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Introduction 

Aim of the study 

The present work aims at analysing the aerial survey data collected in order to estimate 
biomass and abundance of Bluefin tuna (BFT) in the Mediterranean Sea in the three surveyed 
blocks: A, C and E to understand which environmental covariates drive seasonal and regional 
changes in BFT abundance and biomass. To do this, two approaches were undertaken: 1) 
Design-based analysis (sensu Buckland et al. 2001) of visual aerial surveys to continue time 
series of abundance/biomass estimates of BFT in the Mediterranean based on new surveys 
from 2022 and 2) Model-based analysis (sensu Hedley and Buckland 2004) of visual aerial 
surveys to estimate abundance and biomass of BFT in the Mediterranean in 2017-2022.  

Roles and responsibilities of the teams involved. 

The teams involved in this work had the following roles in the completion of the contract goals. 

CREEM was in charge of formatting of the data for both the design-based approach, 

summarising survey data (e.g., effort, number and location of sighted groups, group sizes), 

preparing the data for model-based analysis (e.g. segments) and prediction grid, sending 

segments and prediction grid to CN-IEO-CSIC, undertaking design-based analysis, undertaking 

model-based analysis including covariates provided by CN-IEO-CSIC and writing the report (in 

collaboration with CN-IEO-CSIC). 

CN-IEO-CSIC was mainly involved in identifying, selecting, retrieving and providing 
environmental data for the model-based analysis as well as previous knowledge regarding 
Bluefin tuna spawners. Based on previous knowledge of environmental relationships between 
distribution and abundance of tuna spawners, CN-IEO-CSIC have selected the primary 
environmental variables to be used, decided the use of the same environmental dataset for all 
survey blocks or different datasets, decided the time and spatial resolutions, identified 
environmental data sources. CN-IEO-CSIC have also created repositories of primary 
environmental data and post-processed environmental variables. CN-IEO-CSIC extracted 
environmental data at sampling segments, provided and evaluation of the significance of each 
variable and the potential correlations, refining the indicators and providing assessment in how 
to avoid possible correlation among variables. CN-IEO-CSIC selected the final variables and 
provided them to CREEM at the prediction grid points on selected prediction spatial scale. 

 

Below a short description of the authors of sections of the present report is included: 

- Introduction  
o Aim of the study (CREEM, IEO-CSIC) 
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o Environmental variables characterizing distribution and occurrence of BFT (IEO-

CSIC)  

- Methods 
o Overview  (IEO-CSIC, CREEM) 

o Aerial surveys data (2017-2022) (IEO-CSIC, CREEM)  
o Extracting environmental covariates (IEO-CSIC) 
o Statistical methods – Distance sampling (DS) (CREEM) 
o Statistical methods – model-based inference (CREEM) 
o Estimation of the total number of individuals (CREEM) 
o Estimation of uncertainty (CREEM) 

- Results (CREEM) 

- Discussion 
o Design- and model-based approaches (CREEM) 

o Environmental drivers of BFT abundance (IEO-CSIC) 

- Conclusions (IEO-CSIC) 

 

Environmental variables characterizing distribution and occurrence of BFT. 

The selection of potential explanatory environmental variables was based on established 
connections between the ecology of BFT and mesoscale oceanography. All environmental 
variables selected have been already explored in the scientific literature from studies 
conducted in the three study blocks (referred to as Blocks in the text) (Figure 1). We only 
included environmental variables that are known to drive the spatial and temporal distribution 
of the BFT, taking care that environmental variables associated to oceanographic processes 
affecting stock productivity were excluded to avoid confounding effects with the interannual 
variations in abundance. Specifically, oceanographic processes that influence the location of 
BFT spawning areas included sea surface temperature, salinity, geostrophic velocities, and 
chlorophyll-a (Alemany et al. 2010, Reglero et al. 2012, Alvarez-Berastegui et al. 2016), and 
other derived variables from those essential ocean variables. Another important parameter 
that has been considered along the study is the spatial resolution of each of the environmental 
variable processed, as the scale of observation directly affects the capability to identify 
environmental-ecological relationships (Alvarez-Berastegui et al. 2014).  
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Figure 1. Depiction of Mediterranean Sea and the three study blocks (referred to as Blocks in the text).  

Bathymetry and slope  

Different studies have related BFT spawning areas to bottom topography. In the western 
Mediterranean, BFT prefers spawning in deeper waters, with bottom depths between 1,250 
and 2,250 m depth (Alemany et al. 2010). In the Gulf of Mexico, another prominent spawning 
area for BFT, spawning may occur in waters with wider ranges of bottom depths, including the 
shelf break, the slope and the deeper waters (Hazen et al. 2016). Indeed, hotspots for spawning 
BFT have been found in slope waters of the Gulf of Mexico, when electronic tagging and pelagic 
longline data are combined (Block et al. 2005).  

Bathymetry and slope are environmental variables reflecting the topography of the bottom of 
the sea. BFT, spawns at the sea surface So, the potential relationship of these variables with BFT 
spawning are explored for potential association with other indirect effects, as the steep slopes 
around the Balearic archipelago define main surface currents that are associated to the 
spawning aggregations.  

Salinity  

Salinity is associated with frontal areas and is one of the most relevant environmental variables 
that explains the distribution of BFT larvae in various spawning regions. Studies in the Balearic 
Sea (Alemany et al. 2010, Reglero et al. 2012), the Gulf of Tunisia (Koched et al. 2013) and the 
Gulf of Mexico (Muhling et al., 2010, 2013) have all linked salinity to the spatial distribution of 
BFT larvae. In the Balearic Islands, offshore mixed waters close to frontal areas at the 
confluence of Atlantic and Mediterranean waters, appear to be the favourite BFT spawning 
areas, as indicated by their preference for waters with a salinity range of 36.9 to 37.7 (Alemany 
et al. 2010). It is unclear whether BFT adults detect salinity gradients or other processes 
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associated with the front, but the preference for specific salinity values does not seem to be 
related to specific physiological constrain but for areas were different water masses generates 
retention eddies and filaments (Alvarez-Berastegui et al. 2016).  

Chlorophyll-a  

It has been consistently observed that BFT spawning grounds are often located in areas with 
low chlorophyll-a (CHLa) concentrations (Muhling et al. 2011, Koched et al. 2013, Muhling et al. 
2013, Llopiz and Hobday 2015). Additionally, in the Balearic Islands spawning grounds, 
chlorophyll-a can be used as indicator of the recent Atlantic waters, which are characterised by 
lower chlorophyll-a but also lower salinity values than the resident Mediterranean waters. This 
has allowed the use of chlorophyll-a as a substitute variable in spatial distribution models of 
spawning aggregations when salinity values are absent or to complement the information 
related to the spatial distribution of water masses (Alvarez-Berastegui et al., 2016).  

Sea surface temperature  

The timing and spatial distribution of BFT spawning is directly influenced by sea surface 
temperature (SST) either in the Mediterranean Sea (García et al. 2005, Alemany et al. 2010) or 
in other spawning areas (Koched et al. 2013, Reglero et al. 2014). BFT typically starts spawning 
once SST reaches 19-20ºC, with larvae displaying a preference for waters between 23 and 28ºC 
(Muhling et al. 2013). Furthermore, SST may also initiate gonadal development in adult BFT, as 
suggested by an increase in the gonadosomatic index of mature individuals upon reaching the 
Balearic Sea (Medina et al. 2002). High mean sea surface temperature may be also a requisite 
for embryo and larvae growth and survival, as they grow faster with increasing temperature, 
decreasing their developmental time (Gordoa and Carreras 2014). These two processes, 
gonadosomatic development and larval survival, may have driven evolutionary constraints for 
the location of spawning areas (Ciannelli et al. 2015).  

Sea surface temperature: temporal gradient  

The spawning activity of yellowfin tuna usually begins after a steady increase in SST (Margulies 
et al., 2007). This could also be the case for BFT (Heinisch et al. 2008). In fact, the temporal 
gradient of SST over the previous fifteen days was useful for predicting BFT spawning ground 
around the Balearic Islands. As water temperature increases quite fast during early summer, 15 
days and 7 days temporal gradients were considered (Álvarez-Berastegui et al., 2016).  

Fronts and mesoscale activity  

The spawning ecology of BFT is also linked to mesoscale activity associated to the main fronts 
during the spawning season (Alemany et al., 2010). The highest abundances of young larvae, 
indicating proximity to spawning aggregations, are associated with low–medium kinetic energy 
values near the front, (Alvarez-Berastegui et al. 2016). The spatial gradients of salinity have 
been shown to be a good predictor of spawning grounds, especially when included in spatial 
models as interaction effect with salinity (Alvarez-Berastegui et al. 2014). In the western 
Mediterranean, the main frontal area is formed when recent Atlantic waters enter in the 
Mediterranean through the strait of Gibraltar and reach the Balearic Sea, mixing with saltier 
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resident waters (Balbín et al. 2014). Hence, the spatial gradients of SST (gradsst) and SSS 
(gradsal) were considered, as proxies of fronts between water masses. However, it has to be 
borne in mind that in the Mediterranean SST fronts generally weaken or disappear during the 
summer period. Furthermore, mixed layer depth (mld) and finite size Lyapunov exponents (fsle) 
are used as proxies of mesoscale mixing activity. Finite size Lyapunov exponents are a proxy of 
mixing activity that have been shown to be related with BFT larval abundance in the Balearic 
Islands (Díaz-Barroso et al. 2022). They are based on the separation rate of a pair of particle 
trajectories and measure the effects of transport and mixing mechanisms of water masses. The 
largest Lyapunov values occur along characteristic lines, called Lagrangian coherent structures 
(LCSs; Hernández-Carrasco et al. 2011, Bettencourt et al. 2012), which act as transport barriers, 
allowing a proper identification of fronts, eddies and filaments. Since LCSs cannot be crossed by 
particle trajectories, these structures strongly constrain and determine fluid motion, helping to 
analyse from a quantitative perspective how ocean transport is organized. Finite size Lyapunov 
exponents expressing sea surface mixing activity related with BFT larval presences in the 
western Mediterranean (Díaz-Barroso et al., 2022), being a more powerful explanatory variable 
than salinity. 

