## **INFORME DE LA REUNIÓN DE EVALUACIÓN DEL STOCK DE ATÚN ROJO DEL OESTE DE 2021** (En línea, 30 de agosto - 1 de septiembre de 2021)

# 1. Apertura de la reunión, adopción del orden del día, disposiciones para la reunión y designación de relatores

La reunión de 2021 de evaluación de stock de atún rojo del Atlántico oeste del Grupo de especies de atún rojo («el Grupo») se celebró en línea del 30 de agosto al 1 de septiembre de 2021. El Dr. John Walter (Estados Unidos), relator del stock del Atlántico oeste (WBFT), inauguró la reunión y actuó como presidente. En nombre del secretario ejecutivo, el secretario ejecutivo adjunto dio la bienvenida a los participantes en la reunión. De acuerdo con la solicitud de la Comisión de una revisión independiente de la evaluación de WBFT y con los términos de referencia para la revisión externa (Anón. 2021a), el Grupo contó también con la participación del experto invitado, el Dr. Mark Maunder. El presidente del Grupo procedió a revisar el orden del día, que se adoptó con algunos cambios (**Apéndice 1**).

La lista de participantes se incluye en el **Apéndice 2**. La lista de presentaciones y documentos presentados a la reunión se adjunta como **Apéndice 3**. Los de todos los documentos y presentaciones SCRS presentados a la reunión se adjuntan en el **Apéndice 4**. Los siguientes participantes actuaron como relatores:

| Relatores                         |
|-----------------------------------|
| A. Kimoto                         |
| K. Gillespie                      |
| H. Fukuda                         |
| M. Lauretta, J. Walter, A. Kimoto |
| N. Taylor                         |
|                                   |

## 2. Diagnósticos del modelo

## 2.1. VPA

El SCRS/2021/139 documentaba la evaluación de 2021 del atún rojo del Atlántico occidental utilizando un análisis de población virtual (VPA). Este documento resume los datos de entrada, los supuestos, los resultados provisionales, los diagnósticos y las estimaciones de la serie temporal de la biomasa del stock reproductor del VPA (escenarios de madurez temprana y tardía) para el periodo de 1974 a 2020, y el reclutamiento para el periodo 1974 a 2017. El modelo incorporaba revisiones de los índices clave, particularmente un índice de peces pequeños (caña y carrete de Estados Unidos (USRR) 66-144). En relación con el VPA para el atún rojo del Atlántico oeste de 2020, los resultados estaban muy influidos por el añadido de datos recientes. Los diagnósticos del modelo indican algunos problemas con el modelo actualizado, lo que incluye una fuerte tendencia en los valores residuales para algunos índices y un fuerte sesgo retrospectivo.

El Grupo constató el gran esfuerzo realizado por los subgrupos para revisar los índices considerados en este modelo y la exploración de los datos relacionados con cambios en el reclutamiento. Las discusiones se centraron en varios de los pobres resultados de los diagnósticos del VPA. Se indicó que los ensayos de continuidad de 2021, en comparación con el caso base del VPA de 2020, presentaban una gran diferencia de escala en las estimaciones de reclutamiento y de la biomasa del stock reproductor desde 2005 en adelante (Figura 1 y 2) El Grupo señaló también el efecto sorprendente de la eliminación de jackknife del índice USRR 66-144 (Figura 3), que provoca aumentos sustanciales en el reclutamiento en años recientes (es decir, que USRR 66-144 limita esencialmente una tendencia en el reclutamiento muy positiva). De manera similar, la eliminación de datos recientes en el análisis retrospectivo (Figura 4) facilitaba una representación alterada de los patrones del reclutamiento y biomasa, dando lugar a valores recientes inferiores para ambos. Observando los pobres valores residuales asociados con el índice USRR 66-144, se sugirió que el caso base podría excluir este índice. El autor indicó que esto podría ser problemático por dos razones: i) este es el único índice disponible de peces pequeños y ii) un ensayo retrospectivo en el jackknife USRR 66-144 (Figura 3) mostraba una estimación de reclutamiento reciente aún más amplificada y patrones retrospectivos aún más intensos. Se mantuvo una breve discusión sobre el sesgo positivo observado en los bootstraps tanto del reclutamiento como de la biomasa en relación con los ensayos

deterministas. Se sugirió que esto podría ser el resultado de pobres valores residuales en los ajustes de los peces juveniles.

El Grupo discutió la exclusión de algunas fuentes de datos. Los modelos de la evaluación VPA anteriores (2017 y 2020) excluían los índices de Estados Unidos superiores a 177 y dos de liña de mano de Canadá en el sudoeste de Nueva Escocia y en el golfo de San Lorenzo (CAN SWNS y CAN GSL). Este fue, de nuevo, el caso para este modelo de evaluación debido a los grandes valores residuales y patrones residuales conflictivos en los índices de Estados Unidos y Canadá (**Figura 5**). Esto provocó la discusión de cómo se consideraban la selectividad, la capturabilidad y la vulnerabilidad en ambos índices y en el VPA. El autor aclaró que la selectividad y la capturabilidad se mantenían constantes para cada flota e indicador en las diversas series temporales. Estos supuestos estaban muy motivados por los análisis realizados durante la revisión de los índices de WBFT realizada a principios de 2021 (Anón. 2021b), que indicaban que debido a normas relacionadas con los permisos (por ejemplo, límites de clases de talla) y a dinámicas espaciales de la pesquería, la especie objetivo y el tamaño de la captura para cada flota se mantiene a lo largo de los años. El autor indicó que, en los años en los que hay una gran abundancia de una cohorte particular (potencialmente 2020, cuando se observó un gran número de ejemplares de 2-3 años), estas normas sobre relacionadas con los permisos podrían sesgar negativamente la estimación de la F apical de Kobe,

Observando diversos rasgos potencialmente problemáticos en el rendimiento del modelo, se discutió si el VPA sería adecuado para facilitar el asesoramiento en materia de ordenación. Antes de tomar una decisión final, el Grupo sugirió probar y presentar los siguientes ensayos de sensibilidad: i) reducir a la mitad la captura por edad de los peces pequeños (es decir, reducir la cantidad absoluta de captura para las edades 2-3) en 2019 y 2020 para probar la influencia en el reclutamiento frente a la influencia de la captura por edad para los peces mayores, ii) permitir que la desviación estándar en el parámetro de vinculación de vulnerabilidad aumente hasta 1,2, iii) hacer variar en el tiempo la selectividad y la capturabilidad del USRR 66-144 y iv) realizar un bootstrap sin los datos de 2020.

Se presentaron al grupo estos diagnósticos adicionales (SCRS/2021/139) que indicaban que i) reducir a la mitad la captura por edad para los ejemplares de 2-3 años en 2020 y alternativamente tanto en 2019 como en 2020 tenía poco impacto en los patrones residuales y retrospectivos problemáticos, ii) aumentar la desviación estándar de la vulnerabilidad no tenía un impacto perceptible, iii) permitir que la selectividad y la capturabilidad del USRR 66-144 varíen en el tiempo daba lugar a ligeramente mejores ajustes y valores residuales, sin embargo no mejoraba las retrospectivas pobres y iv) los bootstraps que excluían los datos de 2020 aun presentaban un importante sesgo positivo en relación con los ensavos deterministas. En general, ninguna de estas pruebas mejoró los patrones residuales ni retrospectivos. El autor probó también la sensibilidad del modelo a los peces de edad 1 en los datos de captura. La captura relativamente pequeña de peces de edad 1 se redujo a una captura de un solo pez de edad 1 en cada año desde 1995. Sorprendentemente, esto dio lugar a que el reclutamiento, desde 2007 en adelante, se redujera significativamente. En particular, el patrón del reclutamiento reciente positivo desaparecía. Esto podría parecer que indica que los datos con poca información están teniendo un efecto indebidamente grande en las estimaciones de reclutamiento, incluso cuando la selectividad para este grupo de edad es cero o cercana a cero (el límite de talla mínima es 67 cm). Tras alguna discusión, el Grupo acordó que estos resultados de los diagnósticos inusuales deberían impedir más desarrollos de este modelo, en su forma actual, así como que sirva para facilitar el asesoramiento en materia de ordenación. Se sugirió, sin embargo, que la información cualitativa para este modelo podría utilizarse para respaldar el asesoramiento de ordenación de este Grupo.

## 2.2. Stock Synthesis

Los documentos SCRS/2021/140 y SCRS/2021/141 presentaban los datos de entrada y la configuración del modelo de los casos base candidatos del modelo incluidos en la versión de Stock Synthesis 3.30.14 para la evaluación de 2021 del atún rojo del Atlántico oeste. Los datos de captura y composición a lo largo del periodo histórico (1950-2018) eran casi idénticos, mientras que los de los años 2019-2020 fueron actualizados. La mayoría de los índices de abundancia fueron simplemente actualizados usando el mismo método de estandarización con datos actualizados. Las mayores actualizaciones se realizaron en cuatro de los doce índices de abundancia para revisar el método de conservación y estandarización de los datos basándose en la exhaustiva revisión y posterior acuerdo del Subgrupo técnico sobre índices de abundancia, y del Grupo de especies de atún rojo.

Teniendo en cuenta el conjunto de datos, los autores indicaron que el ensayo de tipo continuidad (ensayos de continuidad y prototipo de 2021, **Tabla 1**), que se ajustaba a la configuración del modelo de evaluación de stock de 2020 lo máximo posible, con dos años adicionales de datos (2019 y 2020), experimentaba dificultades en la convergencia del modelo, así como un importante conflicto de información en los datos para las estimaciones de la escala de la población. Para resolver estos problemas, se propuso una modificación que cambiaba la forma de la selectividad de selectividad asintótica a selectividad en forma de cúpula para todas las flotas excepto para el índice CAN GSL. Esta modificación reducía el conflicto en los datos de los en las estimaciones de la escala de la población y permitía que el modelo lograra mejor los criterios de convergencia hasta un gradiente final más pequeño que el modelo de tipo continuidad. El Grupo acordó algunos pequeños cambios principalmente para evitar permitir que, probablemente, datos atípicos tuvieran un excesivo impacto en las verosimilitudes, como 1) eliminar un punto de datos de la CPUE (año 1986) de la CPUE histórica de palangre japonés (JPN LL temprano), 2) agregar los cinco últimos intervalos de datos de composición por tallas (por encima de 300 cm) para el palangre estadounidense y mexicano (MX-USA LL) en el golfo de México (GOM), 3) no fijar sino estimar la mortalidad por pesca en equilibrio inicial para el arpón estadounidense y canadiense (CAN USA HP) basándose en los datos iniciales de la captura en equilibrio.

El caso base del modelo propuesto mostraba algunas mejoras en la convergencia del modelo (diagnosticadas por perturbaciones aleatorias de los valores iniciales de todos los parámetros) y en la coherencia del modelo (diagnosticada por el perfil de verosimilitud en el parámetro fijado de la escala de la población y en el análisis retrospectivo de las estimaciones de la biomasa del stock reproductor) respecto a evaluaciones anteriores. El análisis de la bondad de ajuste no indicó el mal ajuste crítico del caso base del modelo propuesto a los datos de composición por tallas agregados. Aunque el ajuste del modelo al índice temprano de palangre japonés se mejoró en términos de su penalización de verosimilitud, los ajustes globales del modelo a los índices de abundancia siguen siendo un problema, igual que en varias de las evaluaciones anteriores. Los autores presentaron también los resultados de los diagnósticos utilizando modelos de producción estructurados por edad (ASPM) y el análisis de la curva de captura (CCA). Los ASPM aclaraban la relación de producción en el modelo en el marco de procesos asumidos biológicos y de extracción y una coherencia en algunos de los datos de entrada con esta relación. El CCA indicaba algunas contribuciones de los datos de composición por tallas a la estimación de la biomasa absoluta, aunque no era coherente con la relación de producción aclarada por los ASPM.

El Grupo discutió los cambios en la forma de la selectividad, de asintótica a forma de cúpula, ya que este es un cambio importante del supuesto del modelo. Investigaciones recientes (Sampson y Scott, 2011; así como la práctica de modelación de Waterhouse *et al.*, 2014) indican que la selectividad asintótica basada en la talla debería elegirse con precaución porque la selectividad asintótica en el modelo, que se ajustaba a los datos de composición por tallas, es un supuesto fuerte que implica un límite superior al tamaño de la población junto con otros supuestos biológicos (por ejemplo, mortalidad natural y crecimiento) (Minte-Vera *et al.*, 2017). De forma alternativa, también existe a menudo una confusión entre la merma y la formación en forma de cúpula del extremo descendente. Por esta razón, existe una práctica general de modelación, conveniente y deseable, que consiste en asumir que una flota es asintótica si es razonable, lo que ayuda al modelo a interpretar el extremo descendente de la curva de captura. En este caso, sería modelar la pesquería de liña de mano del golfo de San Lorenzo entre los años 1950-1987 como asintótica siendo la única flota asintótica.

