SHORT-TERM CONTRACT FOR THE
 AERIAL SURVEY DESIGN
 OF THE ATLANTIC-WIDE RESEARCH PROGRAMME ON BLUEFIN TUNA (ICCAT-GBYP Phase 5-2015)

Final Report

30 March 2015

Ana Cañadas and José Antonio Vázquez
Alnilam Research and Conservation Ltd, Cándamo 116, La Berzosa, 28240 Hoyo de Manzanares, Madrid, Spain

Background and objectives

The objectives of the comprehensive ICCAT Atlantic-Wide Research Programme on Bluefin Tuna (GBYP) are to improve basic data collection and our understanding of key biological and ecological processes and to develop a robust scientific management framework.

An important element of this programme is to develop fisheries independent indexes of population abundance. Therefore in 2010 and 2011 aerial surveys have been conducted in the Mediterranean on the most documented spawning grounds.

In 2010 an analysis of the aerial survey was conducted and this included a power analysis that evaluated the ability of the survey to detect population trends in the East Atlantic and Mediterranean bluefin recovery plan. This original analysis was based on data from a single year. However, inter-annual variation (e.g. due to environmental variation and changes in population distribution) in abundance levels within areas will result in uncertainty in abundance estimates to be underestimated and the power of the survey to detect recovery to be overestimated. Despite many operational difficulties and problems, data have been collected in 2011 in Areas 1, 2 and 3CM (GBYP Phase 2) and a first power analysis was conducted for proposing two main scenarios for a Mediterranean comprehensive survey.

Due to the impossibility to have the required funds and the guarantee for obtaining all permits from all countries in the Mediterranean area, the Steering Committee recommended suspending the aerial survey in 2012.

Following the Commission meeting in 2012, during which several CPCs required to carry out the aerial survey in 2013, the GBYP Steering Committee requested a further assessment for evaluating a comprehensive survey, taking into account the limited amount of funds available for this part of the annual project.

A study was carried out to assess the feasibility of a large-scale aerial survey on bluefin tuna spawning aggregations in all the Mediterranean Sea, as well as carrying out a similar assessment for the same areas previously surveyed, in order to analyse the power to detect population trends that consider additional variance, to obtain data that could be used as fishery independent indices for operating models. The report was provided on January 15, 2013, and accepted by the ICCAT GBYP Steering Committee.

A third aerial survey was carried out in 2013 over an extended area, which included also the main areas surveyed in previous years. A new survey design was provided on 19 April 2013. The final report of the survey, including the data analysis, was approved on 24 September 2013 and presented to the SCRS.

The ICCAT GBYP Steering Committee, on 28-29 September 2013, approved a new map for the next
aerial survey, taking into account the updated knowledge about the main and potential bluefin tuna spawning areas and the many constraints limiting the survey in various areas. At the same time, the main areas (called "internal" in the analysis) were slightly modified, taking into account the most recent sightings, while the various sub-areas were redefined.

The aerial survey was not carried out in 2014, due to the lack of sufficient funding.
The aerial survey was included among the ICCAT GBYP activities to be carried out in 2015. After the approval of GBYP plan for Phase 5 by the ICCAT Commission in December 2014, the ICCAT Secretariat was of the advice that there are sufficient opportunities for carrying out an extended survey in 2015, following the advice of the GBYP Steering Committee on 10-12 February 2015.

This work includes:
A. An operational survey design for the whole Mediterranean Sea, shared in 7 different sub-areas from A to G), except for the areas identified in the attached map without any historical spawning 8rose), those where spawning is extremely unlikely to occur (grey) and those where it is impossible to obtain flight permits due to particular situation (red); the design should allow for more spacing transect in the "external" areas (white) and more dense transects in the other areas which were mostly surveyed before (yellow) (Scenario 2 of the study produced on January 15, 2013, with 50% of the density out); the total transect length should be about $42,000 \mathrm{~km}$; the number of replicates shall take into account the total length constrain.
B. The tables and maps for each subarea, for providing the necessary information to be used in the Call for tenders for carrying out the survey in June-July 2015. In addition to the minimum number of replicates by sub-area, at least one additional replicate should be included and clearly identified as additional.

Survey design methods

Program DISTANCE http://www.ruwpa.st-and.ac.uk/distance/, the "industry standard" software for line transect distance sampling, includes a robust software engine for designing survey transects to achieve equal coverage probability over the survey area. Input to the program includes survey area coordinates or a GIS shape file of the same, information on coverage (e.g. spacing, number of transects, total length of transect), whether transects should be laid out as parallel or zig-zag lines, etc. From this input, the program simulates multiple surveys according to the design specified and generates information on the survey, including a visual representation of how well equal coverage probability has been achieved. The survey design input parameters can then be modified until an optimum design is achieved.