Methods 

Overview 

Abundance was estimated in two ways, design-based estimation based on the survey coverage 
and estimated detection probability and secondly by using the estimated detection 
probabilities to produce estimated detection adjusted abundance and biomass estimates. In 
addition, a spatial model was fitted to detection adjusted estimated biomasses to detect 
potential drivers of biomass.  

Aerial surveys data (2017-2022) 

Table 1 summarises the timing, number of transect, company and airplane type used for BFT 
surveys in 2017-2022. Not all blocks were surveyed each year.  

Table 1. Summary of blocks and survey design.  

Year Block Dates Number of 
transects 

Company Airplane 

2017 A 30 May – 26 June 29 Airmed Partenavia-p68 

C 30 May – 14 June 25 Unimar Partenavia-p68 

E 30 May – 01 July 30 Airmed Partenavia-p68 

2018 A 31 May – 28 June 36 Airmed Partenavia-p68 

C 28 May – 16 June 25 Unimar Partenavia-p68 

E 31 May – 21 June 40 Unimar Partenavia-p68 

2019 A 28 May – 28 June 30 Airmed Partenavia-p68 

C 03 June – 16 June 23 Unimar Partenavia-p68 

E 01 June – 04 July 40 ActionAir Cessna 337 
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2021 A 04 June – 05 July 28 ActionAir Cessna 337 

2022 A 07 June – 27 June 30 Air Perigord Cessna 337 

C 12 June – 20 June 25 Aerial Banners Partenavia-p68 

E 22 June – 04 July 30 Aerial Banners Partenavia-p68 

Extracting environmental covariates 

Data sources  

Data sources included satellite and hydrodynamic models obtained from Copernicus, NOAA and 
IMEDEA-UIB-CSIC (Table 2). Derived variables were computed from the primary variables (Table 
2). Repositories for the areas and time frames of interest were created locally through ftp 
connection. The software for the data extraction and calculation of the derived variables was 
developed in R language (R Core Team 2022), using the following packages: ncdf4 (Pierce and 
Pierce 2019), raster (Hijmans 2018), sf (Pebesma and Bivand 2023) and mgcv (Wood 2006).  

Spatial resolutions  

The spatial resolutions for environmental variables were selected to accommodate spatial 
scales that have previously been found to have some influence on BFT larval habitat (Álvarez et 
al., 2016; Díaz-Barroso et al., 2022). Hence, selected spatial resolution for data extraction were 
i.e., 1.0º, 0.625º, 0.4º and 0.25º decimal degrees. Environmental data were retrieved for each 
sample observation, centred at segment locations (MidLon, MidLat), and calculated as the 
mean of the variable in a delta radius (½ the spatial resolution). The acronym of each variable 
(see Table 1) has an added subscript referring to this delta radius i.e., _d05, _d03125, _d02 and 
_d0125 respectively (e.g., CHL_d05, sst_d05). Bathymetry (bathy) was retrieved using the 
library marmap (Pante and Simon-Bouhet 2013) at the lowest spatial resolution available i.e., 
0.0042ºx0.0042º decimal degrees, and at 0.07ºx0.07º (Figure 2).  

Table 2. Retrieved and derived variables for the segments collected from aerial surveys. Spatial 
resolution (Spat. Res.) is in decimal degrees. 

Variable Acronym Units Temporal 

scale 

Spat. Res. 
product 

Type of 
data 

Institutio
n 

Spat. Res. 
source 

Source 

Bathymetry  bathy  m  -  0.017º  Model  NOAA 
2022  

0.0042º  1  

Slope  slope  degree
s  

-  0.07º  Derived  CN-IEO-
CSIC  

0.0042º  -  

Slope 
categorical 
variable  

catslope  -  -  0.6º  Derived  CN-IEO-
CSIC  

0.0042º  -  

Day of the 
year  

doy  -  daily  -  Derived  CN-IEO-
CSIC  

-  -  

Presence 
absence of 
BFT  

pa  -  -  At 
segment 
locations  

Derived  CN-IEO-
CSIC  

-  -  

Sea surface 
chlorophyll  

CHL  mg m-3  daily  1.0º, 
0.625º, 

Satellite  Copernic
us  

0.042º  2  
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0.4º & 
0.25º  

Sea surface 
temperature  

sst  ºC  daily  1.0º, 
0.625º, 
0.4º & 
0.25º  

Satellite  Copernic
us  

0.05º  3  

Sea surface 
temperature 
–temporal 
gradient  

sst7dgrad  ∆ºC  7 day  1.0º, 
0.625º, 
0.4º & 
0.25º  

Derived  CN-IEO-
CSIC  

0.05º  -  

  sst15dgra
d  

∆ºC  15 day  1.0º, 
0.625º, 
0.4º & 
0.25º  

Derived  CN-IEO-
CSIC  

0.05º  -  

Residual 
temperature  

restemp  ∆ºC  daily  1.0º, 
0.625º, 
0.4º & 
0.25º  

Derived - 
Model  

CN-IEO-
CSIC  

0.05º  -  

Mixed layer 
depth  

mld  m  daily  1.0º, 
0.625º, 
0.4º & 
0.25º  

Model  Copernic
us  

0.042º  4, 5  

Sea surface 
salinity  

sal  -  daily  1.0º, 
0.625º, 
0.4º & 
0.25º  

Model  Copernic
us  

0.042º  4,5  

Finite size 
Lyapunov 
exponents  

fsle  day-1  daily  1.0º, 
0.625º, 
0.4º & 
0.25º  

Derived-
Model  

IMEDEA-
UIB-CSIC  

0.016º  6  

Sea surface 
temperature 
– spatial 
gradient  

gradsst  ∆ºC  daily  0.5º  Derived  CN-IEO-
CSIC  

0.05º  -  

Sea surface 
temperature 
– spatial 
gradient  

gradsal  ∆  daily  0.5º  Derived  CN-IEO-
CSIC  

0.042º  -  

1: https://www.ncei.noaa.gov/products/etopo-global-relief-model  
2: https://doi.org/10.25423/cmcc/medsea_multiyear_bgc_006_008_medbfm3  
3: https://doi.org/10.48670/moi-00173  
4: For dates until 30/06/2021: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1  
5: For dates later than 30/06/2021: 
https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS7 
6: Hernández-Carrasco et al., 2011 

https://www.ncei.noaa.gov/products/etopo-global-relief-model 
https://doi.org/10.25423/cmcc/medsea_multiyear_bgc_006_008_medbfm3 
https://doi.org/10.48670/moi-00173 
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Figure 2. Map showing the extracted bathymetry (in meters) for the western Mediterranean.  

Primary and derived environmental variables  

Bathymetry (bathy), sea surface chlorophyll (CHL), sea surface temperature (sst), mixed layer 
depth (mld), sea surface salinity (sal) and finite size Lyapunov exponents (flse) were retrieved 
for each segment of the aerial surveys from different data sources, i.e. satellite, oceanographic 
models or dispersion models (Table 2).  

Data processing and derived variables  

Derived environmental variables were computed from the extracted primary data. The 

presence-absence of BFT (pa) was created was computed from the number of individuals 

(NumIndividuals) by providing a 0 to any observation with no detections and 1 to observations 

with BFT detections. The day of the year (doy) was computed from the variable Date using the 

library lubridate (Grolemund and Wickham 2011). Slope was calculated from extracted 

bathymetry at 0.07ºx0.07º spatial resolution and using the function terrain from the raster 

package (Hijmans 2022) (Figure 3). Additionally, a binary variable for slope (catslope) was 

created to identify observations that are on the shelf-break (1: slope≥2) and areas that are 

outside the shelf-break (0: slope<2), after upscaling the variable slope to spatial resolution of 

0.6ºx0.6º performed using a bilinear interpolation by a factor of nine (Figure 4).  

Temporal gradients for sea surface temperature were computed as the mean difference of 
temperature at each cell of the grid at 7 and 15-day intervals following Álvarez-Berastegui et al., 
2016. Residual temperature (restemp) was estimated at each spawning area (A, C, E), as the 
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residuals of a generalised additive model (fitted by restricted maximum likelihood) relating SST 
at each spatial resolution with the Julian day, to remove the effect of temperature increase 
along the season.  

Spatial gradients for sea surface temperature and for salinity were computed as the maximum 
absolute difference between the mean hydrographic variable at the centre polygon and each of 
the eight surrounding polygons standardized to distance (Worm et al. 2005).  

Finite size Lyapunov exponents were post-processed to avoid NAs corresponding to particles 
that ended up at the coast or that remained in the same place for more than 180 days 
(FSLE<0.006, 1/days). This NA values were set to 0.006, which is the minimum detection limit. 

 

Figure 3. Map showing the slope variable (in radians) generated from the extracted bathymetry for the western 
Mediterranean.  
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Figure 4. Categorical value of slope (catslope) for the western Mediterranean. In green (category 1) for shelf-break 
and in white (category 2) for non-shelf-break areas. 

Statistical methods - Distance sampling (DS) 

Survey design 

We added 31 sightings from 2022 to the previously analyzed sightings data (Chudzinska et al. 
2021, Chudzinska et al. 2022) (Table 3). Two sightings were excluded due to missing school 
sizes. Cluster size was obtained from TotalNumberPS regardless of composition in terms of size. 
However, no sightings with 100% small were provided with the data set. 