Se sugirió que la selectividad asintótica constante para LL de MEX-USA sería apropiada dado el conocimiento biológico sobre la migración reproductiva de los peces de talla grande y una estabilidad histórica de las flotas de palangre en el golfo de México (GOM). Sin embargo, también se argumentó que la pesquería podría tener forma de cúpula dada la distribución espacial y temporal de los peces de talla mayor, así como el funcionamiento de la pesquería. Se destacó la observación de que hay una tendencia descendente estimada en la selectividad de LL JPN en el GOM, aunque esta flota había sido una flota predominante entre mediados de los años setenta y principios de los ochenta, que tenía como objetivo una una gran cohorte reproductora. Como respuesta a esta observación, se sugiere el posible efecto de objetivo de cohortes que podría hacer que la selectividad tenga forma de cúpula, junto con otra observación de que los peces de talla mayor fueron capturados por CAN GSL en la misma década. Tras el largo debate sobre la selectividad de JPN LL en el GOM, en el que se tuvo en cuenta la fiabilidad de los datos y la falta de datos sobre la composición por edades, el Grupo acordó que los cambios sugeridos en la selectividad eran razonables, siempre y cuando no generen inestabilidad en el modelo o un escalamiento poco realista.

La decisión de permitir que la flota de CAN GSL 2010-2020 tenga forma de bóveda estuvo motivada por el marcado cambio en la talla media (**Figura 6**) en la pesquería posterior a 2008, cuando hubo un cambio en las operaciones de la flota. También se observó que ha habido un aumento sustancial de la fracción de migrantes orientales en esta pesquería, especialmente en las edades más jóvenes (Puncher et al., 2021).

El Grupo también debatió los demás cambios menores aplicados al modelo, así como los resultados generales del modelo stock synthesis. Se sugirió estimar la selectividad de la pesquería de CAN GSL entre 1988 y 2009, ya que los datos de composición por tallas de esta flota serían más representativos de sus extracciones que los de CAN GSL desde 1988, que se utilizaron para estimar la selectividad de CAN GSL antes de 1987 en el caso base propuesto. Los autores mostraron los resultados del modelo, que incluyen los datos de composición por tallas de la pesquería CAN GSL desde 1988, e indican que el desempeño del modelo no se degradó por esta modificación. El Grupo acordó el modelo final de 2021 (**Tabla 1**) que asumía la flota de selectividad asintótica como el primer período (1988-2009) de CAN GSL desde 1988.

## 3. Resultados de la evaluación

## 3.1 VPA

Debido a los malos diagnósticos del modelo, el VPA no se desarrolló ni se utilizó para proporcionar el estado del stock y las proyecciones. Las siguientes tendencias del modelo son muy inciertas y deben interpretarse con mucha precaución. A pesar de estos problemas, el Grupo aceptó que el VPA indicaba una mejora del estado de los recursos en comparación con lo estimado en la evaluación de 2020 (**Figura 2**).

Las estimaciones del VPA sobre la mortalidad por pesca reciente presentan una tendencia constante a la baja y son más bajas durante el último año que históricamente para la mayoría de las edades. La mortalidad por pesca apical (máximo anual de F a la edad) mostró las tasas más bajas en la actualidad, en relación con toda la serie temporal e indicó cualitativamente que la mortalidad por pesca estaba por debajo de F<sub>0,1</sub>. Las estimaciones de reclutamiento mostraron una variabilidad interanual relativamente alta a lo largo de los últimos 15 años, con estimaciones del año terminal notablemente superiores a las de los años anteriores. El aumento de la biomasa reproductora durante las dos últimas décadas refleja los varios eventos de reclutamiento elevado desde 2003 y en los últimos 17 años.

## 3.2 Stock Synthesis

Los modelos finales recomendados son los que figuran en la **Tabla 2**, con las estimaciones de parámetros (**Tablas 3** y **4**), cantidades derivadas (**Tabla 5**) y puntos de referencia (**Tabla 6**). Las **Tablas 5** y **6** también enumeran las probabilidades y los puntos de referencia de cada uno de los modelos presentados al Grupo. Los diagnósticos de los modelos, los ajustes a los índices y a la composición por tallas, y las selectividades estimadas se presentan en las **Figuras 7-21**. La estimación de la biomasa reproductora del stock, el reclutamiento, la ratio de la biomasa con respecto a los niveles no explotados y la mortalidad por pesca para el modelo final de 2021 se muestran en la **Figura 22**.

El Grupo examinó detenidamente y debatió las estimaciones de reclutamiento (edad 0), en particular para un par de reclutamientos recientes que tuvieron lugar en 2017-2018 que se estimaron superiores a los de otros años recientes. Los autores recordaron que esos reclutamientos se basaron principalmente en los datos del año 2020 del índice de abundancia de juveniles (USRR 66-144) y en sus datos de composición por tallas, y la fiabilidad de la información sobre el reclutamiento procedente de esos datos fue confirmada por el análisis ASPM-R. También se sugiere que esos reclutamientos se estimaron basándose en la observación de grandes cantidades de peces más pequeños y que hay numerosas razones por las que esto podría ser así. Esto podría haber ocurrido debido a una fuerte cohorte, posiblemente debida a la migración de peces de origen oriental, a un crecimiento más lento de los peces o a un cambio en la selectividad de la pesquería, ya que asumimos una selectividad basada en la talla invariable en el tiempo. Como ocurre con cualquier señal temprana de reclutamiento, la fuerza y la magnitud se confirmarán con años adicionales de datos que darán una señal repetida en la composición e índices de edades posteriores. El Grupo también observó que el intervalo de confianza del 95 % de la desviación del reclutamiento para 2018 se sobreponía a cero, lo que indicaba que dicho reclutamiento no se había estimado correctamente.

## 4. Proyecciones y asesoramiento de ordenación

Stock synthesis se consideró un método para el asesoramiento de la proyección y superó los criterios de desempeño del diagnóstico. Por el contrario, la evaluación diagnóstica del VPA indicó un desempeño problemático, en particular un sesgo retrospectivo muy elevado y un sesgo entre los resultados deterministas y estocásticos que no pudo abordarse satisfactoriamente en el tiempo disponible. Por ello, el Grupo no recomienda el VPA para proyecciones o determinaciones cuantitativas del estado del stock en este momento, aunque no se descarta su utilidad en el futuro.

El Grupo también recibió un documento (SCRS/2021/143) en el que se utilizan los modelos operativos (OM) de la MSE reacondicionados para los stocks de atún rojo del Atlántico con el fin de proporcionar estimaciones de la tendencia de las biomasas reproductoras de los dos stocks de origen con una continuación del actual TAC de la zona oeste de 2.350 t para 2022. El resultado es un aumento de la mediana (en todos las OM) de la biomasa reproductora del stock occidental del 6 % de 2022 a 2023, con una probabilidad de disminución del 21 %. El objetivo era complementar los resultados en preparación de los métodos de evaluación convencionales perfeccionados y actualizados. El Grupo tomó nota de los resultados de este documento.

Las proyecciones se realizaron mediante la stock synthesis, a partir de las estimaciones del modelo final de 2021. Los parámetros biológicos y pesqueros utilizados para las proyecciones, por ejemplo, el crecimiento y las selectividades de la flota, se derivaron de la ejecución determinista. El estado actual de la mortalidad por pesca (es decir, la probabilidad de que el stock esté actualmente experimentando sobrepesca en relación con  $F_{0,1}$ ) se calculó para el año terminal del modelo (2020, por lo tanto:  $F_{2020}/F_{0,1}$ ), basándose en la media de F de las edades 10 a 20. El punto de referencia F,  $F_{0,1}$ , se calculó en stock synthesis a partir de la curva de rendimiento por recluta. La incertidumbre en la mortalidad por pesca actual en relación con  $F_{0,1}$  se determinó mediante el enfoque de aproximación lognormal multivariante (Walter et al., 2018; Winker, et al., 2019).

Se asumió que el reclutamiento futuro era igual a la media de las estimaciones durante el periodo de 2012 a 2017 (aproximadamente 330.000 reclutas de edad 0 por año). Las estimaciones recientes de reclutamiento de tres años (2018 a 2020) también se sustituyeron por la media prevista, ya que había pocos datos para informar de esas estimaciones y eran muy inciertas. La selectividad se asumió como constante en el futuro, igual a la media de las estimaciones de 2018 a 2020 (**Figura 23**). Se asumió una captura fija en 2021 igual al TAC (2.350 t), seguida de tres años (2022 a 2024) de capturas constantes alternativas que van de 2.000 a 5.000 en incrementos de 100 t, así como escenarios de 2.350 t (TAC actual). Las asignaciones de capturas de la flota variaron en los distintos escenarios de acuerdo con la tabla de asignaciones descrita en la Rec. 17-06, y el promedio de los tres años recientes (2018 a 2020) de la ratio media de capturas entre las CPC (**Tabla 7**)

Los cambios en los supuestos de selectividad en stock synthesis mejoraron el desempeño de los modelos y rectificaron algunos errores de especificación del modelo, pero no rectificaron todos los conflictos en los modelos, como los conflictos en los índices. Los cambios resultantes en las especificaciones del modelo muestran una escala de biomasa total sustancialmente mayor con respecto a los modelos de 2020 (**Figura 24**), así como un aumento del 30 % en F<sub>0.1</sub> (que pasa de 0,091 a 0,118). Además, la variabilidad en las diferencias de escala absoluta entre los modelos de 2017, de 2020 y ahora de 2021 (**Figura 25**) es potencialmente indicativa de un problema común de los modelos de evaluación de stock que se enfrentan particularmente a un reto en cuanto a la capacidad de estimar la escala absoluta (Deroba et al., 2015). Esto ha sido ciertamente una preocupación con el VPA para el stock del este y Mediterráneo y dada la creciente influencia de los peces de origen oriental en las pesquerías occidentales (Puncher et al., 2021). Es posible que las evaluaciones de la zona occidental se enfrenten a retos similares.

En las evaluaciones recientes de los stocks orientales y occidentales se han formulado recomendaciones de capturas basadas en el mantenimiento del estado del stock de no experimentando sobrepesca, medida como la tasa media actual de mortalidad por pesca con respecto a un punto de referencia  $F_{0,1}$ . La elección de  $F_{0,1}$  se realizó debido a la incertidumbre en el potencial de reclutamiento a largo plazo, a la vez que se tienen en cuenta los cambios en el reclutamiento reciente y la dinámica de selectividad de la pesca a lo largo del tiempo. En consecuencia, el Grupo ha optado por centrarse en puntos de referencia basados en la mortalidad por pesca que no requieren conocer el potencial de reclutamiento a largo plazo, pero que, sin embargo,

pueden aplicarse de manera que conduzcan a la recuperación. El punto de referencia elegido tanto para el stock oriental como occidental ha sido  $F_{0,1}$  (Anón., 2017).

Se determinó que el estado de la pesquería para 2020  $(F_{2020}/F_{0.1})$  no es de sobrepesca con una probabilidad superior al 95 %. Las estimaciones de la mortalidad por pesca con respecto a  $F_{0,1}$   $(F_{2020}/F_{0,1})$  en 2020 son de 0,530 (intervalo de confianza del 80 % = 0,474 - 0,589) y 0,520 (0,467 - 0,575) para los escenarios de madurez tardía y temprana, respectivamente (**Tabla 6**). Las proyecciones de biomasa con TAC fijos constantes y  $F_{0,1}$  se muestran en la **Figura 26**.

Un mayor reclutamiento reciente (tanto en el índice de abundancia de capturas por talla como en el de juveniles) y un cambio en los supuestos de selectividad de las flotas en synthesis dieron lugar a mayores rendimientos previstos. La adición de datos y los índices revisados incluidos desde 2020 fueron responsables de un aumento del ~50% en el rendimiento determinista en  $F_{0,1}$  para el periodo 2022-2024, (**Tablas 8** y **9**) mientras que otros cambios en los supuestos fueron responsables de ~50 % de los cambios.

## 5. Otros asuntos

No se debatieron adicional asuntos.

## 6. Adopción del informe

El Informe de la reunión de 2021 de evaluación del stock de atún rojo occidental fue adoptado, a excepción del primer párrafo de la sección 3.2 y de los párrafos quinto y séptimo de la sección 4. El Grupo adoptó los párrafo pendientes por correspondencia el 18 de septiembre de 2021. El Dr. Walter agradeció a los participantes y a los Secretaría el intenso trabajo realizado y su colaboración para finalizar a tiempo el informe. La reunión fue clausurada.

## Referencias

Anon. 2018. Report for biennial period, 2016-17, Part II – Vol. 2. 427 pp.