Aerial surveys for bluefin tuna in the Mediterranean Sea are designed here using program DISTANCE based on: the eleven defined survey areas (survey areas A to G; and sub-areas surveyed in 2010 and 2011 within blocks A, C, E and G), target survey time available (equivalent to $42,000 \mathrm{~km}$), time for circling over detected schools to estimate their size (set at 10\%), and time for flying in between lines (set between 10 and 15% depending on the line separation in each block).
Transect lines are placed in a north-south direction to be approximately perpendicular to the coast or the bathymetry in all blocks.

Surveys are designed as equal spaced parallel lines rather than zig-zag lines. Parallel line designs achieve equal coverage probability exactly - an important design feature. However, a disadvantage (compared to a zig-zag design) is that some flying time is spent in transit between transects. Time spent transiting can be minimised by increasing airspeed between transects. In addition, there is some advantage to having short off-effort periods between transects to allow observer(s) to rest.

Survey designs

The areas identified by the GBTP Steering Committee were used to create survey blocks in program DISTANCE (survey areas A to G; and sub-areas surveyed in 2010, 2011 and 2013 within blocks A, C, E and G, see Figure 1).

The total effort available ($42,000 \mathrm{~km}$) according to Scenario 2 of the Feasibility study carried out at the beginning of 2013, in which the density of fish outside spawning areas (previously surveyed areas) is half
of that inside the spawning areas. Therefore, 50% of coverage $(21,000 \mathrm{~km})$ is allocated to the areas outside (called from now on "outside areas") and $50 \%(21,000 \mathrm{~km})$ is allocated to the spawning areas previously surveyed (called from now on as A_inside, C_inside, E_inside and G_inside, or generically "inside areas"). This was done so in 2013, and is designed in the same way in 2015, assuming again Scenario 2 and also for proper comparison with 2013.
For the calculations of the percentage of coverage, an effective strip width of 7 km (3.5 km half width) was considered. This value was chosen as it was the most common approximate width resulting in most blocks both in 2010 and 2011. It was also used in the percentage of coverage calculations in 2013, although a final truncation distance was chosen at 5 km , which would mean a better coverage if similar truncation is chosen during the analysis of 2015 data.

The proportion of the total trackline effort $(21,000 \mathrm{~km})$ for the inside areas was calculated for each block according to the proportion of the surface area of each block, and the same was done for the outside areas (see Table 1).
Given the low coverage given by the allocated effort in the outside areas, only one replica of tracklines was assigned to those blocks. Two replicas were assigned to the inside areas given the much higher coverage given by the allocated effort in them.

Additionally, an extra replica was designed both for the inside and the outside areas in the event that more resources may be used and therefore more effort can be allocated. Table 1 shows the effort allocated to each block (primary tracks), both the on effort tracklines and the total trackline (including the off effort bits joining on effort legs). Table 2 shows the effort allocated to the extra tracklines.

Last column of Table 1 (Final Total) shows the total trackline, removing the "off-effort" bits of tracks that would cross over A_inside (777 km), C_inside (278 km) and E_inside (247 km) when surveying A_outside, C_outside and E_outside respectively, as these cross-overs can be used to do nearby on-effort tracklines in the A_inside, C_inside and E_inside blocks respectively. The total final trackline is 38,308 km , which leaves $3,692 \mathrm{~km}$ (8.8% of the total available, close to the 10% expected) for potential circling over fish schools. The percentage for potential circling goes from 7.5% to 11.7% (average of 9.9%) in the "inside" blocks, and from 3.9% to 10.5% (average of 7.6%) in the "outside areas", where much less density is expected and therefore less time for circling would be needed.

Given that the blocks have been modified, especially the "outside" ones, a comparison of the surface areas, allocated effort and coverage is shown in Table 3. These differences will need to be taken into account when comparing the resulting densities in 2015 with 2013. In general, the survey area has been reduced in 31% due to the extended Restricted Airspace and the extension of the areas considered as "No spawning". But this affects only to the "outside" areas, which has been reduced in 39%, while de "inside" areas has been increased slightly, in 11.5%. The "inside" areas with larger extension were C and G with around 20% increase. As for the "outside" areas, E, B and F were reduced between 56% and 68%, while the rest only between 3% and 16%. These changes led to obvious changes in the designed tracks length and in the coverage. Taking into account that the same amount of effort is available $(21,000 \mathrm{~km}$ for the "inside" areas and 21,000 for the "outside" areas), the coverage has been reduced in the "inside" areas by 9% and increased in the "outside" areas by 62%, with a global increase of almost 7% of coverage.

The Projected Coordinate System used to calculate distances and areas in DISTANCE software was TRANSEVERSE MERCATOR.

Appendix 1 gives a simple map and the list of coordinates for all primary tracks for each block. Appendix 2 gives the same information for the extra tracks.
Figures 2 to 9 show the primary tracks for all blocks, and Figure 10 the extra tracks.