Table 3. Number of sightings (within 1500m) per year and block. ‘-‘ indicate that no survey took place in a given 
block and year. 

 2017 2018 2019 2021 2022 

A 22 (18) 29 (24) 20 (19) 8 (7) 14 (8) 

C 11 (7) 8 (8) 4 (4) - 14 (11) 

E 4 (4) 9 (7) 11 (6) - 3 (3) 

Total 39 (29) 46 (39) 35 (29) 8 (7)  31 (22) 

As for previous surveys, we obtained perpendicular distances to the line for the 2022 sightings 
using the trigonometric relationship: 
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𝑦𝑖 = tan((90 −  𝜃𝑖) × 2 × 𝑝𝑖/360) × ℎ𝑖  

where 𝑦𝑖 is the perpendicular distance between the line and the 𝑖th school, 𝜃𝑖  is the declination 
angle and ℎ𝑖  the height of the airplane (Figure 5). 

 

Figure 5. Correlation between the key declination angles and perpendicular distances at an altitude of h = 1000 ft = 
300 m (Figure 5 from ICCAT survey protocol. Source: https://www.iccat.int/.) 

A preliminary inspection of the distribution of perpendicular distances did not reveal any issues 
(Figure 6).  

 

https://www.iccat.int/
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Figure 6. Histogram of detections within 1500m from the line. 

Fitting the detection function 

Two critical assumptions of DS methods are that all schools on the transect centre line (i.e., at 
zero perpendicular distance) are detected with certainty and that distance measurements are 
exact. Given these assumptions, the distribution of perpendicular distances is used to model 
how the probability of detection decreases with increasing distance from the trackline. 

Perpendicular distances were right truncated, where required, to avoid a long tail in the 
detection function, as well as left truncated, where required, to account for lower detection on 
the transect centre line. Left truncation is a common practice for aerial surveys, due to 
difficulties in searching directly underneath the plane, especially when the plane does not have 
a bubble window, which was not the case in the studied survey years. Perpendicular distances 
were truncated at 1,500 m. The choice of this truncation distance was based on visual 
inspection of fitted detection function, comparison with truncation distance used for previous 
years (2017-2021 models). 

We used the packages Distance (Miller 2022) and mrds for analyzing the detection data in R 
version 4.2.0 (R Core Team 2022). We tested the fit of two key functions, the half normal (hn) 
and the hazard-rate (hr), and investigated whether adding covariates to the model in a multiple-
covariate distance sampling (MCDS; e.g. Marques et al. 2007) approach would improve model 
fit. Here, six covariates which may affect the observers’ ability to detect school were 
considered: the log of school size (log-size), the company conducting the survey (company), 
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airplane, year, seastate and a combination of survey block (A, C or E) with survey year (block) 
(Table 4). Model selection was based on minimum AIC values (Akaike 1987). 

Table 4. Covariates considered for multiple-covariate distance sampling analyses. 

Covariate Description 

log-size Log of school size 

company Factor with five levels (Airmed, Unimar, ActionAir, Air Perigord, Aerial Banners) 

airplane Factor with two levels (Partenavia-P68, Cessna-337) 

year Factor with five levels (2017, 2018, 2019, 2021, 2022) 

seastate Continuous variable  

block Block-year combination 

 

We conducted forwards model selection, starting with a model without covariates. In the next 
round we fitted single covariate models to either key function using the six available covariates. 
If any of the covariates improved the model, we investigated if adding a second covariate 
improved the fit in the next round. This process was repeated whereby one covariate was 
added to the best model from the previous round at a time until no improvement was 
achieved. 

Goodness of fit 

Various options can be explored with function Distance: gof_ds which creates a quantile-quantile 
(Q-Q) plot and conducts various tests, including 𝜒2, Kolmogorov-Smirnov and Cramer-von 
Mises tests, whereby large p-values indicate a good fit to the observed data (Miller et al. 2019, 
Laake et al. 2022). 

The Q-Q plot shows how well the observed (or empirical) cumulative distribution function 
(ECDF) matches the fitted cumulative distribution function (FCDF) based on the best detection 
function model. Kolmogorov-Smirnov and Cramer-von Mises tests are based on the Q-Q plot 
and assess the deviations of ECDF ~ FCDF from a best fitting line (the y=x line, where the ECDF 
equals the FCDF for each data point in the sighting data). Hereby, the Kolmogorov-Smirnov test 
uses the largest vertical distance between a point and the y=x line as a statistic to test the null 
hypothesis that the samples (ECDF and FCDF) are from the same distribution and hence our 
model fits well. If the deviation between the y=xy=x line and the points is too large we reject 
the null hypothesis and say the model doesn't have a good fit. 

By comparison, the Cramer-von Mises test uses all the differences between line and points and, 
while the null hypothesis is the same as for the Kolmogorov-Smirnov test, its test statistic is the 
sum of the deviations from each of the points to the line. 

For the 𝜒2-test, binning of distances was required as the sightings data are continuous. We 
used the default number of 20 equal-width bins. The test compares the number of observations 
in a given bin to the number predicted under the fitted detection function. 
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Estimating group abundance 

Detections and search effort were pooled within each survey to obtain encounter rates, and 
hence obtain estimates of density and abundance, by year (for 2017-2021 combined models). 
Estimates averaged overall surveys (weighted by survey effort) were also obtained.  

The lengths of track lines were calculated from the recorded positions (i.e. latitude and 
longitude), when observers were on search effort. Only groups sighted when observers were on 
search effort and within 1,500 m were included in the analysis.  

Statistical methods - model-based inference 

The count method of Hedley and Buckland (2004) was implemented to model the trend in 
spatial distribution in BFT. A common approach is to model the number of individuals in a small 
section of effort as a function of location and environmental descriptors. However, due to the 
nature of these data, where the range of group size can be from few to thousands (1 – 3,000 
individuals in the data used in this model), a multi-step process was implemented: 

• a model was fitted to the number of BFT groups (group encounter rate model) 

• a model was fitted to group size (group size model) 

• predictions from these two models were multiplied to produce a surface of BFT abundance. 

For the purpose of this report, the same sightings, as used for DS, were considered: only 
sightings of schools consisting of adult individuals spotted by professional observers (for 2021 
data). 

Biomass estimation proceeded similarly to abundance estimation, first with the fitting a 
detection function followed by the fitting of a spatial model for the result and modified.  

Probability of detection 

The probability of detection was estimated from the detection function modelled as described 
above. 

Modelling the number of groups 

For model-based distance sampling analyses, the transect lines surveyed on effort were first 
divided into small sections (segments). The target length of segments was 10 km, but segments 
varied from this because of breaks in search effort. Sightings were attributed to the segments 
from which they were detected. Using the best fitting detection model (see above), the 
probability of detection 𝑝𝑟, was estimated for the rth school using the observed covariate 
values (if applicable) (Buckland et al. 2015).  

The response variable 𝑁𝑖 was the estimated number of groups in segment 𝑖 with length 𝑙𝑖. 𝑁𝑖 
was calculated using a Horvitz-Thompson-type estimator (Horvitz and Thompson 1952): 
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�̂�𝑖 = ∑
1

�̂�𝑟

𝑅𝑖

𝑟=1

 

where 𝑅𝑖 is the number of detected groups in segment 𝑖.  

Model specification 

The estimated numbers of BFT groups �̂�𝑖 per segment were used to estimate group abundance 
in the blocks of interest. This approach models spatial and temporal trends in the density and 
allows it to vary throughout the block and period of interest. 

Counts are often modelled using a Poisson distribution; however, these data were over 
dispersed (i.e., more variable than expected for Poisson distributed data), and, therefore, we 
assumed a quasipoisson distribution, which allows a bit more variability of the counts.  

The mean (𝜇𝑖) was modelled with location, habitat and temporal variables as candidate 
explanatory variables represented as follows. 

𝜇𝑖 = exp(log𝑒(𝑎𝑖) + 𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1

𝐹𝑖𝑗 + ∑ 𝑠𝑘

𝐾

𝑘=1

(𝐷𝑖𝑘)) 

Where: 

• log𝑒(𝑎𝑖) is an offset term (a term with known regression coefficient) that corresponds to 

the area of each segment (𝑎𝑖 = 2𝑤𝑙𝑖  where 𝑤 is the truncation distance and 𝑙𝑖 is the 
length of the 𝑖th segment), 

• 𝛽0 is an intercept, 

• 𝛽𝑗𝐹𝑖𝑗 represent factor terms (e.g. year) with 𝛽𝑗 representing the regression coefficients 

for the 𝑗th factor variable, 

• 𝑠𝑘(𝐷𝑖𝑘) represent one dimensional smooth terms (e.g. depth) 

Interaction terms can be added as two-dimensional smooths between two continuous 
covariates or between a continuous and a factor covariate which allows the smooth to vary for 
each factor level.  

• 𝑠𝑙(𝑋𝑖, 𝑌𝑖) represents a two-dimensional smooth term (determined for the 𝑖th segment) 
where at both 𝑋𝑖 and 𝑌𝑖. 

The models were fitted using generalised additive models in the R package mgcv (Wood and 
Wood 2015).  
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The spatial model for biomass was generated in a similar manner with the original biomass 
estimates inflated by being divided by the estimated detection probability. These modified 
biomass estimates were in turn modelled spatially. However, in this case the distributional 
properties of the estimated abundances were quite awkward. For this reason, instead of being 
modelled as counts, the biomass data were modelled as densities in a zero-inflated model 
assuming a Poisson distribution of residuals for the non-zero component with a binomial 
presence absence component. Smooths were considered as before.   