- Anon. 2021a. *In press*. Report of the first 2021 intersessional meeting of the Bluefin Tuna Species Group (including W-BFT data preparatory) (Online, 5-13 April 2021). ICCAT Collect. Vol. Sci. Pap. 78(3): 1-145.
- Anon. 2021b. Recommendation of the BFT Technical Sub-group on Abundance Indices for West Atlantic bluefin tuna. SCRS/2021/044
- Deroba J.J., Butterworth D.S., Methot R.D., De Oliveira Jr, J.A.A., Fernandez C., Nielsen A., Cadrin S.X., Dickey-Collas M., Legault C.M., Ianelli J., Valero J.L., Needle C.L., O'Malley J.M., Chang Y-J., Thompson G.G., Canales C., Swain D.P., Miller D.C.M., Hintzen N.T., Bertignac M., Ibaibarriaga L., Silva A., Murta A., Kell L.T., de Moor C.L., Parma A.M., Dichmont C.M., Restrepo V.R., Ye Y., Jardim E., Spencer P.D., Hanselman D.H., Blaylock J., Mood M., and Hulson P.-J. F. 2015. Simulation testing the robustness of stock assessment models to error: some results from the ICES strategic initiative on stock assessment methods. *ICES Journal of Marine Science* 72(1): 19-30. https://doi.org/10.1093/icesjms/fst237
- Minte-Vera C. V., Maunder M.N., Aires-da-Silva A. M., Satoh K., and Uosaki K. 2017. Get the biology right, or use size-composition data at your own risk. Fisheries Research 192:114-125. https://doi.org/10.1016/j.fishres.2017.01.014
- Puncher G. N., Hanke A., Busawon D., Sylvester E., Golet W., Hamilton L. C., and Scott A. P. 2021. Individual assignment of Atlantic bluefin tuna in the northwestern Atlantic Ocean using single nucleotide polymorphisms reveals an increasing proportion of migrants from the eastern Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/cjfas-2020-0336
- Sampson D.B. and Scott R. D. 2011. A spatial model for fishery age-selection at the population level. Canadian Journal of Fisheries and Aquatic Sciences 68(6). https://doi.org/10.1139/f2011-044

- Walter J., Hiroki Y., Satoh K., Matsumoto T., Winker H., Urtizberea Ijurco A., and Schirripa M. 2018. Atlantic bigeye tuna stock synthesis projections and Kobe 2 matrices. ICCAT Collect. Vol. Sci. Pap. 75(7): 2283-2300.
- Waterhouse L., Sampson D.B., Maunder M., and Semmens B. X. 2014. Using areas-as-fleets selectivity to model spatial fishing: Asymptotic curves are unlikely under equilibrium conditions. Fisheries Research 158: 15-25. https://doi.org/10.1016/j.fishres.2014.01.009.
- Winker H., Kell L., Fu D., Sharma R., Courtney D., Carvalho F., Schirripa M., and Walter J. 2019. A rapid approach to approximate Kobe posteriors from Stock Synthesis assessment models with applications to north Atlantic shortfin mako. SCRS/2019/093.

## TABLAS

**Tabla 1.** Descripciones de los modelos Stock Synthesis considerados por el Grupo.

**Tabla 2.** Nombres y definiciones de pesquería de las flotas utilizadas en el modelo final de Stock Synthesis.

**Tabla 3.** Estimaciones de parámetros, valores iniciales de las fases y desviaciones estándar para el modelo final del escenario de madurez tardía.

**Tabla 4.** Estimaciones de parámetros, valores iniciales de las fases y desviaciones estándar para el modelo final del escenario de madurez temprana.

**Tabla 5.** Tabla de información clave para los modelos finales y ensayos de continuidad y prototipo para los escenarios de madurez temprana y tardía.

**Tabla 6.** Elementos de referencia y estado del stock relativo para los modelos finales con intervalos de confianza del 80 %, ensayos de continuidad y prototipo para los escenarios de madurez temprana y tardía.

**Tabla 7**. Captura asignada por flota en el modelo Stock Synthesis en la proyección a corto plazo por TAC (2000-5000 t).

**Tabla 8.** Rendimiento proyectado en F0,1 para el periodo entre 2022 y 2024 basado en el caso base de 2020, el ensayo de continuidad de 2021, el prototipo de 2021 y el modelo final de 2021, utilizando diversos supuestos sobre la selectividad.

**Tabla 9.** Comparaciones entre los modelos del rendimiento proyectado en F0,1 para el periodo de 2022 a 2024.

## FIGURAS

**Figura 1. VPA.** Estimaciones del reclutamiento de atún rojo en el Atlántico occidental mediante iteración del modelo gradual (descendiendo por columna en cada etapa) del caso base de continuidad al caso base propuesto. La línea negra muestra el ensayo actualizado en cada etapa, las líneas azules muestran en el ensayo de la etapa previa y las líneas grises muestran todos los demás ensayos de distribuciones a priori.

**Figura 2. VPA**. Estimaciones de la biomasa del stock reproductor (paneles superiores) y el reclutamiento (edad 1, paneles inferiores) de los ensayos de continuidad de 2021 (líneas negras) para los escenarios de madurez tardía (paneles izquierdos) y temprana (paneles derechos) del atún rojo en el Atlántico occidental en comparación con la evaluación de 2020 (líneas azules).

**Figura 3. VPA.** Efectos jackknife del índice sobre las estimaciones de atún rojo en el Atlántico occidental del caso base de 2021. Reclutamiento (panel izquierdo) y biomasa del stock reproductor (panel derecho, escenario de madurez temprana).

**Figura 4. VPA.** Estimaciones retrospectivas de atún rojo en el Atlántico occidental del caso base de 2021. Reclutamiento (panel izquierdo) y biomasa del stock reproductor (panel derecho, escenario de madurez temprana).

**Figura 5. VPA.** Error residual respecto a los índices de liña de mano (Canadá GSL, Canadá SWNS y US RR>177 cm) y al índice acústico GSL.

**Figura 6. Stock Synthesis.** Composición por tallas observada desde 1990 por el índice canadiense de liña de mano en el GSL y talla media estimada (línea azul) en el modelo.

**Figura 7.** Resultados de verosimilitud logarítmica (izquierda), SSB (centro) y reclutamiento (edad 0, derecha) del análisis de fluctuaciones para los modelos finales para el escenario de madurez tardía.

**Figura 8.** Resultados de verosimilitud logarítmica (izquierda), SSB (centro) y reclutamiento (edad 0, derecha) del análisis de fluctuaciones para los modelos finales para el escenario de madurez temprana.

**Figura 9.** Perfiles de verosimilitud (izquierda) de (a) R0, (b) inclinación y (c) sigmaR y tendencias resultantes de SSB (centro) y del reclutamiento (derecha) para el modelo final para el escenario de madurez tardía.

**Figura 10.** Perfiles de verosimilitud (izquierda) de (a) R0, (b) inclinación y (c) sigmaR y tendencias resultantes de SSB (centro) y del reclutamiento (derecha) para el modelo final para el escenario de madurez temprana.

Figura 11. Ajustes a cada índice de CPUE para el modelo final para el escenario de madurez tardía.

Figura 12. Ajustes a cada índice de CPUE para el modelo final para el escenario de madurez temprana.

**Figura 13.** Ajustes a los datos de composición por tallas para todos los años para el modelo final para el escenario de madurez tardía.

**Figura 14.** Ajustes a los datos de composición por tallas para todos los años para el modelo final para el escenario de madurez temprana.

**Figura 15.** Serie temporal de los valores residuales de Pearson en los datos de composición por tallas por flotas para el modelo final para el escenario de madurez tardía.

Figura 15. Continuación.

**Figura 16.** Serie temporal de los valores residuales de Pearson en los datos de composición por tallas por flotas para el modelo final para el escenario de madurez temprana.

Figura 16. Continuación.

**Figura 17.** Diagramas retrospectivos de las tendencias de SSB (t) y del reclutamiento (edad 0, mil peces) parar los modelos finales para los escenarios de madurez (a) tardía y (b) temprana. Los paneles superiores corresponden a todo el periodo de la evaluación, entre 1950 y 2020 y los paneles inferiores muestran el periodo posterior al 2000.

**Figura 18.** SSB (izquierda) y reclutamiento (edad 0, derecha) según los análisis jackknife respecto a los índices de abundancia para los modelos finales para los escenarios de madurez (a) tardía y (b) temprana.

**Figura 19.** Resultados de las tendencias de SSB y el reclutamiento procedentes de los ensayos originales (línea roja) y 100 replicaciones de bootstrap (línea gris) para los modelos finales para los escenarios de madurez (a) tardía y (b) temprana. (opcional).

**Figura 20.** Resultados de la distribución de 3 estimaciones de parámetros relacionadas con la relación stock-reclutamiento procedentes (opcional) de 100 replicaciones de bootstrap para los modelos finales para los escenarios de madurez (a) tardía y (b) temprana, ln(R0) (izquierda), inclinación (medio) y sigmaR (derecha). La línea roja muestra las estimaciones en el ensayo original sin perturbación de datos.

**Figura 21.** Selectividad estimada en el año final por flota para el modelo final para el escenario de madurez tardía.

**Figura 22.** Diagramas de comparación de la serie temporal de SSB (arriba izquierda), reclutamiento (arriba derecha), ratio de biomasa respecto a niveles sin pesca (abajo izquierda) y mortalidad por pesca (abajo derecha) entre los modelos finales para los escenarios de madurez tardía (azul) y temprana (naranja).

Figura 23. Mortalidad por pesca estimada por edad entre 2018 y 2020 y su media (línea negra).

**Figura 24.** Diagrama de comparación de las series temporales de SSB (arriba izquierda), reclutamiento (arriba derecha), ratio de biomasa respecto a niveles sin pesca (abajo izquierda) y mortalidad por pesca (abajo derecha) para el caso base del modelo de 2020, el ensayo de continuidad de 2021, el prototipo de 2021 y el modelo final de 2021 para el escenario de madurez tardía.

**Figura 25.** Comparaciones de (a) biomasa total, (b) reclutamiento y (c) mortalidad por pesca de Stock Synthesis entre las evaluaciones del stock de atún rojo occidental de 2017 (verde), 2020 (naranja) y 2021 (negro). Se muestran los resultados combinados para ambos escenarios de madurez.

**Figura 26**. Biomasa total proyectada (t) del stock de atún rojo en el Atlántico occidental en el marco de escenarios de captura constante alternativos, promediada entre las especificaciones de madurez para Stock Synthesis. Los ensayos del modelo determinista están promediados entre ambas especificaciones de madurez. (a) Panel superior: 1950-2024, (b) panel inferior: centrado en 2015 a 2024.

## APÉNDICES

Apéndice 1. Orden del día.

**Apéndice 2**. Lista de participantes.

Apéndice 3. Lista de documentos y presentaciones.

**Apéndice 4.** Resúmenes de documentos y presentaciones SCRS tal y como fueron presentadas por los autores.

| Runs                    | Descriptions                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2020 Base               | The final stock assessment results in 2020. The terminal year is 2018.                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 2021 Continuity         | Based on the 2020 Base run, the model incorporated the updated data up to 2020 for catch and some indices in the 2021 assessment exercise. This model includes CAN-HL combined index, US RR 66-114 cm, and US RR 115-144 cm.                                                                                                                   |  |  |  |  |  |
| 2021 Prototype          | Based on the 2021 Continuity run, the model further incorporated the changes on the indices: MEX-USA LL, CAN HL in SWNS, CAN HL in GSL, and combined US RR 66-155cm in a new fleet structure.                                                                                                                                                  |  |  |  |  |  |
| 2021 Proposed base case | Proposed base case by SCRS/2021/141 to the Group. Several changes were made based on the 2021 Prototype run: selectivity was parameterized as length-based, and selectivity shapes were modified from asymptotic selectivity to double normal selectivity for all fleets except the CAN HL GSL index to allow for either doming or asymptotic. |  |  |  |  |  |
|                         | Based on the 2021 Proposed base case run, the following changes were made:<br>1) remove 1986 data point from JPN LL early index since 1976                                                                                                                                                                                                     |  |  |  |  |  |
|                         | 2) aggregate length bins over 300cm for the MEX-USA LL size composition data                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 2021 Final model        | 3) estimate the initial equilibrium fishing mortality for the CAN USA HP index based on the initial equilibrium catch data.                                                                                                                                                                                                                    |  |  |  |  |  |
|                         | 4) assumed asymptotic selectivity for the CAN GSL fleet for early period (1988-2008), allow free estimation of selectivity using double normal approximation for 2009-2020.                                                                                                                                                                    |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

**Table 1.** Descriptions of Stock Synthesis models considered by the Group.

| No. | use | Fleet/Index           | Selectivity (all length based<br>except fleet 15) | Time block<br>Selectivity | start | end  |
|-----|-----|-----------------------|---------------------------------------------------|---------------------------|-------|------|
| 1   | Y   | JAPAN_LL              | Double Normal                                     | Y (1950-2009)             | 1957  | 2020 |
| 2   | Y   | OTHER_ATL_LL          | Double Normal                                     | Ν                         | 1957  | 2020 |
| 3   | Y   | GOM_LL_US_MEX         | Double Normal                                     | Ν                         | 1971  | 2020 |
| 4   | Y   | JLL_GOM               | Double Normal                                     | Ν                         | 1974  | 1981 |
| 5   | Y   | USA_CAN_PSFS          | Double Normal                                     | Ν                         | 1950  | 1984 |
| 6   | Y   | USA_CAN_PSFB          | Double Normal                                     | Ν                         | 1950  | 2015 |
| 7   | Y   | USA_TRAP              | Double Normal                                     | Y (1950-1992)             | 1950* | 1974 |
| 8   | Y   | CAN_TRAP              | Double Normal                                     | Ν                         | 1950* | 2020 |
| 9   | Y   | USA_CAN_HARPOON       | Double Normal                                     | Ν                         | 1950  | 2018 |
| 10  | Ν   | USA_HARPOON           | Double Normal                                     | Ν                         | 1950  | 2020 |
| 11  | Y   | USA_RRFS              | Double Normal                                     | Ν                         | 1950  | 1920 |
| 12  | Y   | USA_RRFB              | Double Normal                                     | Ν                         | 1950  | 2020 |
| 13  | Ν   | CAN_CombinedHL        | Double Normal                                     | Ν                         | 1988  | 2020 |
| 14  | Y   | CAN_SWNS_HLnoHP       | Double Normal                                     | Ν                         | 1988  | 2020 |
| 15  | Ν   | CAN_SWNS_HLwithHP     | Double Normal                                     | Ν                         | 1988  | 2020 |
| 16  | Y   | CAN_GSL_HL            | Double Normal***                                  | Y (1950-2008)             | 1988  | 2020 |
| 17  | Y   | CAN_GSL_old           | Logistic                                          | Ν                         | 1950  | 1987 |
| 18  | Y** | IND1_JAPAN_LL early   | mirror JAPAN_LL                                   | Ν                         | 1976  | 2009 |
| 19  | Y   | IDX2_JAPAN_LL2        | mirror JAPAN_LL                                   | Ν                         | 2010  | 2020 |
| 20  | Ν   | IDX3_USPLL_GOM        | mirror GOM_LL                                     | Ν                         | 1987  | 1991 |
| 21  | Ν   | IDX4_USPLL_GOM2       | mirror GOM_LL                                     | Ν                         | 1992  | 2020 |
| 22  | Y   | IDX5_MEXUSALL_GOM_LL2 | mirror GOM_LL                                     | Ν                         | 1994  | 2019 |
| 23  | Y   | IDX6_JPNLL_GOM        | mirror JLL_GOM                                    | Ν                         | 1974  | 1981 |
| 24  | Ν   | IDX7_US_RR_66_114     | Double normal                                     | Ν                         | 1995  | 2020 |
| 25  | Ν   | IDX8_US_RR_115_144    | Double normal                                     | Ν                         | 1995  | 2020 |
| 26  | Y   | IDX9_US_RR_66_144     | Mirror USRRFS                                     | Ν                         | 1995  | 2020 |
| 27  | Y   | IDX10_US_RR_LT145     | Mirror USRRFS                                     | Ν                         | 1980  | 1992 |
| 28  | Y   | IDX11_US_RR_GT177     | Mirror USRRFB                                     | Ν                         | 1993  | 2020 |
| 29  | Y   | IDX12_US_RR_GT195     | Mirror USRRFB                                     | Ν                         | 1983  | 1992 |
| 30  | Ν   | IDX13_CAN_combinedHL  | Mirror Can combined HL                            | Ν                         | 1984  | 2018 |
| 31  | Y   | IDX14_CAN_SWNS        | mirror Can_SWNS_HLnoHP                            | Ν                         | 1996  | 2020 |
| 32  | Y   | IDX15_CAN_GSL         | mirror Can_GSL_HL                                 | Ν                         | 1988  | 2020 |
| 33  | Y   | IDX16_CAN_ACOUSTIC    | mirror Can_GSL_HL                                 | Ν                         | 1994  | 2017 |
| 34  | Y   | IDX17_GOMlarval       | mirror GOM_LL                                     | Ν                         | 1977  | 2019 |
| 35  | Ν   | IDX19_oceanographic   | Exp(rec_dev)                                      | Ν                         | 1993  | 2011 |