Figure 1. Survey blocks

TABLES

Table 1. Primary tracks. See description for last column (*) above in the text.

Sub-area	$\begin{gathered} \text { Area } \\ \left(\mathbf{k m}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Proportion } \\ \text { of total } \\ \text { area } \\ \hline \end{gathered}$	Expected proportional Length of Trackline on Effort	Percentage coverage	Line spacing per replica	On effort track (replica 1replica 2)	Total track (replica 1replica 2)	On effort track (total)	Total track (total)	Total effort track (Final total *)
Inside Areas (50\%)										
A_inside	62,150	19.9	4,177	30.0	43.9	$\begin{aligned} & 1,291 \\ & 1,435 \end{aligned}$	$\begin{aligned} & 1,815 \\ & 1,935 \end{aligned}$	2,725	3,751	3,751
C_inside	64,610	20.7	4,342	36.0	38.4	$\begin{aligned} & 1,650 \\ & 1,694 \end{aligned}$	$\begin{aligned} & 1,897 \\ & 1,937 \end{aligned}$	3,345	3,834	3,834
E_inside	117,718	37.7	7,911	36.3	38.0	$\begin{aligned} & 3,053 \\ & 3,108 \end{aligned}$	$\begin{aligned} & 3,515 \\ & 3,578 \end{aligned}$	6,160	7,090	7,090
G_inside	68.013	21.8	4,571	29.9	45.6	$\begin{aligned} & 1,475 \\ & 1,473 \end{aligned}$	$\begin{aligned} & 2,108 \\ & 2,120 \end{aligned}$	2,948	4,228	4,228
Sub-Total	312,490	100,00	21,000			15,179	18,903	15,179	18,903	18,903
Outside areas (50\%)										
A_outside	123,351	12.7	2,664	8.7	74.0	1,634	3,162			2,385
C_outside	149,607	15.4	3,231	8.3	76.6	1,887	3,177			2,899
E_outside	92,378	9.5	1,995	7.6	80.7	1,024	2,164			1,917
G_outside	241,447	24.8	5,214	10.7	62.8	3,720	4,873			4,873
B_total	87,334	9.0	1,886	10.3	60.9	1,310	1,722			1,722
D_total	147,666	15.2	3,189	11.2	62.8	2,402	2,956			2,956
F_total	130,585	13.4	2,820	9.8	73.5	1,834	2,653			2,653
Sub-Total	972,368	100,00	21,000			13,811	20,707			19,405
Total	1,284,858		42,000			28,990	39,610			38,308

Table 2. Extra tracks.

Sub-area	Area ($\mathbf{k m}^{2}$)	Line spacing per replica	On effort track	Total track
Inside Areas				
A_inside	62,150	43.9	1,459	1,936
C_inside	64,610	38.4	1,735	2,061
E_inside	117,718	38.0	3,161	3,664
G_inside	68,013	45.6	1,507	2,168
Sub-Total	312,490		7,862	9,828
Outside areas				
A_outside	123,351	74.0	1,660	3,042
C_outside	149,607	76.6	2,038	2,783
E_outside	92,378	80.7	1,018	2,183
G_outside	241,447	62.8	3,809	4,862
B_total	87,334	60.9	1,396	1,829
D_total	147,666	62.8	2,307	2,923
F_total	130,585	73.5	1,824	2,673
Sub-Total	972,368		14,053	20,295
Total	1,284,858		21,915	30,123

Table 3. Comparison between 2013 and 2015.

Sub-area	Area $\left(\mathbf{k m}^{2}\right)$	\% change	On effort track	\% coverage	\% change			
	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 5}$		$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 5}$	
Inside Areas								
A_inside	62,194	62,150	-0.07	1,287	1,459	31.20	30.00	-3.85
C_inside	54,177	64,610	19.26	1,623	1,735	35.80	36.00	0.56
E_inside	107,673	117,718	9.33	3,306	3,161	41.30	36.30	-12.11
G_inside	56,329	68,013	20.74	1,450	1,507	36.90	29.90	-18.97
Sub-Total	$\mathbf{2 8 0 , 3 7 3}$	$\mathbf{3 1 2 , 4 9 0}$	$\mathbf{1 1 . 4 6}$	$\mathbf{7 , 6 6 6}$	$\mathbf{7 , 8 6 2}$	$\mathbf{3 6 . 3 0}$	$\mathbf{3 3 . 0 5}$	$\mathbf{- 8 . 9 5}$
Outside areas								
A_outside	173,435	123,351	-28.88	1,618	1,660	5.10	8.70	70.59
C_outside	179,121	149,607	-16.48	1,334	2,038	6.70	8.30	23.88
E_outside	294,314	92,378	-68.61	2,517	1,018	6.00	7.60	26.67
G_outside	249,064	241,447	-3.06	2,247	3,809	6.20	10.70	72.58
B_total	236,092	87,334	-63.01	2,063	1,396	6.20	10.30	66.13
D_total	171,047	147,666	-13.67	1,356	2,307	5.20	11.20	115.38
F_total	296,961	130,585	-56.03	2,458	1,824	5.80	9.83	69.48
Sub-Total	$\mathbf{1 , 6 0 0 , 0 3 4}$	$\mathbf{9 7 2 , 3 6 8}$	$\mathbf{- 3 9 . 2 3}$	$\mathbf{1 3 , 5 9 3}$	$\mathbf{1 4 , 0 5 3}$	$\mathbf{5 . 8 9}$	$\mathbf{9 . 5 2}$	$\mathbf{6 1 . 6 3}$
Total	$\mathbf{1 , 8 8 0 , 4 0 7}$	$\mathbf{1 , 2 8 4 , 8 5 8}$	$\mathbf{- 3 1 . 6 7}$	$\mathbf{2 1 , 2 5 9}$	$\mathbf{2 1 , 9 1 5}$	$\mathbf{1 6 . 9 5}$	$\mathbf{1 8 . 0 8}$	$\mathbf{6 . 6 7}$