Potential issues 

We checked for collinearity and concurvity using the vif function from the car library which 
calculates variance-inflation and generalized variance-inflation factors (VIFs and GVIFs) (Fox and 
Weisberg 2018). VIFs can be used for comparing linear terms, GVIFs for factor or smooth terms 
(where the nonlienar equivalent to collinearity is called concurvity).  

Model selection 

After eliminating collinear and concurve covariates we fitted a full model with the remaining 
terms. Here, covariates were tested as smooth functions or, in specific cases, as interaction 
terms. The selection of interaction terms to be tested was based on discussion among co-
authors. From this full model, we applied backwards model selection using p-values by checking 
if all model terms were significant. If any term had an associated p-value of greater than 0.05, 
we eliminated the term with the highest p-value and refitted the model. This process was 
continued until all model terms were significant. If an interaction term was non-significant, the 
main effects were tested and retained if significant.  

Group size modelling 

Group (shoal) size could, like density of group numbers could vary over the range of the surveys 
therefore shoal size was modelled over the space and time of the surveys using the same 
methods as in the case of group number with the same consideration of variables except with 
the additional consideration of estimated distance to account for a potential bias that small size 
shoals would not be detected at greater distances. However, as the sample size was extremely 
small (n = 126), interactions were not considered, only main effects. Again, model selection was 
backwards with a P<0.05 inclusion criterion.  

Group sizes were modelled assuming a Gamma distribution of the residuals with an inverse 
gamma link function (as group size could not be zero).  

𝜇𝑖 = 1/(𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1

𝐹𝑖𝑗 + ∑ 𝑠𝑘

𝐾

𝑘=1

(𝐷𝑖𝑘)) 

where 

• 𝛽0 is an intercept, 
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• 𝛽𝑗𝐹𝑖𝑗 represent factor terms (e.g. year) with 𝛽𝑗 representing the regression coefficients 

for the 𝑗th factor variable, 

• 𝑠𝑘(𝐷𝑖𝑘) represent one dimensional smooth terms (e.g., depth) 

 

The models were similarly fitted using generalised additive models in the R package mgcv (Wood 

and Wood 2015).  

Estimation of the total number of individuals  

With spatial models for both group number and group size known then estimation of overall 
numbers and density per survey area could be undertaken by simply predicting the numbers for 
each model for each year for a single approximate optimum date from inspection of the data. 
However, this date could well vary between years and blocks. The prediction grid consisted of 
cells at 0.25º longitude and latitude intervals. Primary and derived environmental variables 
were retrieved for the variables selected in the final models and for the day with maximum 
mean predicted Bluefin tuna i.e., 31st of May of each year, and for the 12th of June, which is a 
secondary maximum of mean predicted Bluefin tuna number of groups.  

Estimation of uncertainty  

Uncertainty was estimated by means of a non-parametric bootstrap. In the case of the group 
number and group size models for each iteration, new model parameters were generated 
based on the parameter estimates from the initial models along with their associated 
variance/covariance matrix.  

Results 

Distance sampling (DS) 

Best fitting detection functions 

Models tested are shown in Table 5. The same detection functions were used for abundance of 
groups and biomass. Including log-size as a covariate showed the best improvement of model 
fit in single-covariate models. Covariate company further improved the model when using the 
half-normal key function. Hence, the best model was the half normal with log-size and company 
as covariates (mod1722_hn.size.company) and was used in the following to produce 
summaries, tables and plots. 

Table 5. Models tested in forwards selection for group size where horizontal lines separate the different rounds of 
model fitting. ∆ AIC refers to the difference between a given model and best (underlined).  

Models key Covariates AIC ∆ AIC 

mod1722_hn hn -- 1774 45 

mod1722_hr hr -- 1773 44 

mod1722_hn.company hn company 1790 61 

mod1722_hn.plane hn plane 1790 61 
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mod1722_hn.reg hn block 1789 60 

mod1722_hn.seas hn seastate 1790 61 

mod1722_hn.size hn size 1732  3 

mod1722_hn.year hn year 1797 68 

mod1722_hr.company hr company 1762 33 

mod1722_hr.plane hr plane 1772 43 

mod1722_hr.reg hr block 1764 35 

mod1722_hr.seas hr seastate 1774 45 

mod1722_hr.size hr size 1743 14 

mod1722_hr.year hr year 1774 45 

mod1722_hn.size.company hn size + company 1729  0 

mod1722_hn.size.plane hn size + plane 1734  5 

mod1722_hn.size.reg hn size + reg 1735  6 

mod1722_hn.size.seas hn size + seastate 1734  5 

mod1722_hn.size.year hn size + year 1737  8 

mod1722_hr.size.company hr size + company 1735  6 

mod1722_hr.size.plane hr size + plane 1745 16 

mod1722_hr.size.reg hr size + reg 1734  5 

mod1722_hr.size.seas hr size + seastate 1745 15 

mod1722_hr.size.year hr size + year 1746 17 

mod1722_hn.size.company.seas hn size + company + seastate 1731  2 

mod1722_hr.size.company.seas hr size + company + seastate 1736  7 

 

Goodness of fit 

The fit of the best detection function model to the observed data was deemed adequate as 
judged by the Q-Q plot (Figure 7) and the three goodness of fit test statistics including the 𝜒2-
test (using 20 equally-spaced distance bins), the Kolmogorov-Smirnov test (with 100 bootstrap 
samples) and the Cramer-von Mises test (Table 6).  

The histogram of detections (Figure 6) showed a relatively quick drop off in detection 
probabilities between 0 and 500 m (Figure 7). This was mostly driven by the detections with 
small school sizes, shown in the figure as those below the histogram line, i.e. lower than 
average detection probabilities. Most of these small school sizes were detected in Block A by 
company Airmed.  
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Figure 7. Histogram of observed distances, average detection function across all observations (histogram line) and 

detection probabilities of observed distances from best fitting model (dots) colour coded by company. Size of 

symbols were scaled to represent the natural log of school size. 

 

Table 6. Goodness of fit tests and results conducted to assess fit of best detection function model. 

Test Test statistic p-value 

𝝌𝟐 (13 degrees of freedom) 15.136 0.30 

Kolmogorov-Smirnov 0.061 0.58 

Cramer-von Mises 0.090 0.63 
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Figure 8. Q-Q plot for best fitting model showing the observed (empirical) cumulative distribution function (ECDF) 
against the fitted CDF (FCDF) along with a line of best fit (y=x line). 

Summary of effort and estimates of encounter rate. 

The largest effort per block was conducted in block E and lowest in block C (Table 7). However, 
most sightings were made in block A, resulting in the highest estimated encounter rates for 
block A with lowest CVs between 2017 and 2019. Encounter rate estimates were lowest in 
block E with higher than average CVs.  

Table 7. Summary per block of area covered by the survey, effort conducted, number of groups encountered (n), 
number of transect lines (k), estimated encounter rate (ER) and its standard deviation (SE) and CV (CV). 

Block Area (km2) Covered Area (km2) Effort (km) n k ER SE CV 

A-2017 61837.1 14988.2 4996.1 18 52 0.003603 0.001048 0.29 

A-2018 61837.1 18462.0 6154.0 24 62 0.003900 0.000858 0.22 

A-2019 61837.1 16378.6 5459.5 19 50 0.003480 0.000774 0.22 

A-2021 61837.1 18792.7 6264.2 7 46 0.001117 0.000591 0.53 

A-2022 61837.1 16101.6 5367.2 8 38 0.001491 0.000554 0.37 

C-2017 51821.2 14490.0 4830.0 7 25 0.001449 0.000469 0.32 

C-2018 51821.2 14792.5 4930.8 8 25 0.001622 0.000646 0.40 

C-2019 51821.2 14453.0 4817.7 4 23 0.000830 0.000470 0.57 

C-2022 51821.2 14810.1 4936.7 11 25 0.002228 0.000775 0.35 
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E-2017 90101.5 19147.3 6382.4 4 41 0.000627 0.000302 0.48 

E-2018 90101.5 26464.0 8821.3 7 47 0.000794 0.000395 0.50 

E-2019 90101.5 24996.0 8332.0 6 48 0.000720 0.000322 0.45 

E-2022 90101.5 19623.7 6541.2 3 32 0.000459 0.000331 0.72 

Total 876876.3 233499.7 77833.2 126 514 0.001588 0.000159 0.10 

Estimated numbers of groups NG per block were highest again in block A between 2017 and 
2019 which also had the lowest CVs. CVs for other blocks ranged between 39% and 73%. 
Estimated numbers of schools were lowest in block C in 2019 (Table 8).  

Table 8. Number of groups encountered (n), estimated number of groups 𝑁𝐺  per block along with its standard 
error (SE), coefficient of variation (CV), lower and upper 95% confidence limits (LCL and UCL).  

Block N 𝑵𝑮 SE CV LCL UCL 

A-2017 18 430.6 159.1 0.37 210.9 879.4 

A-2018 24 337.7 117.4 0.35 172.4 661.6 

A-2019 19 307.8 86.0 0.28 178.2 531.6 

A-2021 7 45.3 27.0 0.60 15.0 136.7 

A-2022 8 45.0 24.7 0.55 16.3 124.6 

C-2017 7 34.0 13.3 0.39 15.9 72.7 

C-2018 8 47.9 23.4 0.49 19.0 120.7 

C-2019 4 19.2 11.9 0.62 6.0 62.0 

C-2022 11 105.4 42.6 0.40 48.1 230.9 

E-2017 4 26.7 13.2 0.50 10.4 68.6 

E-2018 7 31.6 17.1 0.54 11.5 86.9 

E-2019 6 44.0 22.3 0.51 16.9 114.3 

E-2022 3 55.9 40.7 0.73 14.9 209.8 

 

The expected school sizes were lowest in block A, in particular during 2017 – 2019 with 
estimates of less than 250 individuals per school (Table 9). Blocks C and E generally had high 
school sizes. For block C, all but the 2018 estimate were larger than 1000 individuals. For block 
E, estimates declined from a high in 2017 to a low in 2022.  