**Table 2**. Names and fishery definitions of the fleets used in the Stock Synthesis final model.

\* Fishery starts with equilibrium catch.
\*\* The estimate for 1986 was removed.
\*\*\* Selectivity in early time block until 2008 mimic asymptotic shape with fixed high ending of double normal.

| Label                                    | Value      | Phase | Min   | Max  | Init      | StDev       |
|------------------------------------------|------------|-------|-------|------|-----------|-------------|
| L_at_Amax_Fem_GP_1                       | 273.506    | 3     | 240   | 350  | 273.504   | 0.696301    |
| VonBert_K_Fem_GP_1                       | 0.297944   | 3     | 0.2   | 0.4  | 0.297306  | 0.0080385   |
| Richards_Fem_GP_1                        | -1.01657   | 3     | -2    | 0    | -1.011    | 0.0669735   |
| CV_young_Fem_GP_1                        | 0.091835   | 4     | 0.03  | 0.15 | 0.09102   | 0.00566797  |
| CV_old_Fem_GP_1                          | 0.0643568  | 4     | 0.03  | 0.15 | 0.066024  | 0.00148668  |
| SR_LN(R0)                                | 6.63388    | 1     | 5     | 10   | 6.63736   | 0.041349    |
| SR_BH_steep                              | 0.559016   | 2     | 0.5   | 0.99 | 0.562091  | 0.0278948   |
| SR_sigmaR                                | 0.670471   | 3     | 0.2   | 1.2  | 0.679511  | 0.0807214   |
| InitF_seas_1_flt_7USA_TRAP               | 0.0126395  | 1     | 1E-05 | 0.1  | 0.0125549 | 0.00213186  |
| InitF_seas_1_flt_9USA_CAN_HARPOON        | 0.00231061 | 1     | 1E-05 | 0.1  | 0.0022942 | 0.000172621 |
| LnQ_base_IDX11_US_RR_GT177(28)           | -4.25942   | 1     | -10   | -2   | -4.26025  | 0.0916597   |
| LnQ_base_IDX14_CAN_SWNS(31)              | -4.13428   | 1     | -10   | -2   | -4.13578  | 0.101609    |
| LnQ_base_IDX15_CAN_GSL(32)               | -6.12873   | 1     | -10   | -2   | -6.10122  | 0.108886    |
| LnQ_base_IDX16_CAN_ACOUSTIC(33)          | -6.57783   | 1     | -10   | -2   | -6.55174  | 0.12191     |
| LnQ_base_IDX11_US_RR_GT177(28)_ENV_mult  | 0.174096   | 3     | -2    | 2    | 0.173377  | 0.0491642   |
| LnQ_base_IDX14_CAN_SWNS(31)_ENV_mult     | -0.134142  | 3     | -2    | 2    | -0.135056 | 0.0691958   |
| LnQ_base_IDX15_CAN_GSL(32)_ENV_mult      | -0.21859   | 3     | -2    | 2    | -0.215487 | 0.0307471   |
| LnQ_base_IDX16_CAN_ACOUSTIC(33)_ENV_mult | -0.039187  | 3     | -2    | 2    | 0.0366599 | 0.0376157   |
| Size_DblN_peak_JAPAN_LL(1)               | 223.854    | 2     | 120   | 250  | 223.829   | 2.76439     |
| Size_DblN_top_logit_JAPAN_LL(1)          | -11.6732   | 2     | -15   | 3    | -11.6798  | 55.2614     |
| Size_DblN_ascend_se_JAPAN_LL(1)          | 7.10026    | 3     | -5    | 9    | 7.09927   | 0.120809    |
| Size_DblN_descend_se_JAPAN_LL(1)         | 5.73913    | 5     | -5    | 9    | 5.74841   | 0.352753    |
| Size_DblN_end_logit_JAPAN_LL(1)          | -3.18697   | 6     | -20   | 10   | -3.18679  | 0.541482    |
| Size_DblN_peak_OTHER_ATL_LL(2)           | 214.336    | 2     | 120   | 285  | 214.211   | 2.38854     |
| Size_DblN_top_logit_OTHER_ATL_LL(2)      | -11.6184   | 2     | -15   | 3    | -11.6409  | 55.9487     |
| Size_DblN_ascend_se_OTHER_ATL_LL(2)      | 8.03662    | 3     | -5    | 9    | 8.0343    | 0.0570092   |
| Size_DblN_descend_se_OTHER_ATL_LL(2)     | 7.09271    | 5     | -5    | 9    | 7.11862   | 0.196028    |
| Size_DblN_end_logit_OTHER_ATL_LL(2)      | -2.49195   | 6     | -20   | 10   | -2.52811  | 0.392425    |
| Size_DblN_peak_GOM_US_MEX_LL(3)          | 247.247    | 2     | 120   | 285  | 242.584   | 3.94879     |
| Size_DblN_top_logit_GOM_US_MEX_LL(3)     | -6.28462   | 2     | -15   | 3    | -11.9856  | 21.9657     |
| Size_DblN_ascend_se_GOM_US_MEX_LL(3)     | 7.59258    | 3     | -5    | 9    | 7.46492   | 0.108774    |
| Size_DblN_end_logit_GOM_US_MEX_LL(3)     | 0.207353   | 6     | -20   | 10   | 0.463658  | 0.206949    |
| Size_DblN_peak_JPNLL_GOM(4)              | 232.863    | 2     | 120   | 285  | 232.976   | 2.48322     |
| Size_DblN_top_logit_JPNLL_GOM(4)         | -11.8788   | 2     | -15   | 3    | -11.8237  | 52.6778     |
| Size_DblN_ascend_se_JPNLL_GOM(4)         | 6.60046    | 3     | -5    | 9    | 6.62472   | 0.169863    |
| Size_DblN_descend_se_JPNLL_GOM(4)        | 6.18961    | 5     | -5    | 9    | 6.21873   | 0.193538    |
| Size_DblN_end_logit_JPNLL_GOM(4)         | -3.63153   | 6     | -20   | 10   | -3.66616  | 0.431098    |
| Size_DblN_peak_USA_CAN_PSFS(5)           | 74.4773    | 3     | 50    | 200  | 74.3773   | 4.01654     |
| Size_DblN_ascend_se_USA_CAN_PSFS(5)      | 4.74988    | 4     | -4    | 12   | 4.72797   | 0.707638    |
| Size_DblN_peak_USA_CAN_PSFB(6)           | 212.316    | 2     | 150   | 285  | 212.229   | 3.17388     |
| Size_DblN_top_logit_USA_CAN_PSFB(6)      | -2.1987    | 2     | -5    | 3    | -2.18515  | 0.328659    |
| Size_DblN_ascend_se_USA_CAN_PSFB(6)      | 6.85495    | 3     | -4    | 8    | 6.85257   | 0.14211     |

| Table 3. | Parameter | estimates, | phases | initial | values | and | standard | deviations | for th | e final | model | for | late |
|----------|-----------|------------|--------|---------|--------|-----|----------|------------|--------|---------|-------|-----|------|
| maturity | scenario. |            |        |         |        |     |          |            |        |         |       |     |      |

| Table | • <b>3</b> . | Continued. |
|-------|--------------|------------|
|       |              |            |

| Label                                             | Value     | Phase | Min | Max | Init      | StDev     |
|---------------------------------------------------|-----------|-------|-----|-----|-----------|-----------|
| Size_DblN_end_logit_USA_CAN_PSFB(6)               | -4.03976  | 6     | -15 | 5   | -4.038    | 0.754815  |
| Size_DblN_peak_USA_TRAP(7)                        | 124.84    | 3     | 80  | 150 | 124.726   | 6.76268   |
| Size_DblN_top_logit_USA_TRAP(7)                   | -2.28684  | 3     | -5  | 3   | -2.27338  | 0.846659  |
| Size_DblN_descend_se_USA_TRAP(7)                  | 7.41493   | 5     | -2  | 10  | 7.41112   | 0.553005  |
| Size_DblN_peak_CAN_TRAP(8)                        | 270.623   | 2     | 120 | 285 | 270.933   | 2.64143   |
| Size_DblN_top_logit_CAN_TRAP(8)                   | -12.1105  | 2     | -15 | 3   | -12.1142  | 49.7491   |
| Size_DblN_ascend_se_CAN_TRAP(8)                   | 7.82065   | 3     | -5  | 9   | 7.82217   | 0.0777027 |
| Size_DblN_descend_se_CAN_TRAP(8)                  | 4.82551   | 5     | -5  | 9   | 4.78631   | 0.492164  |
| Size_DblN_end_logit_CAN_TRAP(8)                   | -2.53238  | 6     | -20 | 10  | -2.61201  | 0.705197  |
| Size_DblN_peak_USA_CAN_HARPOON(9)                 | 192.21    | 2     | 120 | 285 | 192.194   | 1.51961   |
| Size_DblN_top_logit_USA_CAN_HARPOON(9)            | -1.22563  | 2     | -15 | 3   | -1.22254  | 0.201147  |
| Size_DblN_ascend_se_USA_CAN_HARPOON(9)            | 5.73187   | 3     | -5  | 9   | 5.7307    | 0.133497  |
| Size_DblN_descend_se_USA_CAN_HARPOON(9)           | 7.30874   | 5     | -5  | 9   | 7.33835   | 0.324797  |
| Size_DblN_end_logit_USA_CAN_HARPOON(9)            | -2.99281  | 6     | -20 | 10  | -3.18928  | 1.04736   |
| Size_DblN_peak_USA_RRFS(11)                       | 111.921   | 2     | 80  | 120 | 111.905   | 1.2812    |
| Size_DblN_top_logit_USA_RRFS(11)                  | -1.91565  | 3     | -5  | 3   | -1.91511  | 0.102809  |
| Size_DblN_descend_se_USA_RRFS(11)                 | -3.07789  | 5     | -5  | 4   | -3.07737  | 15.1268   |
| Size_DblN_peak_USA_RRFB(12)                       | 195.389   | 2     | 140 | 220 | 195.425   | 2.03423   |
| Size_DblN_top_logit_USA_RRFB(12)                  | -0.263249 | 3     | -5  | 1   | -0.262777 | 0.032703  |
| Size_DblN_ascend_se_USA_RRFB(12)                  | 6.68361   | 4     | -4  | 8   | 6.68412   | 0.102545  |
| Size_DblN_end_logit_USA_RRFB(12)                  | -1.7057   | 6     | -15 | 5   | -1.70827  | 0.160483  |
| Size_DblN_peak_CAN_SWNS_HLnoHP(14)                | 210.336   | 2     | 120 | 285 | 210.265   | 1.83709   |
| Size_DblN_top_logit_CAN_SWNS_HLnoHP(14)           | -2.93387  | 2     | -15 | 3   | -2.85716  | 0.94721   |
| Size_DblN_ascend_se_CAN_SWNS_HLnoHP(14)           | 6.60589   | 3     | -5  | 9   | 6.60317   | 0.0914231 |
| Size_DblN_descend_se_CAN_SWNS_HLnoHP(14)          | 7.72773   | 5     | -5  | 9   | 7.73094   | 0.244617  |
| Size_DblN_end_logit_CAN_SWNS_HLnoHP(14)           | -3.65769  | 6     | -20 | 10  | -3.8286   | 1.42222   |
| Size_DblN_peak_CAN_GSL_HL(16)                     | 249.136   | 3     | 120 | 330 | 249.713   | 2.96243   |
| Size_DblN_top_logit_CAN_GSL_HL(16)                | -11.3865  | 3     | -15 | 3   | -11.4704  | 58.8581   |
| Size_DblN_ascend_se_CAN_GSL_HL(16)                | 7.31676   | 4     | -5  | 9   | 7.32814   | 0.109233  |
| Size_DblN_descend_se_CAN_GSL_HL(16)               | 6.38678   | 5     | -5  | 9   | 6.33812   | 0.336688  |
| Size_DblN_end_logit_CAN_GSL_HL(16)                | -3.07468  | 6     | -20 | 10  | -3.14319  | 1.34688   |
| Size_inflection_CAN_GSL_old(17)                   | 244.867   | 2     | 210 | 330 | 245.057   | 2.29169   |
| Size_95%width_CAN_GSL_old(17)                     | 14.5415   | 2     | 5   | 30  | 14.5234   | 3.18797   |
| Size_DblN_peak_JAPAN_LL(1)_BLK1repl_1950          | 165.619   | 5     | 120 | 285 | 165.61    | 1.08181   |
| Size_DblN_top_logit_JAPAN_LL(1)_BLK1repl_1950     | -3.34263  | 5     | -10 | 1   | -3.33571  | 0.675059  |
| Size_DblN_descend_se_JAPAN_LL(1)_BLK1repl_1950    | 7.48491   | 5     | -1  | 9   | 7.47779   | 0.128895  |
| Size_DblN_end_logit_JAPAN_LL(1)_BLK1repl_1950     | -6.21961  | 5     | -20 | 1   | -6.17582  | 1.32257   |
| Size_DblN_peak_USA_RRFS(11)_BLK2repl_1950         | 84.25     | 5     | 60  | 110 | 83.5143   | 1.46813   |
| Size_DblN_top_logit_USA_RRFS(11)_BLK2repl_1950    | -1.27713  | 5     | -5  | 3   | -1.11914  | 1.52211   |
| Size_DblN_peak_CAN_GSL_HL(16)_BLK3repl_1950       | 297.475   | 5     | 120 | 330 | 297.856   | 1.35366   |
| Size_DblN_top_logit_CAN_GSL_HL(16)_BLK3repl_1950  | -6.02378  | 5     | -15 | 3   | -7.14244  | 198.477   |
| Size_DblN_descend_se_CAN_GSL_HL(16)_BLK3repl_1950 | 1.67428   | 5     | -5  | 9   | 9         | 106.744   |