Figures 2 to 9. Primary Tracks

Figure 10. Extra Tracks

Appendix 1
 Primary Tracks

Block A Inside
Replica 1

Sampler 6

2.97295938 .00034
2.99989738 .65619 --
3.01437739 .00006 3.02657239 .28517
$3.054348 \quad 39.91974$ 3.05793340 .00019

Sampler 7
3.52131739 .00107
3.57218640 .0006

Replica 2

Type of sampler: Line
Number of samplers: 8
List of samplers: x-coord y-coord

Sampler 1
$6.085585 \mathrm{E}-0238.00076$ 0.061398638 .64704
-
6.158023E-02 38. 85876 $6.170269 \mathrm{E}-0239.00025$

Sampler 2
0.560997238 .00582
0.568771439 .00105

Sampler 3
1.06116638 .00875 1.0913540 .00036

Sampler 4
1.5613138 .00956
$1.575278 \quad 38.65742$
1.57596338 .68868 1.58282238 .99886
$1.585114 \quad 39.10143$ 1.60572440 .00103
ampler 5
2.06137738 .00823
2.15178241 .00056

Sampler 6
2.56131238 .00478 $2.617064 \quad 39.54571$
2.6250139 .756 $2.673814 \quad 41.00095$

Sampler 7
3.10377639 .0004
3.11666339 .29292
$3.138933 \quad 39.78857$ 3.14862240 .00043

Sampler 8

3.6106939 .00102
3.66284740 .00043

Block A Outside
Replica 1

Type of sampler: Line
Number of samplers: 8
List of samplers:
x-coord y-coord
Sampler 1
-1.570848 37.30288
$-1.572831 \quad 37.39796$
ampler 2
-0.729533 36.57402
$-0.739392237 .59581$
--
$-0.739846937 .64172$
$-0.742458337 .90331$
Sampler 3
9.736114E-02 36.91355
$9.878145 \mathrm{E}-0238.00118$
0.100155739 .00039
0.101723940 .08292
ampler 4
0.931544737 .24725
0.941087138 .00787
--
0.954091339 .00019
0.98297641 .04267

Sampler 5
1.77295537 .57489
1.7833538 .00851
1.83409840 .0006
1.86848841 .24567

Sampler 6
2.62151637 .89628
2.62531938 .00313
2.74069141 .00084 2.76798941 .64858

Sampler 7

$3.477903 \quad 38.22721$
$3.515517 \quad 39.00107$
--
3.56630240 .0006
3.66878341 .87636

Sampler 8
4.35522738 .77553
4.57142542 .04076

Block B
Replica 1

Type of sampler:
Number of samplers: 6

List of samplers:
x-coord y-coord
Sampler 1
$5.54526 \quad 39.00596$
5.71017641 .00764

Sampler 2
6.24813639 .00957
6.43411141 .01089

Sampler 3
6.95047239 .00892 7.1574841 .00957

Sampler 4
$7.652122 \quad 39.00401$
7.8801241 .00368

Sampler 5
8.25909338 .1861
8.35789939 .03673
8.36697739 .11309
8.37917939 .21528
8.38280739 .24556
8.39499339 .34694
8.4141139 .50494 8.46372939 .90926

Sampler 6
8.80914736 .98815
9.08409239 .22389

Block C Inside
Replica 1

Type of sampler: Line
Number of samplers: 7
List of samplers:
x-coord y-coord
Sampler 1
13.0111738 .78464
13.3431440 .50244

Sampler 2
$13.33998 \quad 38.20088$
13.7940340 .50405

Sampler 3
13.7317337 .97431
$14.24444 \quad 40.50384$
Sampler 4
14.1743838 .02119
14.6943340 .50181