Table 9. Expected school size per block (𝐸[𝑠𝑖𝑧𝑒]) and standard error (SE) 

Block 𝐄[𝐬𝐢𝐳𝐞] SE 

A-2017 111.3 60.0 

A-2018 231.5 100.5 

A-2019 241.1 96.7 

A-2021 979.8 190.2 

A-2022 572.3 188.7 

C-2017 1297.6 316.9 

C-2018 766.9 345.5 

C-2019 1326.3 406.1 

C-2022 1592.6 176.8 

E-2017 1581.1 324.1 
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E-2018 1241.0 357.7 

E-2019 709.8 64.4 

E-2022 408.7 120.4 

Total 444.2 84.6 

 

For block A, estimated number of individuals were highest in 2018 and declined steadily to 
2022. For block C, the estimated number of individuals declined between 2017 and 2021, 
however, came to an overall high in 2022. For block E, the estimated number of individuals 

declined steadily between 2017 and 2022. Overall, estimated numbers of individuals 𝑵 were 
highest in block C in 2022. Block C also showed largest increase in abundance in comparison to 
previous years. Abundance estimates in blocks A and E are comparable to the last surveys 
conducted in these blocks. CVs for the individual blocks were overall high – lowest for block A 
with 31% but generally over 40% otherwise and up to 83% in block E in 2022 (Table 10, Figure 
9).  Figure shows comparison between current estimates and estimates of the abundance from 
the previous reports. The current results are comparable with the previous estimates.  

 

Table 10. Estimated number of individuals 𝑵 (in thousands) per block (block and year) with standard errors and 
95% CIs. The same columns with ‘str’ apply to estimates reported in Chudzinska et al. 2021, and Chudzinska et al. 
2022. ‘-‘ indicates that estimates previous to this study were not provided. 

Label N SE CV LCL UCL N_str CV_str LCL_str UCL_str 

A-2017 47.93 20.56 0.43 21.06 109.11 49.92 0.44 21.82 114.2 

A-2018 78.18 23.94 0.31 43.10 141.81 81.6 0.31 45.28 147.1 

A-2019 74.22 29.41 0.4 34.54 159.48 75.02 0.38 36.71 153.3 

A-2021 44.33 24.86 0.56 15.58 126.16 26.11 0.54 9.59 71.13 

A-2022 25.78 11.87 0.46 10.76 61.75 - - - - 

C-2017 44.11 18.00 0.41 19.87 97.90 44.89 0.44 19.52 103.2 

C-2018 36.77 21.03 0.57 12.38 109.22 37.38 0.53 13.72 101.8 

C-2019 25.53 14.77 0.58 8.46 77.05 25.98 0.61 8.43 80.06 

C-2022 167.82 70.57 0.42 74.22 379.47 - - - - 

E-2017 42.16 21.87 0.52 15.76 112.78 44.1 0.54 16.38 118.7 

E-2018 39.24 23.01 0.59 13.20 116.62 40.1 0.47 16.63 96.71 

E-2019 31.21 15.65 0.5 12.15 80.18 17.93 0.51 6.96 45.68 

E-2022 22.85 19.05 0.83 5.23 99.82 - - - - 
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Figure 9. Estimated abundance of BFT for surveyed years and blocks. Orange colour show estimates from this 
study: dots show mean values and ribbon show upper and lower confidence limits of the 95% confidence interval. 
Grey colour shows estimates from the previous reports (Chudzinska et al. 2021, and Chudzinska et al. 2022) for 
comparison (‘strict update’).  
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Figure 10. Histogram of observed distances, average detection function across all observations (histogram line) and 

detection probabilities of observed distances from best fitting model (dots) with log (Biomass) the sole covariate 
apart from distance. 

 

 

 

 

The biomass estimates for the previous years were based on a detection function (see Figure 
10) with distance and log (Biomass). The biomass estimates are presented in Table 11 and 
Figure 11.  The results are comparable with the estimates from the previous reports but the 
estimate for biomass is higher for block A in 2021. This appears to be because G block 
observations were not used in constructing the detection function. For reasons of backwards 
compatibililty with previous strict update results, results based on a detection function 
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including the Block G data were included in Appendix 2.  The biomass in block E is comparable 
to the estimates from 2019 when the last survey took place in that block.  

 

 

Table 11. Estimated biomass (B, in tons) per block along with its standard error (SE), coefficient of variation (CV), 
lower and upper 95% confidence limits (LCL and UCL). The same columns with ‘str’ apply to estimates reported in 
Chudzinska et al. 2021, and Chudzinska et al. 2022. ‘-‘ indicates that estimates previous to this study were not 
provided.  

 B CV LCL UCL B_str CV_str LCL_str UCL_str 

A-2017 8927 0.43 3879 20546 8001 0.45 3436 18634 

A-2018 14857 0.3 8227 26828 13345 0.31 7352 24222 

A-2019 13268 0.39 6202 28387 11548 0.38 5619 23734 

A-2021 7667 0.53 2832 20760 4714 0.53 1750 12696 

A-2022 11903 0.43 5129 27627 - - - - 

C-2017 7691 0.38 3620 16338 6749 0.43 2981 15280 

C-2018 5822 0.55 2022 16764 5069 0.54 1846 13920 

C-2019 3549 0.56 1198 10513 3072 0.62 977 9652 

C-2022 6878 0.41 3065 15436 - - - - 

E-2017 5639 0.58 1899 16750 5884 0.6 1981 17483 

E-2018 4423 0.54 1601 12215 3735 0.47 1538 9067 

E-2019 3063 0.46 1268 7396 2023 0.5 797 5188 

E-2022 1346 0.74 352 5149 - - - - 
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Figure 11. Estimated biomass (in tons) of BFT for surveyed years and blocks. Orange colour show estimates from 
this study: dots show mean values and ribbon show upper and lower confidence limits of the 95% confidence 
interval. Grey colour shows estimates from the previous reports (Chudzinska et al. 2021, and Chudzinska et al. 
2022) for comparison (‘strict update’). 

 

Exploration of candidate explanatory variables  

In this section we explored the relationship between the response variable for the model Ni 
(number of groups per segment adjusted for imperfect detection) and each of the covariates. 
The available candidate explanatory variables were divided into 11 groups.  

Group 1: bathy, catslope, Julian  

Covariate bathy showed higher responses in areas where this covariate was less than 2000 m 
(Figure 12). Mean responses were increasing for bathy values up to 2000 m and declined 
thereafter. Responses varied similarly for both levels of catslope. However, mean response was 
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higher for catslope = 1. Julian had the highest responses and larger variability in the central part 
of observed values (i.e. in the middle of the survey period). However, highest mean response 
was observed on Julian = 151.  

 

 

Figure 12. Relationship between the response and variables bathy, catslope and Julian and. Top row: violin plots 
with median shown as coloured dots indicating the sample size within the bin (green: >100, yellow: <101, amber: 
<21, red: <11), interquartile ranges would show in white but all equal zero. Bottom row: means shown as coloured 
dots.  

Group 2: Slope with varying spatial resolution   

All slope variables had very few observations in the higher ranges of these covariates (Figure 
13). Highest variability in the responses was observed in the lower areas of these covariates. 
Another feature shared between these covariates was that mean responses increased through 
the lower half of observed values and generally decreased in the higher half. However, highest 
mean response for slope was observed in the second highest bin. This was due to one out of 
seven observations with a non-zero response in this bin. 
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Figure 13. Relationship between variables related to slope and the response (adjusted number of groups per 
segment). Top row: violin plots with median shown as coloured dots indicating the sample size within the bin 
(green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but all equal zero. 
Bottom row: means shown as coloured dots.  

Group3: Chlorophyll – daily product  

For all chlorophyll variables, the majority of observations were within the lowest two bin (Figure 
14). Mean responses were generally highest in these two bins as well. However, for CHL_d05 
showed a highest mean response in bin 3.  
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Figure 14. Relationship between variables related to chlorophyll and the response (adjusted number of groups per 
segment). Top row: violin plots with median shown as coloured dots indicating the sample size within the bin 
(green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but all equal zero. 
Bottom row: means shown as coloured dots.  

 Group 4: Sea-surface temperature – daily product  

Covariates related to sea-surface temperature showed highest variability in responses in the 
central areas of observed values, i.e. between approximately 21 and 24 °C (Figure 15). Outer 
blocks of these covariates had few observations. Highest responses were observed around 24 
°C while highest mean responses were observed between 20 and 21 °C, depending on the 
covariate.  
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Figure 15. Relationship between variables related to daily average sea-surface temperature and the response 
(adjusted number of groups per segment). Top row: violin plots with median shown as coloured dots indicating the 
sample size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in 
white but all equal zero. Bottom row: means shown as coloured dots.  

Group 5: Sea-surface temperature – 7-day temporal gradient  

Covariates related to a 7-day temporal gradient in sea-surface temperature also had the highest 
variability in the response in the central parts of the observed covariates and few observations 
in the lowest or highest bins (Figure 16). However, each covariate had the highest mean 
response in the lowest category due to two non-zero response segments in this bin.  
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Figure 16. Relationship between variables related to 7-day gradient in sea-surface temperature and the response 
(adjusted number of groups per segment). Top row: violin plots with median shown as coloured dots indicating the 
sample size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in 
white but all equal zero. Bottom row: means shown as coloured dots.  