| Label                                    | Value    | Phase | Min    | Max  | Init     | StDev    |
|------------------------------------------|----------|-------|--------|------|----------|----------|
| L_at_Amax_Fem_GP_1                       | 273.646  | 3     | 240    | 350  | 273.646  | 0.709688 |
| VonBert_K_Fem_GP_1                       | 0.297462 | 3     | 0.2    | 0.4  | 0.297462 | 0.008032 |
| Richards_Fem_GP_1                        | -1.01313 | 3     | -2     | 0    | -1.01313 | 0.066825 |
| CV_young_Fem_GP_1                        | 0.091813 | 4     | 0.03   | 0.15 | 0.091813 | 0.00565  |
| CV_old_Fem_GP_1                          | 0.064296 | 4     | 0.03   | 0.15 | 0.064296 | 0.00148  |
| SR_LN(R0)                                | 6.64991  | 1     | 5      | 10   | 6.64991  | 0.041245 |
| SR_BH_steep                              | 0.49618  | 2     | 0.4    | 0.99 | 0.49618  | 0.02504  |
| SR_sigmaR                                | 0.642304 | 3     | 0.2    | 1.2  | 0.642304 | 0.078601 |
| InitF_seas_1_flt_7USA_TRAP               | 0.01242  | 1     | 1.E-05 | 0.1  | 0.01242  | 0.002094 |
| InitF_seas_1_flt_9USA_CAN_HARPOON        | 0.002289 | 1     | 1E-05  | 0.1  | 0.002289 | 0.000171 |
| LnQ_base_IDX11_US_RR_GT177(28)           | -4.26822 | 1     | -10    | -2   | -4.26822 | 0.091914 |
| LnQ_base_IDX14_CAN_SWNS(31)              | -4.1446  | 1     | -10    | -2   | -4.1446  | 0.101885 |
| LnQ_base_IDX15_CAN_GSL(32)               | -6.15514 | 1     | -10    | -2   | -6.15514 | 0.106874 |
| LnQ_base_IDX16_CAN_ACOUSTIC(33)          | -6.60374 | 1     | -10    | -2   | -6.60374 | 0.120057 |
| LnQ_base_IDX11_US_RR_GT177(28)_ENV_mult  | 0.175615 | 3     | -2     | 2    | 0.175615 | 0.049052 |
| LnQ_base_IDX14_CAN_SWNS(31)_ENV_mult     | -0.13252 | 3     | -2     | 2    | -0.13252 | 0.068989 |
| LnQ_base_IDX15_CAN_GSL(32)_ENV_mult      | -0.21988 | 3     | -2     | 2    | -0.21988 | 0.030577 |
| LnQ_base_IDX16_CAN_ACOUSTIC(33)_ENV_mult | -0.04046 | 3     | -2     | 2    | -0.04046 | 0.037478 |
| Size_DblN_peak_JAPAN_LL(1)               | 223.833  | 2     | 120    | 250  | 223.833  | 2.77472  |
| Size_DblN_top_logit_JAPAN_LL(1)          | -11.6762 | 2     | -15    | 3    | -11.6762 | 55.225   |
| Size_DblN_ascend_se_JAPAN_LL(1)          | 7.09993  | 3     | -5     | 9    | 7.09993  | 0.121351 |
| Size_DblN_descend_se_JAPAN_LL(1)         | 5.74034  | 5     | -5     | 9    | 5.74034  | 0.352958 |
| Size_DblN_end_logit_JAPAN_LL(1)          | -3.20277 | 6     | -20    | 10   | -3.20277 | 0.542062 |
| Size_DblN_peak_OTHER_ATL_LL(2)           | 214.322  | 2     | 120    | 285  | 214.322  | 2.37978  |
| Size_DblN_top_logit_OTHER_ATL_LL(2)      | -11.6208 | 2     | -15    | 3    | -11.6208 | 55.9187  |
| Size_DblN_ascend_se_OTHER_ATL_LL(2)      | 8.03667  | 3     | -5     | 9    | 8.03667  | 0.056911 |
| Size_DblN_descend_se_OTHER_ATL_LL(2)     | 7.09073  | 5     | -5     | 9    | 7.09073  | 0.193497 |
| Size_DblN_end_logit_OTHER_ATL_LL(2)      | -2.52785 | 6     | -20    | 10   | -2.52785 | 0.393558 |
| Size_DblN_peak_GOM_US_MEX_LL(3)          | 243.742  | 2     | 120    | 285  | 243.742  | 2.31836  |
| Size_DblN_top_logit_GOM_US_MEX_LL(3)     | -11.4698 | 2     | -15    | 3    | -11.4698 | 57.811   |
| Size_DblN_ascend_se_GOM_US_MEX_LL(3)     | 7.50742  | 3     | -5     | 9    | 7.50742  | 0.081157 |
| Size_DblN_descend_se_GOM_US_MEX_LL(3)    | 4.01861  | 5     | -5     | 9    | 4.01861  | 1.09705  |
| Size_DblN_end_logit_GOM_US_MEX_LL(3)     | 0.192318 | 6     | -20    | 10   | 0.192318 | 0.203173 |
| Size_DblN_peak_JPNLL_GOM(4)              | 232.702  | 2     | 120    | 285  | 232.702  | 2.4745   |
| Size_DblN_top_logit_JPNLL_GOM(4)         | -11.89   | 2     | -15    | 3    | -11.89   | 52.537   |
| Size_DblN_ascend_se_JPNLL_GOM(4)         | 6.59391  | 3     | -5     | 9    | 6.59391  | 0.169955 |
| Size_DblN_descend_se_JPNLL_GOM(4)        | 6.1907   | 5     | -5     | 9    | 6.1907   | 0.191646 |
| Size_DblN_end_logit_JPNLL_GOM(4)         | -3.66414 | 6     | -20    | 10   | -3.66414 | 0.430631 |
| Size_DblN_peak_USA_CAN_PSFS(5)           | 75.0409  | 3     | 50     | 200  | 75.0409  | 4.06569  |
| Size_DblN_ascend_se_USA_CAN_PSFS(5)      | 4.79962  | 4     | -4     | 12   | 4.79962  | 0.692192 |
| Size_DblN_peak_USA_CAN_PSFB(6)           | 212.315  | 2     | 150    | 285  | 212.315  | 3.17392  |
| Size_DblN_top_logit_USA_CAN_PSFB(6)      | -2.20203 | 2     | -5     | 3    | -2.20203 | 0.328411 |

| Table 4. | . Parameter | estimates, | phases ini | tial value | s and s | standard | deviation | s for the | final mo | odel foi | c early |
|----------|-------------|------------|------------|------------|---------|----------|-----------|-----------|----------|----------|---------|
| maturity | / scenario. |            |            |            |         |          |           |           |          |          |         |

| Label                                             | Value    | Phase | Min | Max | Init     | StDev    |
|---------------------------------------------------|----------|-------|-----|-----|----------|----------|
| Size_DblN_ascend_se_USA_CAN_PSFB(6)               | 6.85506  | 3     | -4  | 8   | 6.85506  | 0.142131 |
| Size_DblN_end_logit_USA_CAN_PSFB(6)               | -4.07876 | 6     | -15 | 5   | -4.07876 | 0.761193 |
| Size_DblN_peak_USA_TRAP(7)                        | 124.784  | 3     | 80  | 150 | 124.784  | 6.77348  |
| Size_DblN_top_logit_USA_TRAP(7)                   | -2.28276 | 3     | -5  | 3   | -2.28276 | 0.844391 |
| Size_DblN_descend_se_USA_TRAP(7)                  | 7.41668  | 5     | -2  | 10  | 7.41668  | 0.553747 |
| Size_DblN_peak_CAN_TRAP(8)                        | 270.278  | 2     | 120 | 285 | 270.278  | 2.45493  |
| Size_DblN_top_logit_CAN_TRAP(8)                   | -12.1264 | 2     | -15 | 3   | -12.1264 | 49.5463  |
| Size_DbIN_ascend_se_CAN_TRAP(8)                   | 7.81716  | 3     | -5  | 9   | 7.81716  | 0.07498  |
| Size_DblN_descend_se_CAN_TRAP(8)                  | 4.86562  | 5     | -5  | 9   | 4.86562  | 0.456826 |
| Size_DblN_end_logit_CAN_TRAP(8)                   | -2.56203 | 6     | -20 | 10  | -2.56203 | 0.708459 |
| Size_DblN_peak_USA_CAN_HARPOON(9)                 | 192.205  | 2     | 120 | 285 | 192.205  | 1.51967  |
| Size_DblN_top_logit_USA_CAN_HARPOON(9)            | -1.23038 | 2     | -15 | 3   | -1.23038 | 0.199337 |
| Size_DblN_ascend_se_USA_CAN_HARPOON(9)            | 5.73172  | 3     | -5  | 9   | 5.73172  | 0.133526 |
| Size_DblN_descend_se_USA_CAN_HARPOON(9)           | 7.30118  | 5     | -5  | 9   | 7.30118  | 0.319235 |
| Size_DblN_end_logit_USA_CAN_HARPOON(9)            | -3.02546 | 6     | -20 | 10  | -3.02546 | 1.03825  |
| Size_DblN_peak_USA_RRFS(11)                       | 111.89   | 2     | 80  | 120 | 111.89   | 1.282    |
| Size_DblN_top_logit_USA_RRFS(11)                  | -1.91459 | 3     | -5  | 3   | -1.91459 | 0.102826 |
| Size_DblN_descend_se_USA_RRFS(11)                 | -3.07738 | 5     | -5  | 4   | -3.07738 | 15.1316  |
| Size_DblN_peak_USA_RRFB(12)                       | 195.314  | 2     | 140 | 220 | 195.314  | 2.02984  |
| Size_DblN_top_logit_USA_RRFB(12)                  | -0.2626  | 3     | -5  | 1   | -0.2626  | 0.032607 |
| Size_DblN_ascend_se_USA_RRFB(12)                  | 6.68153  | 4     | -4  | 8   | 6.68153  | 0.102598 |
| Size_DblN_end_logit_USA_RRFB(12)                  | -1.73024 | 6     | -15 | 5   | -1.73024 | 0.160118 |
| Size_DblN_peak_CAN_SWNS_HLnoHP(14)                | 210.322  | 2     | 120 | 285 | 210.322  | 1.83769  |
| Size_DblN_top_logit_CAN_SWNS_HLnoHP(14)           | -2.9299  | 2     | -15 | 3   | -2.9299  | 0.933607 |
| Size_DblN_ascend_se_CAN_SWNS_HLnoHP(14)           | 6.60555  | 3     | -5  | 9   | 6.60555  | 0.091501 |
| Size_DblN_descend_se_CAN_SWNS_HLnoHP(14)          | 7.71536  | 5     | -5  | 9   | 7.71536  | 0.241229 |
| Size_DblN_end_logit_CAN_SWNS_HLnoHP(14)           | -3.6835  | 6     | -20 | 10  | -3.6835  | 1.40693  |
| Size_DblN_peak_CAN_GSL_HL(16)                     | 249.119  | 3     | 120 | 330 | 249.119  | 1.79141  |
| Size_DblN_top_logit_CAN_GSL_HL(16)                | -11.2402 | 3     | -15 | 3   | -11.2403 | 60.6916  |
| Size_DblN_ascend_se_CAN_GSL_HL(16)                | 7.32121  | 4     | -5  | 9   | 7.32121  | 0.081251 |
| Size_DblN_end_logit_CAN_GSL_HL(16)                | -3.02189 | 6     | -20 | 10  | -3.02189 | 1.025    |
| Size_inflection_CAN_GSL_old(17)                   | 244.632  | 2     | 210 | 330 | 244.632  | 2.30942  |
| Size_95%width_CAN_GSL_old(17)                     | 14.4434  | 2     | 5   | 30  | 14.4434  | 3.20932  |
| Size_DblN_peak_JAPAN_LL(1)_BLK1repl_1950          | 165.638  | 5     | 120 | 285 | 165.638  | 1.08165  |
| Size_DblN_top_logit_JAPAN_LL(1)_BLK1repl_1950     | -3.33405 | 5     | -10 | 1   | -3.33405 | 0.666973 |
| Size_DblN_descend_se_JAPAN_LL(1)_BLK1repl_1950    | 7.48113  | 5     | -1  | 9   | 7.48113  | 0.127964 |
| Size_DblN_end_logit_JAPAN_LL(1)_BLK1repl_1950     | -6.2675  | 5     | -20 | 1   | -6.2675  | 1.33638  |
| Size_DblN_peak_USA_RRFS(11)_BLK2repl_1950         | 84.3623  | 5     | 60  | 110 | 84.3623  | 1.4753   |
| Size_DblN_top_logit_USA_RRFS(11)_BLK2repl_1950    | -1.36222 | 5     | -5  | 3   | -1.36222 | 0.02857  |
| Size_DblN_peak_CAN_GSL_HL(16)_BLK3repl_1950       | 297.276  | 5     | 120 | 330 | 297.276  | 1.33862  |
| Size_DblN_top_logit_CAN_GSL_HL(16)_BLK3repl_1950  | -6.03852 | 5     | -15 | 3   | -6.03847 | 199.129  |
| Size_DblN_descend_se_CAN_GSL_HL(16)_BLK3repl_1950 | 1.70858  | 5     | -5  | 9   | 1.70853  | 108.781  |