Sampler 5
14.6178938 .07018
15.0708640 .17928

Sampler 6
15.0648238 .13321
15.4893740 .05354

Sampler 7
$15.53403 \quad 38.29538$
15.8370239 .6346

Replica 2

Type of sampler: Line
Number of samplers: 7
List of samplers: x-coord y-coord

Sampler 1
13.0153138 .38697
13.4226840 .50286

Sampler 2
13.3990838 .10642
13.8734940 .50415

Sampler 3
13.8087137 .97715
14.3238140 .50361

Sampler 4
14.2498138 .01595 14.773640 .50127
--
14.7024438 .10955
15.1444640 .15572

Sampler 6
15.1435138 .14344 15.5729940 .07424

Sampler 7
15.5980538 .23773
15.6001238 .24718
$15.6068 \quad 38.27762$
15.8948139 .54745

Block C Outside
Replica 1

Type of sampler: Line Number of samplers: 7

List of samplers: x-coord y-coord

Sampler 1
9.56050640 .91383
9.56596840 .95135
9.58450541 .07817
9.63235241 .40178

Sampler 2
9.93425137 .24886
10.5480441 .40981

Sampler 3
$10.78122 \quad 37.16034$

Sampler 4
11.6401437 .16588 $\begin{array}{ll}11.64014 & 37.16588 \\ 12.37492 & 41.40359\end{array}$ Sampler 5
$12.49745 \quad 37.16503$ 12.5739737 .61717 $12.65868 \quad 38.10596$ $13.00225 \quad 39.9734$
--
13.1053540 .50086 13.265541 .29308

Sampler 6
13.3529237 .15803
13.3850537 .33654
$14.00608 \quad 40.50418$ $14.07408 \quad 40.82191$

Sampler 7
14.904840 .50024
14.9125640 .53444 --

Block D
Replica 1

Type of sampler: Line
Number of samplers: 6
List of samplers:
x-coord y-coord
Sampler 1
16.9952337 .41394
17.3800439 .00059

Sampler 5

19.0191134 .35612
19.9994638 .14407
-- ampler 6
19.6863434 .34971
19.9909235 .56245
$-$

Block E Inside
Replica 1

Type of sampler:
Number of samplers: 13
List of samplers:
x-coord y-coord
Sampler 1
11.4981936 .43717
11.6082637 .16

Sampler 2
11.7038335 .00112
12.0335437 .16295

Sampler 3
12.1166735 .00232
12.4584337 .16433

Sampler 4
12.529135 .00206 12.8828937 .16414

Sampler 5
12.9410835 .00036
13.3068937 .16238

Sampler 6
13.244334 .33183
13.730437 .15906

Sampler 7
$13.65293 \quad 34.33374$ 14.0309636 .50027

Sampler 8
14.0610934 .33424 14.4513536 .50306

Sampler 9
14.4687734 .33332 14.8712736 .50431

Sampler 10
14.8759334 .33099 15.2906736 .50402

Sampler 11
$15.2833 \quad 34.33136$
15.7095336 .50218
--
15.6904934 .33211 16.128136 .50016

Sampler 13

16.0971334 .33143 $16.39742 \quad 35.80554$
--

Replica 2

Type of sampler: Line
Number of samplers: 13

List of samplers:
x-coord y-coord
Sampler 1
11.4982235 .7009
11.7186737 .16092

Sampler 2
11.8110135 .00157
12.1438637 .16346

Sampler 3
12.2237535 .00239
12.5686437 .16443

Sampler 4
12.6360735 .00176 $12.99298 \quad 37.16383$

Sampler 5

$12.99978 \quad 34.69944$
13.4168537 .16167

Sampler 6
13.350434 .33246
13.8333137 .12069

Sampler 7
13.7589134 .33401 $14.14011 \quad 36.50114$

Sampler 8
14.1669534 .33414
14.5603836 .50354

Sampler 9
14.5744934 .33285 14.9801736 .50438

Sampler 10
14.9815134 .33016 15.3994336 .50368

ampler 11

$15.38903 \quad 34.33169$ 15.8181436 .50145

Sampler 12
$15.79608 \quad 34.33207$ 16.2368136 .5001

Sampler 13

16.2025734 .33102
16.3970935 .29184

Block E Outside
Replica 1

Type of sampler: Line
Number of samplers: 8
List of samplers:
x-coord y-coord
Sampler 1
10.2296536 .78713
10.2360136 .83441
$10.25153 \quad 36.94931$ 10.2801937 .15974

Sampler 2
10.6860833 .50823
10.6934233 .56721 --
$10.71082 \quad 33.70618$ 10.7151933 .74099 --
10.7339233 .88929
10.8559934 .82986
$10.96924 \quad 35.66475$
$11.18465 \quad 37.16266$
Sampler 3
11.6646934 .35618
11.7568135 .00135