Group 6: Sea-surface temperature – 15-day temporal gradient  

Covariates related to the 15-day temporal gradient showed strong variability in the lower half 
of the observed ranges in these covariates (Figure 17). The outer most bins, again, had few 
observations, in particular toward the upper end. This resulted in three of the four covariates in 
this group to have the highest mean response in one of the highest bins.  
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Figure 17. Relationship between variables related to 15-day gradient in sea-surface temperature and the response 
(adjusted number of groups per segment). Top row: violin plots with median shown as coloured dots indicating the 
sample size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in 
white but all equal zero. Bottom row: means shown as coloured dots.  

Group 7: Mixed layer depth – daily product  

Most observations for covariates in this group fell within two, three or four bins which also 
contained the majority of non-zero responses (Figure 18). Non-zero means were also 
constrained to few categories with on distinct pattern.  
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Figure 18. Relationship between variables related to mixed layer depth and the response (adjusted number of 
groups per segment). Top row: violin plots with median shown as coloured dots indicating the sample size within 
the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but all equal 
zero. Bottom row: means shown as coloured dots.  

Group 8: Salinity – daily product   

Covariates in the salinity group showed most variability in the response in the central part of 
these covariates (Figure 19). However, mean responses varied with no distinct pattern. 

  

Figure 19. Relationship between variables related to salinity and the response (adjusted number of groups per 
segment). Top row: violin plots with median shown as coloured dots indicating the sample size within the bin 
(green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but all equal zero. 
Bottom row: means shown as coloured dots.  

Group 9: Finite size Lyapunov exponents – daily product  

Depending on the spatial resolution, covariates in this group either showed the highest 
variability in responses in the central bins of the covariates (flse_d05 with the highest spatial 
resolution) (Figure 20). As the spatial resolution decreased, the bins with the highest variability 
shifted toward the lower bins. A similar pattern was evident for the mean responses. For 
covariate fsle_d03125, a single non-zero response segment out of five segments in the second 
highest bin produced the maximum mean response out of all bins. These covariates had 1728 
NAs, hence, we excluded this group from model selection.  

 

 



   
 

39 
 

  

Figure 20. Relationship between variables related to finite size Lyapunov exponents and the response (adjusted 
number of groups per segment). Top row: violin plots with median shown as coloured dots indicating the sample 
size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but 
all equal zero. Bottom row: means shown as coloured dots.  

Group 10: Residual temperature – daily product  

The patterns evident for the residual temperature group included highest variability in the 
response in the central bins, few observations in the outer bins (Figure 21). No clear pattern 
was evident from the mean response except for that mean responses in the lowest and highest 
bins were generally zero.  
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Figure 21. Relationship between variables related to daily residual temperature and the response (adjusted 
number of groups per segment). Top row: violin plots with median shown as coloured dots indicating the sample 
size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but 
all equal zero. Bottom row: means shown as coloured dots.  

Group 11: Spatial gradient for sea-surface temperature and salinity – daily  

Both covariates in this group, however, in particular gradsst_d025, had the fewest observations 
in the highest bins (Figure 22). Both covariates had slightly increased mean responses with 
increasing covariate values. However, both also had the highest mean response per bin in a bin 
with few values.  
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Figure 22. Relationship between variables daily spatial gradient for sea-surface temperature and salinity and the 
response (adjusted number of groups per segment). Top row: violin plots with median shown as coloured dots 
indicating the sample size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges 
would show in white but all equal zero. Bottom row: means shown as coloured dots.  

Model-based analysis 

The 514 transect lines were divided into 8146 segments most of which were approximately 10 
km long (Figure 23). The response variable for the model (the number of groups 𝑁𝑖 adjusted for 
imperfect detection) ranged between 0 and 20.01 per segment.  
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Figure 23. Distribution of segment length. 

Group Number Model 

Variables and interactions for each spatial model after elimination of concurved or colinear 
variables are given in Table 11. Final models after model selection are also given in Table 11. 
The total deviance by the group number model was 30.3%. An equivalent model with the 
addition of a smooth of Longitude and Latitude would explain 37.4% of the deviance using an 
additional 33df.  
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Table 12. Initial variables considered and final models.  

Model 
(dependent 
variable) 

Initial variables considered (after vif consideration) Final Model  

Group number 
model 

(Number of 
groups) 

Slope (as a factor)   

1D smooths  

slope slope02, slope04, slope06, CHL_d03125, sst_d0125, 
sst7dgrad_d05, sst7dgrad_d0125, sst15dgrad_d05, 
sst15dgrad_d0125, mld_d02, sal_d05, sal_d0125, bathymetry, 
gradsal_d025, gradsst_d025 & Julian day 

Smooths per slope factor were considered for bathymetry 
Smooths per block were considered by CHL_d03125  

2D Smooths 

Smooths of slope and bathymetry. Smooths of temperature 
and Julian day 

Slope as a factor 

1D smooths 

st15dgrad_d05, CHL_d03125, 
sal_d05 

2D smooth 

Julian day and ,sst7dgrad_d0125 

         

Group size model 

(Group size)  

Slope (as a factor)   

1Db smooths  

Distance, slope slope02, slope04, slope06, CHL_d03125, 
sst_d0125, sst7dgrad_d05, sst7dgrad_d0125, 
sst15dgrad_d05, sst15dgrad_d0125, mld_d02, sal_d05, 
sal_d0125, restemp_d05, bathymetry gradsal_d025, 
gradsst_d025 & Julian day 

Smooths per slope factor were considered for bathymetry          
Smooths per block were considered by CHL_d03125  

2D Smooths 

Smooths of slope and bathymetry                   Smooths of 
temperature and Julian day 

distance, slope06  

Biomass model  

(Density) 

Slope (as a factor)   

1D smooths  

slope slope02, slope04, slope06, CHL_d03125, sst_d0125, 
sst7dgrad_d05, sst7dgrad_d0125, sst15dgrad_d05, 
sst15dgrad_d0125, mld_d02, sal_d05, sal_d0125, 
restemp_d05, bathymetry, gradsal_d025, gradsst_d025, Julian 
day 

Smooths per slope factor were considered for bathymetry  
Smooths per block were considered by CHL_d03125  

 

2D Smooths 

Presence/absence component 

sal_d05, restemp_d05,  

  

Poisson component 

Slope as a factor 

1D smooths,  

sst7dgrad_d0125 , restemp_d05 

CHL_d03125 by Block  

2D smooths 
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Smooths of slope and bathymetry.  Smooths of temperature 
and Julian day         

Bathymetry and slope04 

 

Figure 24 & Figure 25 show the effect on group number on the response scale assuming mean 
values for the other variables not shown. There was great uncertainty in the tuna response to 
the more extreme covariate variables. 
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Figure 24. Effect of the different model variables, assuming a mean value for the other variables. Not that because 
of the presence of a 2D smooth of Day of Year and sst7dgrad_d0125, a single dimension graph is a simplification. 
The rug plot indicates the distribution of the variable under consideration.   
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Figure 25. Effect of the different model variables, assuming a mean value for the other variables, zooming in on 
some of the variables in Figure 24 so not to scale. Note that because of the presence of a 2D smooth of Day of Year 
and sst7dgrad_d0125, a single dimension graph is a simplification. The rug plot indicates the distribution of the 
variable under consideration.  
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Best model for group size 

After eliminating collinear covariates and model terms with non-significant p-values, we arrived 
at a model consisting of slope06 and distance as linear (on the scale of the link function) terms 
(Table 12). The total deviance explained was low: 4.0%. 

The effect of each variable on group size is given in Figure 26. Note that when considering the 
total range of slope 06 over the survey, rather than just the sightings range there is 
considerable uncertainty. 

 

 
 

Figure 26. Effect of the different, group size model variables, assuming a value of zero in the case of slope06 and 
the mean of slope 06 for distance. The rug plot indicates the distribution of the variable under consideration.  

Estimating fish numbers and density 

The group number model (Figure 24) suggested that the optimum date for tuna group numbers 
was c. May 31st (Julian day 151) so estimates were made for this date using the predicting value 
of the covariates on this date. These results were multiplied by the predicted values from the 
group size model (which were time invariant) to produce the estimates given in Table 13 and 
Figures 27 – 31, with the time series in Figures 33 – 34. Ninety-five percent confidence intervals 
were obtained from the bootstrap.  
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Tuna estimates for Block C, were inflated by extreme values of the predictors in the south-west 
corner (Figures 27 to 31, yellow region) caused by the great uncertainty in regions of very high 
chlorophyll (Figure 34). Alternative estimates were generated by omitting this region 
(bracketed value in Table 13, Figure 33).  

Tuna distribution is generally patchy, but block A typically had more tunas than the other 
blocks. There is no clear and consistent areas of high abundance per block in between years 
(Figures 27-31).  
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Table 13. Estimated number of individuals 𝑵 per Block and 95% CIs. The bracketed UCLs for Block E reflect 
omission of the south-west locations with unrealistic predictions. CVs are for this smaller region for Block E for day 
of year 151.  