# Table 4. Continued.

|                                   | 2021 Co  | 2021 Continuity |          | ototype  | 2021 Final model |          |  |
|-----------------------------------|----------|-----------------|----------|----------|------------------|----------|--|
| Maturity scenario                 | late     | early           | late     | early    | late             | early    |  |
| Run time                          | 39 min   | 34 min          | 7 min    | 21 min   | 15 min           | 9 min    |  |
| Total negative log-likelihood     | 6850.37  | 6850.57         | 7004.53  | 7004.85  | 6672.16          | 6669.16  |  |
| Catch                             | 2.35E-11 | 2.35E-11        | 7.29E-11 | 7.32E-11 | 1.66E-11         | 1.65E-11 |  |
| Equil_catch                       | 4.26219  | 4.01917         | 0.01716  | 0.015894 | 0.004417         | 0.004084 |  |
| Survey                            | 671.205  | 670.929         | 677.745  | 677.175  | 485.128          | 484.549  |  |
| Length_comp                       | 4.29E+03 | 4.29E+03        | 4434.66  | 4435.33  | 4312.5           | 4311.99  |  |
| Age_comp                          | 1873.29  | 1873.72         | 1885.79  | 1886.35  | 1869.93          | 1869.58  |  |
| Recruitment                       | 1.05E+01 | 1.03E+01        | 5.26472  | 4.92631  | 3.58862          | 2.03592  |  |
| InitEQ_Regime                     | 0        | 0               | 0        | 0        | 0                | 0        |  |
| Forecast_Recruitment              | 0        | 0               | 0        | 0        | 0                | 0        |  |
| Parm_priors                       | 0.487353 | 0.4872          | 0.463245 | 0.46176  | 0.513135         | 0.510209 |  |
| Parm_softbounds                   | 0.021162 | 0.021205        | 0.010956 | 0.011599 | 0.023137         | 0.02299  |  |
| Parm_devs                         | 0.565872 | 0.566744        | 0.579149 | 0.580297 | 0.464682         | 0.464693 |  |
| Crash_Pen                         | 0        | 0               | 0        | 0        | 0                | 0        |  |
| Parameter that hit bound          | 0        | 0               | 0        | 0        | 0                | 0        |  |
| The number of estimated parameter | 125      | 125             | 125      | 125      | 146              | 146      |  |
| Akaike Information Criteria (AIC) | 13950.74 | 13951.14        | 14259.06 | 14259.7  | 13636.32         | 13630.32 |  |

**Table 5.** Table of key information for the final models and continuity and prototype runs for late and early maturity scenarios.

| Item                               | maturity | 2020 Base | 2021<br>Continuity | 2021 2021 2021 Final model at a second secon |        | 2021 Final mod |         |
|------------------------------------|----------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|---------|
|                                    | schedule | Value     | Value              | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value  | 80LCI**        | 80UCI** |
| SSB Unfished                       | late     | 181690    | 183210             | 164990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230876 | 218802         | 242950  |
|                                    | early    | 224062    | 224181             | 204428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 282480 | 267806         | 297154  |
| Total Biomass                      | late     | 227902    | 226925             | 207057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 284044 | 269217         | 298871  |
| Unfished                           | early    | 224062    | 228987             | 209005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288594 | 194021         | 303578  |
| Recruitment (age0)                 | late     | 591       | 594                | 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 760    | 720            | 801     |
| Unfished (1000s)                   | early    | 594       | 599                | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 773    | 732            | 814     |
|                                    | late     | 0.076     | 0.085              | 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063  | 0.060          | 0.067   |
| F <sub>cur</sub> *                 | early    | 0.076     | 0.085              | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.062  | 0.059          | 0.066   |
|                                    | average  | 0.076     | 0.085              | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.063  | 0.059          | 0.067   |
|                                    | late     | 0.091     | 0.083              | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.118  | 0.113          | 0.122   |
| F <sub>0.1</sub>                   | early    | 0.091     | 0.083              | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.118  | 0.113          | 0.123   |
|                                    | average  | 0.091     | 0.083              | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.118  | 0.113          | 0.123   |
|                                    | late     | 0.831     | 1.025              | 1.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.538  | 0.508          | 0.570   |
| F <sub>cur</sub> /F <sub>0.1</sub> | early    | 0.831     | 1.024              | 1.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.529  | 0.500          | 0.564   |
|                                    | average  | 0.831     | 1.024              | 1.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.534  | 0.500          | 0.570   |
|                                    | late     | -         | 1.020              | 1.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.530  | 0.474          | 0.589   |
| F2020/F0.1                         | early    | -         | 1.019              | 1.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.520  | 0.467          | 0.575   |
|                                    | average  | -         | 1.019              | 1.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.525  | 0.467          | 0.589   |

Table 6. Benchmarks and relative stock status for the final models with 80% confidence intervals, continuity and prototype runs for late and early maturity scenarios.

\* Average fishing mortality in the most recent 3 years: 2018 -2020 for the 2021 models, and 2016-2018 for the 2020 Base case. \*\* Confidence intervals for each maturity scenario were determined by the multivariate lognormal approximation approach.

|                                                                                                                          | TAC                                         |                                             |                                             |                                             |                                             |                                             |                                             |                                        |                                        |                                        |                                        |                                             |                                             |                                             |                                        |                                        |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|
| Fleet                                                                                                                    | 2000                                        | 2100                                        | 2200                                        | 2300                                        | 2350                                        | 2400                                        | 2500                                        | 2600                                   | 2700                                   | 2800                                   | 2900                                   | 3000                                        | 3100                                        | 3200                                        | 3300                                   | 3400                                   |
| JAPAN_LL #1                                                                                                              | 346                                         | 363                                         | 381                                         | 399                                         | 407                                         | 416                                         | 473                                         | 573                                    | 658                                    | 683                                    | 708                                    | 732                                         | 757                                         | 782                                         | 807                                    | 831                                    |
| OTHER_ATL_LL # 2                                                                                                         | 192                                         | 199                                         | 207                                         | 215                                         | 219                                         | 223                                         | 227                                         | 227                                    | 227                                    | 234                                    | 241                                    | 248                                         | 255                                         | 263                                         | 270                                    | 277                                    |
| GOM_US_MEX_LL # 3                                                                                                        | 116                                         | 122                                         | 128                                         | 134                                         | 137                                         | 140                                         | 143                                         | 143                                    | 156                                    | 162                                    | 168                                    | 174                                         | 180                                         | 186                                         | 191                                    | 197                                    |
| JPNLL_GOM #4                                                                                                             | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| USA_CAN_PSFS # 5                                                                                                         | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| USA_CAN_PSFB #6                                                                                                          | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| USA_TRAP #7                                                                                                              | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| CAN_TRAP #8                                                                                                              | 3                                           | 3                                           | 3                                           | 3                                           | 3                                           | 3                                           | 3                                           | 3                                      | 3                                      | 3                                      | 3                                      | 4                                           | 4                                           | 4                                           | 4                                      | 4                                      |
| USA_CAN_HARPOON (op1)                                                                                                    | 103                                         | 109                                         | 114                                         | 119                                         | 122                                         | 125                                         | 127                                         | 127                                    | 127                                    | 132                                    | 137                                    | 142                                         | 147                                         | 151                                         | 156                                    | 161                                    |
| USA_RRFS #11                                                                                                             | 150                                         | 158                                         | 166                                         | 173                                         | 177                                         | 181                                         | 185                                         | 185                                    | 185                                    | 192                                    | 199                                    | 206                                         | 213                                         | 220                                         | 227                                    | 234                                    |
| USA_RRFB #12                                                                                                             | 762                                         | 801                                         | 840                                         | 879                                         | 898                                         | 918                                         | 938                                         | 938                                    | 939                                    | 975                                    | 1,010                                  | 1,045                                       | 1,081                                       | 1,116                                       | 1,151                                  | 1,187                                  |
| CAN_SWNS_HLnoHP #14 (op1)                                                                                                | 76                                          | 80                                          | 84                                          | 88                                          | 90                                          | 91                                          | 94                                          | 94                                     | 93                                     | 97                                     | 100                                    | 104                                         | 108                                         | 111                                         | 115                                    | 118                                    |
| CAN_GSL_HL # 16                                                                                                          | 252                                         | 264                                         | 277                                         | 290                                         | 296                                         | 303                                         | 310                                         | 310                                    | 310                                    | 321                                    | 333                                    | 344                                         | 356                                         | 368                                         | 379                                    | 391                                    |
| CAN_acoustic_GSL #17                                                                                                     | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
|                                                                                                                          |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                        |                                        |                                        |                                        |                                             |                                             |                                             |                                        |                                        |
|                                                                                                                          |                                             |                                             |                                             |                                             |                                             |                                             |                                             | TA                                     | C                                      |                                        |                                        |                                             |                                             |                                             |                                        |                                        |
| Fleet                                                                                                                    | 3500                                        | 3600                                        | 3700                                        | 3800                                        | 3900                                        | 4000                                        | 4100                                        | 4200                                   | 4300                                   | 4400                                   | 4500                                   | 4600                                        | 4700                                        | 4800                                        | 4900                                   | 5000                                   |
| JAPAN_LL #1                                                                                                              | 856                                         | 881                                         | 905                                         | 930                                         | 955                                         | 980                                         | 1,004                                       | 1,029                                  | 1,054                                  | 1,079                                  | 1,103                                  | 1,128                                       | 1,153                                       | 1,178                                       | 1,202                                  | 1,227                                  |
| OTHER_ATL_LL # 2                                                                                                         | 284                                         | 291                                         | 298                                         | 305                                         | 312                                         | 319                                         | 326                                         | 334                                    | 341                                    | 348                                    | 355                                    | 362                                         | 369                                         | 376                                         | 383                                    | 390                                    |
| GOM_US_MEX_LL # 3                                                                                                        | 203                                         | 209                                         | 215                                         | 220                                         | 226                                         | 232                                         | 238                                         | 244                                    | 250                                    | 255                                    | 261                                    | 267                                         | 273                                         | 279                                         | 284                                    | 290                                    |
| JPNLL_GOM #4                                                                                                             | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| USA_CAN_PSFS #5                                                                                                          | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| USA_CAN_PSFB #6                                                                                                          | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      |
| LISA TRAP #7                                                                                                             | -                                           |                                             |                                             | -                                           |                                             | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 1                                           | 1                                           | 1                                      | 1                                      |
| 00/11/0/11                                                                                                               | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                           | 0                                      | 0                                      | 0                                      | 0                                      | 0                                           | 1                                           | 1                                           | T                                      |                                        |
| CAN_TRAP #8                                                                                                              | 0<br>4                                      | 0<br>4                                      | 0<br>4                                      | 0<br>4                                      | 0<br>5                                      | 5                                           | 5                                           | 5                                      | 5                                      | 5                                      | 5                                      | 5                                           | 6                                           | 6                                           | 6                                      | 6                                      |
| CAN_TRAP # 8<br>USA_CAN_HARPOON (op1)                                                                                    | 0<br>4<br>166                               | 0<br>4<br>170                               | 0<br>4<br>175                               | 0<br>4<br>180                               | 0<br>5<br>185                               | 5<br>190                                    | 5<br>194                                    | 5<br>199                               | 5<br>204                               | 5<br>209                               | 5<br>214                               | 5<br>218                                    | 6<br>223                                    | 6<br>228                                    | 6<br>233                               | 6<br>238                               |
| CAN_TRAP # 8<br>USA_CAN_HARPOON (op1)<br>USA_RRFS # 11                                                                   | 0<br>4<br>166<br>241                        | 0<br>4<br>170<br>248                        | 0<br>4<br>175<br>255                        | 0<br>4<br>180<br>262                        | 0<br>5<br>185<br>269                        | 5<br>190<br>276                             | 5<br>194<br>283                             | 5<br>199<br>290                        | 5<br>204<br>297                        | 5<br>209<br>304                        | 5<br>214<br>311                        | 5<br>218<br>318                             | 6<br>223<br>324                             | 6<br>228<br>331                             | 6<br>233<br>338                        | 6<br>238<br>345                        |
| CAN_TRAP # 8<br>USA_CAN_HARPOON (op1)<br>USA_RRFS # 11<br>USA_RRFB # 12                                                  | 0<br>4<br>166<br>241<br>1,222               | 0<br>4<br>170<br>248<br>1,257               | 0<br>4<br>175<br>255<br>1,292               | 0<br>4<br>180<br>262<br>1,328               | 0<br>5<br>185<br>269<br>1,363               | 5<br>190<br>276<br>1,398                    | 0<br>5<br>194<br>283<br>1,434               | 5<br>199<br>290<br>1,469               | 5<br>204<br>297<br>1,504               | 5<br>209<br>304<br>1,540               | 5<br>214<br>311<br>1,575               | 5<br>218<br>318<br>1,610                    | 6<br>223<br>324<br>1,646                    | 6<br>228<br>331<br>1,681                    | 6<br>233<br>338<br>1,716               | 6<br>238<br>345<br>1,752               |
| CAN_TRAP # 8<br>USA_CAN_HARPOON (op1)<br>USA_RRFS # 11<br>USA_RRFB # 12<br>CAN_SWNS_HLnoHP # 14 (op1)                    | 0<br>4<br>166<br>241<br>1,222<br>122        | 0<br>4<br>170<br>248<br>1,257<br>125        | 0<br>4<br>175<br>255<br>1,292<br>129        | 0<br>4<br>180<br>262<br>1,328<br>132        | 0<br>5<br>185<br>269<br>1,363<br>136        | 5<br>190<br>276<br>1,398<br>139             | 0<br>5<br>194<br>283<br>1,434<br>143        | 5<br>199<br>290<br>1,469<br>146        | 5<br>204<br>297<br>1,504<br>150        | 5<br>209<br>304<br>1,540<br>153        | 5<br>214<br>311<br>1,575<br>157        | 5<br>218<br>318<br>1,610<br>160             | 6<br>223<br>324<br>1,646<br>164             | 6<br>228<br>331<br>1,681<br>167             | 6<br>233<br>338<br>1,716<br>171        | 6<br>238<br>345<br>1,752<br>174        |
| CAN_TRAP # 8<br>USA_CAN_HARPOON (op1)<br>USA_RRFS # 11<br>USA_RRFB # 12<br>CAN_SWNS_HLnoHP # 14 (op1)<br>CAN_GSL_HL # 16 | 0<br>4<br>166<br>241<br>1,222<br>122<br>403 | 0<br>4<br>170<br>248<br>1,257<br>125<br>414 | 0<br>4<br>175<br>255<br>1,292<br>129<br>426 | 0<br>4<br>180<br>262<br>1,328<br>132<br>438 | 0<br>5<br>185<br>269<br>1,363<br>136<br>449 | 0<br>5<br>190<br>276<br>1,398<br>139<br>461 | 0<br>5<br>194<br>283<br>1,434<br>143<br>472 | 5<br>199<br>290<br>1,469<br>146<br>484 | 5<br>204<br>297<br>1,504<br>150<br>496 | 5<br>209<br>304<br>1,540<br>153<br>507 | 5<br>214<br>311<br>1,575<br>157<br>519 | 0<br>5<br>218<br>318<br>1,610<br>160<br>531 | 1<br>6<br>223<br>324<br>1,646<br>164<br>542 | 1<br>6<br>228<br>331<br>1,681<br>167<br>554 | 6<br>233<br>338<br>1,716<br>171<br>566 | 6<br>238<br>345<br>1,752<br>174<br>577 |