Sampler 4

12.5347534 .35693 $12.63391 \quad 35.00177$

Sampler 5
14.6640436 .50389
14.7067236 .72401

Sampler 6
15.555636 .50303
$15.85813 \quad 37.92529$
Sampler 7
$16.39893 \quad 36.28394$
16.9998838 .89605

Sampler 8
16.8671734 .35218
$16.99517 \quad 34.96301$

Block F
Replica 1

Type of sampler: Line
Number of samplers: 11
List of samplers:
x-coord y-coord
Sampler 1
19.9922835 .26847
20.7436838 .0009
$20.71822 \quad 37.91433$
20.6742437 .76387

Sampler 2
20.9957936 .04473
$20.54453 \quad 34.35092$
Sampler 3
$21.6128 \quad 35.40448$
$21.3261 \quad 34.35427$
Sampler 4
$22.40402 \quad 35.40516$ 22.1049434 .35215

Sampler 5
23.192335 .40013
22.8808634 .3446

Sampler 6
23.9261435 .22568
23.6437134 .29829

Sampler 7
24.6693735 .09556
$24.32789 \quad 34.00226$
Sampler 8
25.414434 .98318 25.1001134 .00918

Sampler 9
$26.20798 \quad 35.0239$
26.2974235 .2827
26.3142235 .33093 25.8691734 .01056

Sampler 10
27.0971235 .3327
26.6348434 .00644

Sampler 11
27.8773935 .3313
$\begin{array}{ll}27.87739 & 35.3313 \\ 27.38487 & 33.9622\end{array}$
--

Block G Inside

Replica 1

Type of sampler: Line
Number of samplers: 12
List of samplers:
x-coord y-coord
Sampler 1
$30.12745 \quad 36.00261$
30.2525736 .29937

Sampler 2
30.6147636 .00594
30.9852236 .85557

Sampler 3
$31.10038 \quad 36.0069$
31.4332236 .7583
-- ampler 4
31.584236 .00552
31.8434636 .58303

Sampler 5
31.9824135 .8148
32.2107436 .32051

Sampler 6
32.103335 .00274 32.5818236 .07371

Sampler 7
32.6603935 .18964
$33.0778 \quad 36.10291$
Sampler 8
33.2068935 .34762 33.6007836 .18983

Sampler 9
$33.70345 \quad 35.39466$
34.295236 .62401

Sampler 10
34.0106435 .03942
34.2120435 .46787
34.
34.2660235 .5811
34.8443936 .75436

Sampler 11
34.4658435 .00799
35.237736 .58011

Sampler 12
$34.93491 \quad 35.00922$
$35.37702 \quad 35.91199$
--

Replica 2

Type of sampler: Line
Number of samplers: 12

List of samplers:
x-coord y-coord
Sampler 1
30.2327436 .00353
30.3409536 .25941

Sampler 2
30.7196936 .00634
31.0862536 .84394

Sampler 3
$31.20493 \quad 36.0068$
$31.20493 \quad 36.0068$
$31.52138 \quad 36.71913$
Sampler 4
31.6883636 .00491
31.9381236 .5595

Sampler 5
$31.98222 \quad 35.58056$
$32.28148 \quad 36.24625$
Sampler 6
32.2057135 .00281
$32.67057 \quad 36.04028$

Sampler 10

34.0963435 .00546
$34.3488 \quad 35.54019$
34.3999935 .64682 34.9347636 .72702

Sampler 11
34.5672635 .00845
$\begin{array}{ll}34.56726 & 35.00845 \\ 35.34062 & 36.57863\end{array}$
Sampler 12
$35.0358 \quad 35.00919$
$35.37761 \quad 35.70861$
--

Block G Outside

Replica 1

Type of sampler: Line
Number of samplers:
List of samplers:
x-coord y-coord
Sampler 1
27.9953835 .04269
28.6454836 .72043

Sampler 2
$28.20618 \quad 33.81857$
$29.16701 \quad 36.33489$
Sampler 3
28.816733 .71346
29.7664336 .1538

Sampler 4
29.4230533 .60561 $30.37481 \quad 36.00459$
Sampler 5
30.0228633 .48912
31.0444936 .0069

Sampler 6
30.5782933 .26641
31.7108136 .00477

Sampler 7

31.1284533 .04247 $31.98337 \quad 35.12061$

Sampler 8

31.6733332 .81739 32.4585734 .71296

Sampler 9

32.2129232 .59124 33.1031134 .70397

Sampler 10
32.747232 .36412 33.8679734 .96239

Sampler 11
33.2761232 .13612 $34.53642 \quad 35.00832$ Sampler 12 34.6587133 .89342
$35.01152 \quad 34.65331$ 35.1814535 .00897 --
$35.3792 \quad 35.41487$ 35.5866635 .83183
$35.63479 \quad 35.92732$ 35.7892236 .23064 -
$35.93525 \quad 36.51324$ 36.1031436 .83326