Block Year Abundance CV LCL UCL 

A 2017 158700 0.51 96800 345500 

 2018 176700 0.53 113000 355200 

 2019 274800 0.29 191800 449700 

 2021 437700 0.32 280200 788200 

 2022 221500 1.51 66800 1106800 

C 2017 53600 0.51 36000 126700 

 2018 131300 0.72 71700 392600 

 2019 355000 1.82 94500 2087500 

 2021 158800 0.41 117900 329600 

 2022 52900 0.84 30500 132900 

E 2017 174800  (1.47) 
72600 

(51000) 

Inf 

(873100) 

 2018 101100 (0.33) 
69900 

(69000) 

2.594×10
35 

(177900) 

 2019 355500  (1.67) 
91000 

(81700) 

1.589 
×1084 

(2028400

) 

 2021 111200 (0.53) 
64800 

(61200) 

1.574 
×1058 

(246100) 

 2022 42400 (0.42) 
30100 

(27900) 

Inf 

(82200) 
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Figure 27. Surface tuna density estimates for day 151, 2017 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates.  
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Figure 28. Surface tuna density estimates for day 151, 2018 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 29. Surface tuna density estimates for day 151, 2019 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 30. Surface tuna density estimates for day 151, 2021 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers). The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 31. Surface tuna density estimates for day 151, 2022 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers). The red outline illustrates the highly uncertain region omitted for some of the estimates.  
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Figure 32. Time series of tuna density estimates for day 151, 2017 – 2022. Note there was no surveying in 2020. 
High upper bounds for Block E are caused by the predictions in the south-west region and region associated with a 
high chlorophyll count.  
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Figure 33. Time series of tuna density estimates for day 151, 2017 – 2022. Note there was no surveying in 2020. 
These limits omit the highly uncertain south-west region of Block E.  
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Figure 34. Spatial maps of estimated chlorophyll d30125 (mg m-3) for day 151, 2022. Note the “hotspot” to the 
south-west of Block E.  

Estimates were also undertaken for later on in the sampling season, to see if there was a large-
scale shift in spatio-temporal abundance. The figures for day 163 (~12 June) are given in Table 
14 and illustrated in Figure 40. Spatial changes in density estimates are given in Figures 35-39.  

Here uncertainty was very much higher, caused not by chlorophyll so much as by uncertainty in 
the response to the dynamic temperature variables. The distribution of hotspots was patchy 
and there was no consistent location of hotspots between these two prediction dates except 
for the SE area E hotspot. Estimated abundance in Block A was higher than for day 151, 
especially in the recent years (Figure 33  vs Figure 40).  

Table 14. Estimated number of individuals per Block and 95% CIs. The bracketed UCLs for Block E reflect omission 
of the south-west locations with unrealistic predictions. CVs are for this smaller region for Block E. For day of year 
163.  

Block Year Abundance CV LCL UCL 

A 2017 642300 0.23 454800 998200 

 2018 185400 0.56 99800 489600 

 2019 18100 Large 7100 2.2×107 

 2021 2311400 Large 346300 2.2 ×1010 

 2022 169200 0.30 110200 305900 

C 2017 20000 0.76 9300 63700 

 2018 45200 Large 23300 571500 

 2019 95300 1.35 36200 455700 

 2021 75500 0.39 44800 159300 

 2022 700 Large 100 5.2 ×1010 

E 2017 
34400 

 
Large 26600 7.4 ×10182 

 2018 18800 ∞ 12900 ∞ 

 2019 120500 ∞ 95700 ∞ 
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 2021 20400 ∞ 16000 1.0 ×10296 

 2022 0 * 0 ∞ 

*Not defined 
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Figure 35. Surface tuna density estimates for day 163, 2017 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 36. Surface tuna density estimates for day 163, 2018 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 37. Surface tuna density estimates for day 163, 2019 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 38. Surface tuna density estimates for day 163, 2021 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 39. Surface tuna density estimates for day 163, 2022 (top) with associated lower (middle) and upper 
(bottom) confidence bounds. Turquoise dots indicate seen tunas (area proportional to detection adjusted group 
numbers. The red outline illustrates the highly uncertain region omitted for some of the estimates. 
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Figure 40. Time series of tuna density estimates for day 163, 2017 – 2022. Note there was no surveying in 2020. 
These limits omit the highly uncertain south-west region of Block E. 

 

Figure 41 shows comparison of BFT abundance estimates between design-based and model-
based approach for the two prediction days (151 and 163). The estimates from model-based 
approach are higher than design-based approach for all years and blocks but highest 
discrepancies are for block A.  
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Figure 41. Comparison of mean estimates of BFT abundance for each block and year between design-based 
estimates (orange), model-based estimates for day 151 (grey) and model-based estimates for day 163 (blue).  

 

Figure 41 shows a comparison of the design and model- based  estimates for each block and 
year. Model based point estimates are generally much higher than their design based 
equivalents but there is much greater uncertainty (show above) caused by the putative 
hotspots caused by undersampled covariate values.  

 

 

 

 

Discussion 

It should be stressed that the figures given here are based on estimates from fish observed at 
the surface and so may be very different to the actual number/biomass of fish. Further 
behavioural changes in the fish in response to environmental conditions may cause changes in 
estimated numbers which are not proportional to actual changes in abundance.  
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Design- and model-based approaches 

Including company as a covariate in the detection function was caused by varying distributions 
of observed distances between companies (Figure 42).  

 

Figure 42. Histograms of observed distances for each company.  

The overall shape of the average detection function was determined by company Airmed who 
made the majority of detections during the surveys included in this study (Table 15). The final 
selection of the detection function with company and the log-size as covariates was driven by 
this company also making most of the detections with small school sizes. Out of 31 detections 
with schools of less than 100 individuals, 29 were made by company Airmed. This was also the 
only company that spotted any schools of 10 or less individuals. This was not surprising as this 
company also made over 50% of all detections, despite only conducting 30% of the effort (Table 
15). Including company or airplane type in the detection function is consistent with detection 
functions used in the analysis of aerial surveys from previous years (Chudzinska et al. 2021, 
Chudzinska et al. 2022).  

Table 15. Proportion of sightings and effort shown by the five companies conducting the surveys. 

  ActionAir AerialBanners AirMed AirPerigord Unimar 

Sightings 0.10 0.11 0.52 0.06 0.21 

Effort 0.19 0.15 0.30 0.07 0.30 

The inclusion of company as well as airplane type in estimated detection function in the 
previous years (Chudzinska et al. 2021, Chudzinska et al. 2022), may indicate that more 
standardized survey protocol should be implemented. Whereas the way of estimating distance 
to spotted groups has been standardized in surveys from 2017 onwards (Figure 5), the 
estimation of group sizes and biomass is not standardized. The small group sizes reported by 
Airmed only apply to Block A, but the two remaining companies surveying the same block 
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(Table 1), did not report such small groups to the same extend as Airmed. We, therefore, 
recommend a more consistent survey protocols across companies and blocks in terms of 
reported group sizes.  

One advantage of the spatial regression approach as undertaken here allows estimation into 
regions that were not necessarily temporally or spatially surveyed. This could be critical if for 
example, fish abundance varies throughout the sampling period, which might lead to a design-
based estimate being inaccurate.  Obviously, such extrapolations can be misleading if the 
covariate is not well represented in the data, or the point estimates may be reasonable there 
can be great uncertainty. In theory, a well-supported model should lower the overall 
uncertainty in estimates compared to a design-based approach as it explains more of the 
variation.   

Both the effect plots (Figure 26) and the upper CI intervals for spatial changes in density 
(Figures 27-31 and 35-39) show high uncertainties at the extreme values of the covariates. 
Predictions for such values should be interpreted with caution or can be set (or binned) to one 
maximum value. CVs generated from a bootstrap can be misleadingly high as just one aberrant 
bootstrap replicate can massively increase variance. But such a replicate would not affect the 
estimated confidence interval. Nevertheless, the uncertainty for some areas at particular times 
was high.  

In the two days considered here (151 and 163), uncertainty was generated by the modelled 
response of tuna numbers to high levels of chlorophyll in the south-east region of Block E. On 
day 163 this effect persisted but for other blocks there was uncertainty in the temperature 
related variables. This generated high uncertainty more generally.  

There are several ways to deal with this. Firstly, one could not predict in regions where little is 
known about the response to the covariate values. However, a more practical solution in the 
context of GAMs here would be employ fewer degrees of freedom in the models (or increase 
the penalty for wiggliness). This would reduce the general uncertainty for day 163. However, it 
would not have prevented to the uncertainty associated with high chlorophyll hotspot. Further 
work can investigate this further.    

The regression approach also allows insights into the biological drivers of the distribution (see 
below for a discussion). Adding purely spatial covariates (e.g. Lon. And Lat.) can increase 
explanatory power (as was the case for the group abundance model here) at the cost of 
biological interpretability. Likewise including seemingly functionally similar variables (that are 
sufficiently distinct to supply additional information in model fit) and so increase explanatory 
power may reduce their overall direct interpretability as they are the effect of the variable 
given another very similar variable.     

The highest abundance across all years and blocks was estimated for 31st May which 
corresponds to the beginning of surveying period or even before the start of the surveys, 
especially in the recent years (Table 1). This may indicate that current survey dates may occur 
after the peak in abundance of BFT and earlier start of the surveys is, therefore, recommended. 
The new survey dates may have to be designed separately for each block given higher biomass 
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estimates for day 163 in Block A and the unusually late survey time in that block in 2021 and 
2022.  

Overall these models represent a first attempt to try to produce a universal model for half of 
the Mediterranean. Diagnostics were not ideal (Appendix) and uncertainties high suggesting a 
lot of variation remains to be explained and also the tentative nature of the models at this 
stage. Because the objective here was to try to produce a universal (pan-Mediterranean) 
model, apart from one case (chlorophyll) functions were not allowed to vary by block. It is 
noticeable that for Block A, the results are very different from the recent universal model 
compared to the previous estimates which might indicate the specific conditions of blocks 
should be considered separately. This assumption could be more formally tested in the future.  