0

| Table 7. The allocated catch by | Fleet in Stock Synthesis model in the sho | ort-term projection by TAC (2000 – |
|---------------------------------|-------------------------------------------|------------------------------------|
| 5000 t).                        |                                           |                                    |

| Modolo           | maturity | Y        | eild at F0.1 | Slectivity for |                      |  |
|------------------|----------|----------|--------------|----------------|----------------------|--|
| INIOUEIS         | scenario | 2022     | 2023         | 2024           | calculation the F0.1 |  |
| 2020 Base Case   | late     | 1761.6   | 1669.28      | 1611.95        |                      |  |
| 2020 Base Case   | early    | 1756.1   | 1663.77      | 1606.43        | 2016-2018            |  |
| 2020 Base Case   | average  | 1758.85  | 1666.525     | 1609.19        |                      |  |
| 2021 continuity  | late     | 2539.74  | 2480.69      | 2447.54        |                      |  |
| 2021 continuity  | early    | 2540.69  | 2481.39      | 2448.16        | 2018-2020            |  |
| 2021 continuity  | average  | 2540.215 | 2481.04      | 2447.85        |                      |  |
| 2021 prototype   | late     | 2461.87  | 2502.74      | 2604.21        |                      |  |
| 2021 prototype   | early    | 2465.87  | 2505.94      | 2606.09        | 2005-2008            |  |
| 2021 prototype   | average  | 2463.87  | 2504.34      | 2605.15        |                      |  |
| 2021 Final model | late     | 3797.04  | 3765.91      | 3812.32        |                      |  |
| 2021 Final model | early    | 3623     | 3599.37      | 3649.17        | 2005-2008            |  |
| 2021 Final model | average  | 3710.02  | 3682.64      | 3730.745       |                      |  |
| 2021 prototype   | late     | 2514.2   | 2455.03      | 2511.13        |                      |  |
| 2021 prototype   | early    | 2520.28  | 2461.11      | 2516.12        | 2018-2020            |  |
| 2021 prototype   | average  | 2517.24  | 2458.07      | 2513.625       |                      |  |
| 2021 Final model | late     | 4036.97  | 3792.36      | 3750.54        |                      |  |
| 2021 Final model | early    | 3855.16  | 3632.61      | 3599.3         | 2018-2020            |  |
| 2021 Final model | average  | 3946.065 | 3712.485     | 3674.92        |                      |  |

# **Table 8.** Projected yield at F<sub>0.1</sub> for the period between 2022 and 2024 based on the 2020 base case, 2021 continuity run, 2021 prototype and the 2021 final model, using several assumptions on selectivity.

## **Table 9.** Comparisons of projected yield at F<sub>0.1</sub> for the period between 2022 and 2024 among models.

| Effecte                                      |                       | Year      |                  |           |      |      |      |
|----------------------------------------------|-----------------------|-----------|------------------|-----------|------|------|------|
| Lifects                                      | Model and selectivity |           | Model and se     | 2022      | 2023 | 2024 |      |
| Change due to additional year (2020)         | 2020 Base Case        | 2016-2018 | 2021 continuity  | 2018-2020 | 144% | 149% | 152% |
| Change due to new Indices                    | 2021 prototype*       | 2018-2020 | 2021 continuity  | 2018-2020 | 99%  | 99%  | 103% |
| Change due to new data and model assumptions | 2021 Final model      | 2005-2008 | 2021 prototype*  | 2005-2008 | 151% | 147% | 143% |
| Change in selectivity impact due to F0.1     | 2021 Final model      | 2018-2020 | 2021 Final model | 2005-2008 | 106% | 101% | 99%  |
| *noted diagnostic issues with protoype       |                       |           |                  |           |      |      |      |



**Figure 1. VPA.** Estimates of bluefin tuna recruitment in the West Atlantic by stepwise model iteration (moving down by column in each step) from the continuity to the proposed base model. The black line shows the updated run in each step, the blue lines shows the run from the previous step, and the gray lines show all other prior runs.



**Figure 2. VPA** Spawning stock biomass (upper panels) and recruitment estimates (age 1, lower panels) by the 2021 Continuity runs (black lines) for late (left panels) and early maturity (right panels) scenarios of bluefin tuna in the West Atlantic compared to the 2020 assessment (blue lines)





**Figure 3. VPA.** Index jackknife effects on estimates of bluefin tuna in the West Atlantic by the 2021 base case. Recruitment (left panel) and spawning stock biomass (right panel, early maturity scenario).

**Figure 4. VPA.** Retrospective estimates of bluefin tuna in the West Atlantic by the 2021 base case. Recruitment (left panel) and spawning stock biomass (early maturity scenario, right panel).



**Figure 5. VPA.** Residual error to handline (Canada GSL, Canada SWNS, and US RR>177cm) indices and the GSL acoustic index.



**Figure 6 Stock Synthesis.** Observed length composition since 1990 by Canadian handline in the GSL, and estimated mean length (blue line) in the model.



**Figure 7.** Results of log-likelihood (Left), SSB (center), and recruitment (age0, Right) by the jitter analysis for the final models for late maturity scenario.



**Figure 8.** Results of log-likelihood (Left), SSB (center), and recruitment (age0, Right) by the jitter analysis for the final models for early maturity scenario.



**Figure 9.** Likelihood profiles (Left) by (a) R0, (b) steepness and (c) sigmaR and resulting SSB (Center) and recruitment (Right) trends for the final model for late maturity scenario.



**Figure 10.** Likelihood profiles (Left) by (a) R0, (b) steepness and (c) sigmaR and resulting SSB (Center) and recruitment (Right) trends for the final model for early maturity scenario.



Figure 11. Fits to each CPUE index for the final model for late maturity scenario.



Figure 12. Fits to each CPUE index for the final model for early maturity scenario.



Figure 13. Fits to length composition data over all years for the final model for late maturity scenario.



Figure 14. Fits to length composition data over all years for the final model for early maturity scenario.



**Figure 15.** Time series of Pearson residuals on the length composition data by fleets for the final model for late maturity scenario.



Figure 15. Continued.



**Figure 16.** Time series of Pearson residuals on the length composition data by fleets for the final model for early maturity scenario.



Figure 16. Continued.



(a) late maturity scenario

**Figure 17.** Retrospective plots of SSB (t) and recruitment (age 0, thousand fish) trends for the final models for (a) late and (b) early maturity scenarios. Upper panels are for the whole assessment period between 1950 and 2020, and lower panels show the period after 2000.



**Figure 18.** SSB (Left) and recruitment (age0, Right) by jackknife analysis regarding abundance indices for the final models for (a) late and (b) early maturity scenarios.



**Figure 19.** Results of SSB and recruitment trends came from original runs (red line) and 100 bootstrap replicates (gray line) for the final models for (a) late and (b) early maturity scenarios. (optional)



**Figure 20**. Results of the distribution of 3 parameter estimates related to Stock-Recruitment relationship came (optional) from 100 bootstraps replicates for the final models for (a) late and (b) early maturity scenarios, ln(R0) (left), steepness (middle) and sigmaR (Right). Red line shows the estimates in original run without data perturbation.



Figure 21. Estimated selectivity at end year by fleet for the final model for late maturity scenario.



**Figure 22.** The comparison plots of time series of SSB (top left), recruitment (top right), biomass ratio to unfished levels (bottom left) and fishing mortality (bottom right) between the final models for late (blue) and early (orange) maturity scenarios.



Figure 23. Estimated fishing mortality at age between 2018 and 2020, and its average (black line).



**Figure 24.** The comparison plot of time series of SSB (top left), recruitment (top right), biomass ratio to unfished levels (bottom left) and fishing mortality (bottom right) for the 2020 base case model, 2021 continuity run, 2021 prototype, and the 2021 final model for late maturity scenario.



**Figure 25.** Comparisons of (a) total biomass, (b)recruitment, and (c) fishing mortality by Stock Synthesis among 2017 (green), 2020 (orange), and 2021 (black) stock assessments for West bluefin tuna. The combined results for both maturity scenarios are shown. (a) 1950-2024



**Figure 26**. Projected total stock biomass (mt) of bluefin tuna in the West Atlantic under alternative constant catch scenarios, averaged across maturity specifications for Stock Synthesis. The deterministic model runs are averaged across both maturity specifications. (a) Upper panel: 1950-2024, (b) lower panel: zoomed in to 2015 to 2024.