Appendix 2

Extra Tracks

Block A Inside
Replica EXTRA

Type of sampler:
Line
Number of samplers: 8
List of samplers:
x-coord y-coord

Sampler 1
0.184492638 .00221
0.186311438 .71535
0.186556438 .80952 0.187057339 .00065 --
0.684645738 .00674 0.694123439 .00091

Sampler 3

$1.184813 \quad 38.00915$
1.21851540 .00074
--
1.68494338 .00943 1.73287440 .00084

sampler 5

2.18498238 .00758 2.28084541 .00088 --
Sampler 6
2.68487838 .0036 2.73905639 .43603
2.74119839 .4906 2.74197639 .51038 -_
2.7547439 .83226 2.80284841 .00069

Block A Outside
Replica EXTRA

Type of sampler: Line
Number of samplers: 7
List of samplers:
x-coord y-coord
Sampler 1
$-0.840912336 .52762$

$$
\begin{array}{ll}
-0.8524665 & 37.56775 \\
-- \\
-0.8541029 & 37.71082 \\
-0.8542526 & 37.72385
\end{array}
$$

Sampler 2

$-1.500908 \mathrm{E}-02 \quad 36.86792$
$-1.536776 \mathrm{E}-0238.62295$
$-1.542197 \mathrm{E}-0238.87534$
-1.565569E-02 39.92862

ampler 3

0.81819137 .20242
$0.8270553 \quad 38.00731$
.
0.838494439 .00058
0.859191640 .68132
0.85983140 .73106
0.862611740 .94589

Sampler 4
1.65862737 .5309
1.66933938 .00878
1.71684240 .00088
1.74822541 .2157

Sampler 5

$2.506225 \quad 37.85315$
2.51136238 .00421
-
2.62168941 .00102
2.64593741 .60326

Sampler 6
3.36148238 .18165
$3.399953 \quad 39.00103$
3.44907240 .00071 3.54690741 .85355

Sampler 7
$4.234892 \quad 38.68826$ 4.30371939 .82102
--
$4.308238 \quad 39.8932$

Block B
Replica EXTRA

Type of sampler: Line
Number of samplers: 7

List of samplers:
x-coord y-coord
Sampler 1
$5.447347 \quad 39.00512$
5.6093341 .00682

Sampler 2

Sampler 3
6.85270739 .00927

6.8527078
7.056788

--- 4
7.55446139 .00495
7.77953941 .00477

Sampler 5
8.18791138 .41108
8.42371940 .38527

Sampler 6
8.71148136 .96486
8.95007338 .94177

Sampler 7
9.43021537 .26083
9.49574737 .77501

Block C Inside
Replica EXTRA

Type of sampler: Line
Number of samplers: 8
List of samplers:
x-coord y-coord
Sampler 1
13.001540 .12481
$13.07506 \quad 40.50063$
Sampler 2
13.0603138 .08447
13.0643638 .10685
-- 0727138.1528 13.5262240 .50331

Sampler 3
13.4909638 .06441
$13.97692 \quad 40.50418$
Sampler 4
13.9152838 .01372 14.4271240 .50323

Sampler 5
14.3495538 .01702
$14.87678 \quad 40.50047$
Sampler 6
14.8123838 .15942
15.2330540 .0937
--
Sampler 7
15.2524738 .18715
15.6638740 .02433

Sampler 8
15.7009738 .25218

Block C Outside
Replica EXTRA

Type of sampler: Line
Number of samplers: 6
List of samplers:
x-coord y-coord
Sampler 1
9.5804437 .3109
10.1630841 .40733

Sampler 2
$10.42008 \quad 37.1598$
11.0780141 .41105

Block D
Replica EXTRA

List of samplers:
x-coord y-coord
Sampler 1
16.999738 .80339
17.0296438 .92527

Sampler 2

Sampler 3
$17.36877 \quad 34.35519$
18.4841839 .00115

Sampler 4
18.0403534 .35845
19.2012539 .00075

Sampler 5
18.7102534 .35776 19.9178139 .00036

Sampler 6
19.3783534 .35316
19.9907436 .75779

Block E Inside
Replica EXTRA

Type of sampler: Line
Number of samplers: 13
List of samplers:
x-coord y-coord
Sampler 1
11.5197435 .00013
11.8440937 .16183

Sampler 2
11.9327735 .00196
12.2691637 .16391

Sampler 3
$12.34538 \quad 35.00235$
12.6938237 .16442

Sampler 4
12.7575735 .0013 13.1180237 .16336
ampler 5
$13.06208 \quad 34.33051$
$13.54175 \quad 37.16073$
Sampler 6
13.4709134 .33306 13.9543237 .09969

Sampler 7
13.8792834 .33419
14.2640936 .50201

Sampler 8
14.2871834 .3339
14.6842236 .50394

Sampler 9

14.6945734 .3322
$15.10386 \quad 36.50434$
Sampler 10
15.101734 .33057
15.5229636 .50319

Sampler 11
15.5091234 .33195 15.9415136 .5005
-- 12
15.91634 .33191
16.3602836 .50006

Sampler 13

$16.32233 \quad 34.33044$ 16.3983134 .70834

- 16.