Environmental drivers of BFT abundance 

The drivers of BFT abundance in the western and central Mediterranean during the spawning 
season and based on aerial surveys are environmental variables that have been identified in the 
literature as being ecologically meaningful for tuna in the reproductive season. 

Bluefin tuna aggregations during the reproductive season are preferentially observed close to 
the shelf-slope, where the higher values of slopes are detected. This is in line with studies in the 
Gulf of Mexico, another prominent spawning area for BFT, where hotspots of spawning 
individuals have previously been found in slope waters (Block et al. 2005). This is consistent 
with previous studies that found that, in the Balearic Islands, BFT are preferentially found close 
to the surface waters, but they also perform some deep excursions (Aranda et al. 2013). The 
topography is known to have an influence on the regional currents and water masses, which 
could be driving the distribution of tuna. Three mechanistic processes could explain the 
presence of BFT in the areas influenced by steep slopes. These are: association with surface 
currents entering the spawning areas and are used by BFT during their displacements; 
preference of areas with colder deep waters where tuna can reduce metabolic needs by 
lowering down their temperature; and trophic interactions, as deep areas associated to the 
slopes are also used by other large migratory species for feeding. This result is especially 
meaningful from the output of the group-size model. 

Salinity is an indicator for frontal areas. In the Balearic Islands, a front is located at the 
encountering of the low salinity surface Atlantic waters and the resident Mediterranean waters 
(more saline), at salinity values around 37.5 (Balbín et al. 2014). This is the preferable BFT 
spawning ground, as indicated by their preference for waters with a salinity range of 36.9 to 
37.7 (Alemany et al. 2010, Reglero et al. 2012). The spatial distribution of BFT larvae has been 
shown to be linked to salinity in other spawning grounds, like the Gulf of Tunisia and the Gulf of 
Mexico (Muhling et al. 2011, Koched et al. 2013, Muhling et al. 2013). The physiological process 
behind this association is unknown and it has been hypothesized to be related with the ability 
of adults to detect salinity gradients or other processes associated with the front, which are 
generally related to the formation of filaments and eddies (Alvarez-Berastegui et al. 2016). The 
particular response observed for the number of groups with a main peak around 38.2-38.3 and 
another secondary peak at around 37.0 could be reflecting more a difference between the 



   
 

69 
 

salinities in the Balearic Islands and in the other two areas, where mean salinity is higher. 
However, separated modelling would be advisable to clarify this point. 

Regarding the chlorophyll-a, it has been consistently observed that BFT spawning grounds are 
often located in areas with low CHLa concentrations (Muhling et al. 2011, Koched et al. 2013, 
Muhling et al. 2013, Llopiz and Hobday 2015). Our results show a peak at low chlorophyll-a 
values, although not for the lowest ones. Nevertheless, the extreme values typical of this 
variable may be obscuring somehow the results and it could be beneficial to try to refine the 
model response regarding this variable to see if some more clear pattern arose. Modelling the 
differences between areas could also add some additional light to the ecological interpretation. 

Temperature is an important variable for BFT reproduction, driving the onset of the species 
spawning, increasing the gonadosomatic index of mature individuals, being clue for embryo and 
larvae development and survival and determining the spawning spatial distribution (Alemany et 
al., 2010; Koched et al., 2013; Muhling et al., 2013; Medina et al., 2002; Gordoa and Carreras, 
2014). Our results show that the temporal gradient of SST over the previous fifteen days was 
useful predicting the number of groups of BFT detected, in the line with what was already 
observed in the Balearic Islands for tuna larvae (Álvarez-Berastegui et al., 2016). A preference 
of BFT for the locations where the increase in temperature is around 2ºC in 15 days (about 2 
weeks) can be envisaged although the wide confidence interval observed for the extreme 
values should be further investigated to avoid any bias on the results.  

The model generalizes the responses between areas. However, visual inspection of density 
plots of the locations where there is presence of BFT groups for the environmental variables 
that were selected in the final model (Figure 43) suggests that, at least for some of them, it 
would be advisable an in deep analysis of each area independently, in order to decipher if there 
could be differing ecological processes ongoing in the different areas. A range of interactions 
between block and environmental covariates were, however, additionally tested (results are 
not present in this model and available on demand) but none was retained in the model 
selection. A possible three-way interaction between block and year and environmental 
covariate can be considered in the future.  

Conclusions 

The environmental information, expressed in the different covariates here explored, has good 
capability to provide insights of the spatio-temporal distribution of BFT in the sampled areas. 
The fact that these variables have more explanatory capability than location (latitude, 
longitude) is a sign of advancing on the right path to predict distribution of BFT and to produce 
relative interannual standardized indices of abundance in the future. Results also show that 
environmental variables, as they are provided by data producers, present caveats that have to 
be resolved in order to maximize modelling capabilities. One example is the capability of FSLE 
to discriminate segments with positive presence of BFT groups (Figure 20), but this variable 
presents a high percentage of NAs due to restrictions in data availability for recent years, 
hampering its applicability to this study. This could be resolved by establishing specific 



   
 

70 
 

agreements with data providers, resolving this caveat provides a promising path for a new set 
of environmental variables improving modelling capabilities of tuna distribution.  

It is also notable that the maximum number of groups and salinity is well identified when 
histograms of salinity at the places where BFT were spotted are plotted (Figure 43. Density 
plots for locations with any spotted group of BFT by block and selected environmental 
variable.), showing that hydrodynamic models start to provide potential source of information 
reliable for modelling spatial distributions of tunas, which was not the case in previous studies 
(Reglero et al. 2014). Nevertheless, it is important to note that modelling approach should 
consider that the values at which presence is maximized may be different for the different 
areas. This would require a further inspection of model responses and results, and probably 
trying to fit a separated model in each block to avoid a possible loss of information in the 
response functions that can arise in the model for the three areas together (See Figure 24), 
otherwise mixing areas with variables that may have different response function in each area 
may hamper model performance and ecological interpretation. 

Ecological interpretation of the response functions is also affected by the model configurations, 
as a priority for maximizing deviance explained by increasing the number of degrees of freedom 
(alternative chosen for the development of current models), may derive in complex covariate-
explanatory variable relationships, as it is the case for variables such chlorophyll-a and sea 
surface temperature temporal gradient. In general, this study shows the complexity of 
developing spatial models for BFT based on environmental variability, involving aspects of 
biological data collection, agreements with third partners for environmental information, 
acquisition and prioritization on modelling objectives.  
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Figure 43. Density plots for locations with any spotted group of BFT by block and selected environmental variable.  
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Appendix 1 

GAM diagnostics are shown in Appendix Figures A1-2. Diagnostic plots for the zero-inflated 

model are difficult to interpret and so are not shown.  
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Figure A1. Diagnostic plots for the group number model  

 

 

 

Figure A2. Diagnostic plots for the group size model.  
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Appendix 2 Revised Block A design based estimates using additional  
observations from Group G 

To allow backwards compatibility with previous estimates, additional design-based estimates 

were made for Block A based on an enhanced observation dataset including the large number 

of observations in Block G made in previous years. Assuming consistency of observation across 

Blocks and years this allowed a more precise estimation of the relevant detection functions.  

Detection fuction model selection was undertaken as before.  

 

Results  

The total number of observations were now 211 for both biomass and shoal size observations.  

The best model for abundance was a half normal function on distance with company and log 

(size) as covariates  (Figure A3).  
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Figure A3. Histogram of observed distances, average detection function across all observations (histogram line) and 

detection probabilities of observed distances from best fitting model (dots) colour coded by company for abundance. 

Size of symbols were scaled to represent the natural log of school size. 

 

 

The best model for biomass was a half normal function on distance with company and log 

(biomass) as covariates  (Figure A3).  

 

 

 

Figure A4. Histogram of observed distances, average detection function across all observations (histogram line) and 

detection probabilities of observed distances from best fitting model (dots) colour coded by company for abundance. 

Size of symbols were scaled to represent the natural log of estimated biomass. 
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With the detection functions estimated, abundance and biomass could be estimated as in the 

main text before (Table A1 and A2 respectively).  

Table A2. Estimated number of individuals 𝑵 (in thousands) for Block A using observations from all other blocks 
with 95% CIs. The same columns with ‘str’ apply to estimates reported in Chudzinska et al. 2021, and Chudzinska et 
al. 2022. ‘-‘ indicates that estimates previous to this study were not provided. 

 

 Abund. CV LCL UCL Abund_str CV_str LCL_str UCL_str 

A-2017 55.9 0.43 24.6 127.1 49.92 0.44 21.82 114.2 

A-2018 91.2 0.3 50.5 165 81.6 0.31 45.28 147.1 

A-2019 86.5 0.4 40.3 185.6 75.02 0.38 36.71 153.3 

A-2021 30.2 0.53 11.2 81.6 26.11 0.54 9.59 71.13 

A-2022 40.4 0.38 19.3 84.6 - - - - 

  

 

 

 

Table A2. Estimated biomass (B, in tonnes) per block along with its standard error (SE) based on observations from 
all blocks, coefficient of variation (CV), lower and upper 95% confidence limits (LCL and UCL). The same columns 
with ‘str’ apply to estimates reported in Chudzinska et al. 2021, and Chudzinska et al. 2022. ‘-‘ indicates that 
estimates previous to this study were not provided.  

 B CV LCL UCL B_str CV_str LCL_str UCL_str 

A-2017 9393 0.44 4053 21765 8001 0.45 3436 18634 

A-2018 15683 0.31 8576 28680 13345 0.31 7352 24222 

A-2019 13947 0.4 6467 30078 11548 0.38 5619 23734 

A-2021 5701 0.53 2106 15428 4714 0.53 1750 12696 

A-2022 9234 0.45 3885 21947 - - - - 

  