#### Appendix 1

#### Agenda

- 1. Opening, adoption of agenda and meeting arrangements
- 2. Model diagnostics

2.1 VPA

2.2 Stock Synthesis

3. Assessment results

3.1 VPA

3.2 Stock Synthesis

- 4. Projections and management advice
- 5. Other matters
- 6. Adoption of the report and closure

## Appendix 2

#### **List of Participants**

#### **CONTRACTING PARTIES**

#### CANADA

Duprey, Nicholas

Senior Science Advisor, Fisheries and Oceans Canada - Fish Population Science, Government of Canada, 200-401 Burrard Street, Vancouver, BC V6C 3R2

Tel: +1 604 499 0469; +1 250 816 9709, E-Mail: nicholas.duprey@dfo-mpo.gc.ca

#### Gillespie, Kyle

Fisheries and Oceans Canada, St. Andrews Biological Station, Population Ecology Division, 125 Marine Science Drive, St. Andrews, New Brunswick, E5B 0E4 Tel: +1 506 529 5725, Fax: +1 506 529 5862, E-Mail: kyle.gillespie@dfo-mpo.gc.ca

#### Hanke, Alexander

Scientist, St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St. Andrews, New Brunswick E5B 2L9

Tel: +1 506 529 5912, Fax: +1 506 529 5862, E-Mail: alex.hanke@dfo-mpo.gc.ca

## **EUROPEAN UNION**

#### Arrizabalaga, Haritz

Principal Investigator, AZTI Marine Research Basque Research and Technology Alliance (BRTA), Herrera Kaia Portualde z/g, 20110 Pasaia, Gipuzkoa, España Tel: +34 94 657 40 00; +34 667 174 477, Fax: +34 94 300 48 01, E-Mail: harri@azti.es

#### Di Natale, Antonio

Director, Aquastudio Research Institute, Via Trapani 6, 98121 Messina, Italy Tel: +39 336 333 366, E-Mail: adinatale@costaedutainment.it; adinatale@acquariodigenova.it

#### Gordoa, Ana

Senior scientist, Centro de Estudios Avanzados de Blanes (CEAB - CSIC), Acc. Cala St. Francesc, 14, 17300 Blanes, Girona, España

Tel: +34 972 336101; +34 666 094 459, E-Mail: gordoa@ceab.csic.es

#### Pierucci, Andrea

University of Cagliari, 09126 Cagliari, Italy Tel: +39 328 651 6025, E-Mail: andrea.pierucci@hotmail.it

#### Rodríguez-Marín, Enrique

Ministerio de Ciencia, Innovación y Universidades, Instituto Español de Oceanografía, C.O. de Santander, Promontorio de San Martín s/n, 39004 Santander, Cantabria, España Tel: +34 942 291 716, Fax: +34 942 27 50 72, E-Mail: enrique.rmarin@ieo.es

#### Rouyer, Tristan

Ifremer - Dept Recherche Halieutique, B.P. 171 - Bd. Jean Monnet, 34200 Sète, Languedoc Rousillon, France Tel: +33 782 995 237, E-Mail: tristan.rouyer@ifremer.fr

#### JAPAN

**Butterworth**, Douglas S. Emeritus Professor, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa Tel: +27 21 650 2343, E-Mail: doug.butterworth@uct.ac.za

#### Daito, Jun

Chief, Japan Tuna Fisheries Co-operative Association, 31-1, Eitai 2-Chome, Koto-ku, Tokyo 135-0034 Tel: +81 356 462 382, Fax: +81 356 462 652, E-Mail: daito@japantuna.or.jp

#### Fukuda, Hiromu

Head of Group, Highly Migratory Resources Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, 234-8648 Tel: +81 45 788 7936, E-Mail: fukudahiromu@affrc.go.jp

#### Miura, Nozomu

Assistant Director, International Division, Japan Tuna Fisheries Co-operative Association, 2-31-1 Eitai Koto-ku, Tokyo 135-0034 Tal. 191.2 E646 2282 Faw, 191.2 E646 2652 F. Mail, miura@ianantuna.or.in.guoiva@ianantuna.or.in.

Tel: +81 3 5646 2382, Fax: +81 3 5646 2652, E-Mail: miura@japantuna.or.jp; gyojyo@japantuna.or.jp

#### Nakatsuka, Shuya

Deputy Director, Highly Migratory Resources Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanazawa Kanagawa, 236-8648 Tel: +81 45 788 7950, E-Mail: snakatsuka@affrc.go.jp

#### Rademeyer, Rebecca

Marine Resource Assessment and Management Group, Department of Mathematics and Applied Mathematic -University of Cape Town, Private Bag, 7700 Rondebosch, South Africa Tel: +651 300 442, E-Mail: rebecca.rademeyer@gmail.com

#### Tsukahara, Yohei

ScientistHighly Migratory Resources Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Highly Migratory Resources Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanagawa, Yokohama, Shizuoka Shimizu-ku 236-8648 Tel: +81 45 788 7937, Fax: +81 54 335 9642, E-Mail: tsukahara\_y@affrc.go.jp

#### **Uozumi**, Yuji

Adviser, Japan Tuna Fisheries Co-operation Association, Japan Fisheries Research and Education Agency, 31-1 Eitai Chiyodaku, Tokyo Koutou ku Eitai 135-0034 Tol: +81 3 5646 2380 Fax: +81 3 5646 2652 F Mail: uozumi@ianantuna.or.in

Tel: +81 3 5646 2380, Fax: +81 3 5646 2652, E-Mail: uozumi@japantuna.or.jp

#### MEXICO

#### Ramírez López, Karina

Instituto Nacional de Pesca y Acuacultura, Centro Regional de Investigación Acuícola y Pesquera - Veracruz, Av. Ejército Mexicano No.106 - Colonia Exhacienda, Ylang Ylang, C.P. 94298 Boca de Río, Veracruz Tel: +52 5538719500, Ext. 55756, E-Mail: kramirez\_inp@yahoo.com

#### MOROCCO

#### Abid, Noureddine

Chercheur et ingénieur halieute au Centre Régional de recherche Halieutique de Tanger, Responsable du programme de suivi et d'étude des ressources des grands pélagiques, Centre régional de l'INRH à Tanger/M'dig, B.P. 5268, 90000 Drabed, Tanger

Tel: +212 53932 5134; +212 663 708 819, Fax: +212 53932 5139, E-Mail: noureddine.abid65@gmail.com

## **UNITED STATES**

**Brown**, Craig A. Chief, Highly Migratory Species Branch, Sustainable Fisheries Division, NOAA Fisheries Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149 Tel: +1 305 586 6589, Fax: +1 305 361 4562, E-Mail: craig.brown@noaa.gov

#### Cadrin, Steven Xavier

Associate Professor, SMAST - University of Massachusetts, School for Marine Science & Technology, Department of Fisheries Oceanography, 836 South Rodney French Blvd, Fairhaven, MA 02744 Tel: +1 508 910 6358, Fax: +1 508 910 6374, E-Mail: scadrin@umassd.edu

#### Hansell, Alexander

Postdoctoral Researcher, Gulf of Maine Research Institute, 350 Commercial St, Portland ME 04101 Tel: +1 (207) 772-2321 Ext. 1620; +1 617 640 0895, E-Mail: alex.hansell@noaa.gov; ahansell@gmri.org

#### Kerr, Lisa

Gulf of Maine Research Institute, 350 Commercial Street, Portland ME 04101 Tel: +1 301 204 3385; +1 207 228 1639, E-Mail: lkerr@gmri.org

#### Lauretta, Matthew

Fisheries Biologist, NOAA Fisheries Southeast Fisheries Center, 75 Virginia Beach Drive, Miami, Florida 33149 Tel: +1 305 361 4481, E-Mail: matthew.lauretta@noaa.gov

#### Schalit, David

President, American Bluefin Tuna Association, 176 Mulberry Street - 4th floor, New York 10013 Tel: +1 917 573 7922, E-Mail: dschalit@gmail.com

#### Walter, John

Research Fishery Biologist, NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149 Tel: +305 365 4114; +1 804 815 0881, Fax: +1 305 361 4562, E-Mail: john.f.walter@noaa.gov

#### Weiner, Chris

33 Park Street, #4, Portland, Maine 04101 Tel: +1 978 886 0204, E-Mail: chrisweiner14@gmail.com

#### Weiner, Stephen

PO Box 465, Maine Ogunquit 03907 Tel: +1 978 764 3637, E-Mail: weinersb@gmail.com

#### **OBSERVERS FROM NON-GOVERNMENTAL ORGANIZATIONS**

#### **PEW CHARITABLE TRUSTS - PEW**

**Galland**, Grantly Officer, Pew Charitable Trusts, 901 E Street, NW, Washington, DC 20004, United States Tel: +1 202 540 6953; +1 202 494 7741, Fax: +1 202 552 2299, E-Mail: ggalland@pewtrusts.org

#### THE OCEAN FOUNDATION

**Miller**, Shana The Ocean Foundation, 1320 19th St., NW, 5th Floor, Washington, DC 20036, United States Tel: +1 631 671 1530, E-Mail: smiller@oceanfdn.org

#### SCRS CHAIRMAN

**Melvin**, Gary SCRS Chairman, St. Andrews Biological Station - Fisheries and Oceans Canada, Department of Fisheries and Oceans, 285 Water Street, St. Andrews, New Brunswick E5B 1B8, Canada Tel: +1 506 652 95783, E-Mail: gary.d.melvin@gmail.com; gary.melvin@dfo-mpo.gc.ca

#### SCRS VICE-CHAIRMAN

#### Coelho, Rui

Researcher, SCRS Vice-Chairman, Portuguese Institute for the Ocean and Atmosphere, I.P. (IPMA), Avenida 5 de Outubro, s/n, 8700-305 Olhão, Portugal Tel: +351 289 700 504, E-Mail: rpcoelho@ipma.pt

#### INVITED EXPERT Maunder, Mark Inter-American Tropical Tuna Commission - IATTC, 8901, La Jolla 92037-1509, United States Tel: +1 858 546 7100, E-Mail: mmaunder@iattc.org

\*\*\*\*

## **ICCAT Secretariat**

C/ Corazón de María 8 – 6th floor, 28002 Madrid – Spain Tel: +34 91 416 56 00; Fax: +34 91 415 26 12; E-mail: info@iccat.int

Manel, Camille Jean Pierre Neves dos Santos, Miguel Ortiz, Mauricio Taylor, Nathan Kimoto, Ai

# Appendix 3

# List of Papers and Presentations

| Number        | Title                                                                                                                                    | Authors                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| SCRS/2021/139 | West Atlantic bluefin tuna Virtual Population<br>Analysis                                                                                | Lauretta M., Kimoto A., Rouyer<br>T., Ortiz M., and Walter J.  |
| SCRS/2021/140 | Western Atlantic bluefin tuna stock assessment<br>1950-2020 using Stock Synthesis: part I. model<br>specification and input data         | Tsukahara Y., Walter J., Fukuda<br>H., Kimoto A., and Ortiz M. |
| SCRS/2021/141 | Western Atlantic bluefin tuna stock assessment<br>1950-2020 using Stock Synthesis: part II.<br>model diagnostics, results and projection | Tsukahara Y., Walter J., Fukuda<br>H., Kimoto A., and Ortiz M. |
| SCRS/2021/143 | Short-term constant catch projections for the<br>Atlantic bluefin stocks based on the<br>reconditioned MSE Operating Models              | Butterworth D.S., and<br>Rademeyer R.A.                        |

## SCRS Document and Presentations Abstracts as provided by the authors

*SCRS/2021/139* This report documents the 2021 assessment of the West Atlantic bluefin tuna using virtual population analysis. The SCRS Bluefin Tuna Species Group reviewed the assessment data inputs and work plan via webinar during April 5-13, 2021. We present the base model diagnostics and results, including time series estimates of spawning stock biomass (both young and older spawning scenarios) for the period 1974 to 2020, and recruitment for the period 1974 to 2017. Model diagnostics indicate some problems with the updated model including a severe trend in the residuals for some indices and a strong retrospective bias.

*SCRS/2021/140* This document describes a stock assessment model using Stock Synthesis (version 3.30) for the Western Atlantic population of Bluefin tuna. The model runs from 1950 to 2020 and was fit to length composition data, conditional length at age (otolith age-length pairs input as an age-length key), 12 indices and 13 fishing fleets. Growth was internally estimated in the model and natural mortality was scaled with a Lorenzen function. These input and model settings were slightly changed from those used in 2020 except relative abundance indices in accordance with the request from ICCAT Commission. Two models (early and late maturity) were used for advice in 2017 and the same are retained here. The shapes of most selectivity were changed from asymptotic to dome shape to improve the convergence of the models and to reduce the conflict among the data sources, which was mainly due to the conflict among the indices. The trend of spawning stock biomass and recruitment are similar to previous one, while the biomass level was obviously different. These results will combine with those came from VPA analysis for the management recommendation in this year.

*SCRS/2021/141* This document describes a stock assessment model using Stock Synthesis (version 3.30.14) for the Western Atlantic population of Bluefin tuna. This document describes model diagnostics and initial results derived from proposed settings for 2021 assessment. The diagnostics result showed relatively better performance with some negative signs that those in 2020 assessment, while some problems remained as it was in the last assessment. The two model runs showed very similar behavior with the stock decreasing during the 1970s, remaining relatively low during the 1980-2000 period and showing a pattern of steady population growth since 2000. This document also describes projection settings and stock status based on F based reference point, F0.1, which is estimated from the YPR curve in assessment result. Current F during 2018-2020 was below the F0.1, hence the stock was not subject to be overfishing. It is also showed that the probability which is that F<F0.1 under several constant catch scenarios for management advice.

*SCRS/2021/143* The reconditioned MSE Operating Models (OMs) for the Atlantic bluefin stocks are used to provide estimates of the trend in spawning biomasses of the two stocks of origin under a continuation of the current west area TAC of 2350 t for 2022 (and also for the next three years under this and two lower TAC levels). The purpose is to complement results under preparation from refined and updated conventional assessment methods. The result is a median (across the OMs) increase in the spawning biomass of the western stock of 6% from 2022 to 2023, with a 21% probability of a decrease. The median for the eastern stock also increases, and results are similar for the next few years. The advantages and disadvantages of this approach compared to the conventional area-based assessment methods are discussed briefly.