Block E Outside
Replica EXTRA

Type of sampler: Line
Number of samplers: 7
List of samplers:
x-coord y-coord
Sampler 1
10.5370433 .65141
10.6623234 .64285
$10.80693 \quad 35.72944$
10.9447136 .71266
-- $10.99683 \quad 37.07237$ 11.0100637 .16265
--
11.4964134 .3553
11.5871735 .00052
11.9130137 .15932
11.913137 .15987

Sampler 3
$12.36683 \quad 34.35728$
$12.46463 \quad 35.00219$
Sampler 4
14.4915436 .50325
14.5455736 .78487

Sampler 5

$15.38357 \quad 36.50374$
15.6873637 .9479

Sampler 6
16.2737336 .50016
16.8260238 .91357

Sampler 7

16.7003934 .35254
$16.99188 \quad 35.73102$

Block F
Replica EXTRA

Type of sampler: Line
Number of samplers: 12
List of samplers:
x-coord y-coord
Sampler 1
19.9973737 .76524
$20.06378 \quad 38.00029$
Sampler 2
19.9960534 .7347
20.88938 .00048
20.8402737 .83569
20.7907337 .66676

Sampler 3
$20.99865 \quad 35.54512$ 20.6825434 .35191
ampler 4
21.7525235 .40501

21.4636434 .35429

Sampler 5
$22.54323 \quad 35.40468$
$22.24198 \quad 34.35122$
Sampler 6
23.3309835 .39865
$23.01736 \quad 34.34271$
Sampler 7
24.0538735 .19118
23.760634 .23189

Sampler 8
$24.75913 \quad 34.94561$
$24.46428 \quad 34.00388$
Sampler 9
25.555634 .99405
25.2359634 .00982

Sampler 10
$26.45217 \quad 35.33067$
$26.00443 \quad 34.01023$
ampler 11
27.2349735 .33288
26.7694934 .00515

Sampler 12
$27.99565 \quad 35.27987$
$27.51184 \quad 33.94001$

Block G Inside
Replica EXTRA

Type of sampler: Line
Number of samplers: 13
List of samplers:
x-coord y-coord
Sampler 1
29.9912636 .08745
30.05136 .23003

Sampler 2
30.4430936 .00503
30.8079236 .84747
--
Sampler 3
30.9293236 .00682
31.2856436 .8152
--
31.4137836 .00627
31.700236 .64722

Sampler 5
31.896436 .00339
32.1033436 .4606

Sampler 6
31.9834135 .11253 $32.43634 \quad 36.12803$

Sampler 7
$32.43785 \quad 35.06534$
32.9029536 .09263

Sampler 8
33.0462235 .36296
33.4084636 .14267

Sampler 9
$33.5117 \quad 35.34204$
33.9583736 .28487

Sampler 10
33.8936435 .14524
33.9907335 .353
$34.05531 \quad 35.48993$
34.0553135 .48993
34.7036636 .81339

Sampler 11
34.2998535 .00703
35.1009336 .64461

Sampler 12
34.7697635 .00904 $35.37698 \quad 36.24469$

Sampler 13
$35.23724 \quad 35.00883$
35.3800535 .30229

Block G Outside

Replica EXTRA

Type of sampler: Line
Number of samplers:
List of samplers:
x-coord y-coord
Sampler 1
$27.99538 \quad 35.04269$
28.6454836 .72043

Sampler 2
$28.20618 \quad 33.81857$
$29.16701 \quad 36.33489$
Sampler 3
28.816733 .71346
29.7664336 .1538

Sampler 4
29.4230533 .60561 $30.37481 \quad 36.00459$
Sampler 5
30.0228633 .48912
31.0444936 .0069

Sampler 6
30.5782933 .26641
31.7108136 .00477

Sampler 7

31.1284533 .04247 $31.98337 \quad 35.12061$

Sampler 8

31.6733332 .81739 32.4585734 .71296

Sampler 9

32.2129232 .59124 33.1031134 .70397

Sampler 10
32.747232 .36412 33.8679734 .96239

Sampler 11
33.2761232 .13612 $34.53642 \quad 35.00832$ Sampler 12 34.6587133 .89342
$35.01152 \quad 34.65331$ 35.1814535 .00897 --
$35.3792 \quad 35.41487$ 35.5866635 .83183
$35.63479 \quad 35.92732$ 35.7892236 .23064 -
$35.93525 \quad 36.51324$ 36.1031436 .83326

