when that point is reached. SS will note hour, event (RE), lat and lon.

Figure 8. How to proceed if there is a high risk of losing the school before being abeam.

8. Contact details

Whenever you are in doubt, please ask for clarification:
Antonio Di Natale: antonio.dinatale@iccat.int
José Antonio Vázquez: ggbvaboj@yahoo.es
Ana Cañadas: anacanadas@alnilam.com.es

