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ECOTEST PHASE I11: SIMULATION TESTING ECOSYSTEM INDICATORS
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SUMMARY

A multi-species, multi-fleet operating model was developed for the North Atlantic longline fishery
including two primary species (swordfish and bigeye tuna) and four secondary species (blue
shark, shortfin mako shark, white marlin, blue marlin). The operating model was used to generate
a wide range of future exploitation scenarios for the various species. Posterior predicted data
were generated from data series typically available for secondary species such as length
composition data, catch data and recent nominal catch rate data. These data series were
processed to generate quantities that could be correlated against known simulated target
variables such as spawning biomass relative to MSY levels. Artificial neural networks were
trained on posterior predicted data to identify whether the data contain sufficient information to
estimate spawning biomass relative to MSY levels. Early evaluations suggest that typical data
contain sufficient information to reliably estimate stock status even for secondary species if data
types such as catch ratios and catch correlations are provided across multiple species.

RESUME

Un modele opérationnel multi-espéces et multi-flottilles a été développé pour la pécherie
palangriere de I'Atlantique Nord comprenant deux espéces principales (espadon et thon obese)
et quatre espéeces secondaires (requin peau bleue, requin-taupe bleu, makaire blanc, makaire
bleu). Le modeéle opérationnel a été utilisé pour générer un large éventail de scénarios
d'exploitation futurs pour les différentes especes. Les données prédites a posteriori ont été
générées a partir de séries de données genéralement disponibles pour les espéces secondaires,
telles que les données de composition des longueurs, les données de capture et les récentes
données sur les taux de capture nominale. Ces séries de données ont été traitées pour générer
des quantités pouvant étre mises en corrélation avec des variables cibles simulées connues, telles
que la biomasse reproductive par rapport aux niveaux de la PME. Des réseaux neuronaux
artificiels ont été entrainés sur les données prédites a posteriori afin de déterminer si les données
contiennent suffisamment d'informations pour estimer la biomasse reproductive par rapport aux
niveaux de la PME. Les premieres évaluations suggerent que les données typiques contiennent
suffisamment d'informations pour estimer de maniere fiable l'état des stocks, méme pour les
espéeces secondaires, si des types de données tels que les ratios de capture et les corrélations de
capture sont fournis pour plusieurs especes.

RESUMEN

Se desarrollo un modelo operativo multiespecifico y multiflota para la pesqueria de palangre del
Atlantico norte, que incluye dos especies principales (pez espada y patudo) y cuatro secundarias
(tiburon azul, marrajo dientuso, aguja blanca y aguja azul). El modelo operativo se utilizo para
generar una amplia gama de escenarios futuros de explotacion de las distintas especies. Los
datos pronosticados a posteriori se generaron a partir de series de datos habitualmente
disponibles para especies secundarias, como datos de composicion por tallas, datos de capturas
ydatos recientes de tasa de capturas nominales. Estas series de datos se procesaron para generar
cantidades que pudieran correlacionarse con variables objetivo-simuladas conocidas, como la
biomasa reproductora con respecto a los niveles de RMS. Se entrenaron redes neuronales
artificiales con datos de prediccion a posteriori para identificar si los datos contienen suficiente
informacion para estimar la biomasa reproductora con respecto a los niveles de RMS. Las
primeras evaluaciones sugieren que los datos tipicos contienen suficiente informacion para
estimar de forma fiable el estado de los stocks, incluso para especies secundarias, si se facilitan
tipos de datos como ratios de capturas y correlaciones de capturas de varias especies.

1 Blue Matter Science Ltd. 2150 Bridgman Ave, N. Vancouver. V7P 2T9.
2 |CCAT Secretariat.
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Introduction
Ecosystem Evaluation

For many regional fisheries management organizations (RFMOSs), there is a need for rigorous science to inform
decision makers in support of Ecosystem Based Fisheries Management (EBFM). Critical issues include the use of
untested ecosystem indicators and the need for tactical advice that accounts for exploitation of bycatch species.
Fundamentally, stock assessments of individual species do not usually account for the impact of proposed
management strategies for target species on associated bycatch species. These include both non-commercial
bycatch species such as birds and turtles, and also commercial species that are avoided by some sectors of the
fishery yet targeted in others, such as sharks and billfishes. A well-documented, defensible and transparent
framework is needed to support tactical decision making to move beyond the single species assessment paradigm
and make progress towards the essential goals of EBFM.

In the absence of defensible stock assessments for many bycatch species, ICCAT and other tuna-RFMOs are
exploring a system of indicators for EBFM, such as the Ecosystem Report Card. While it can be problematic to
assume that indicators such as catch per unit effort (CPUE) are representative of any underlying stock dynamics
(Hilborn and Walters 1992), the problems that leads to CPUE being unrepresentative can be even more pronounced
in the case of bycatch species or of communities (Maunder et al., 2006). Few of these indicators have been tested
to ensure that they are expected to be informative and sufficiently responsive to changes in the status and
exploitation levels of those species in question.

ICCAT’s Convention and Resolution 15-11 commit ICCAT to apply the precautionary approach and an ecosystem
approach on fisheries management (EAFM). To implement this commitment, ICCAT’s Subcommittee of
Ecosystems and Bycatch is developing an Ecosystem Report Card (EcoCard) as a tool for monitoring the impacts
of ICCAT fisheries (Juan-Jorda et al. 2018). It consists of a set of proposed indicators that may be informative
with regard to the sustainability of species or stocks and how their fishing impacts on ecosystem structure and
function.

A major gap in EAFM implementation where indicator systems are employed is validation to ensure ecosystem
indicators are representative and responsive to population dynamics changes. Without such validation, such
indicators are impossible to interpret. So, it is important to establish plausible scenarios for ecosystem dynamics
to evaluate when indicators detect population dynamics changes and when they are spurious. For example,
decreasing bycatch rates may be driven by either declines in the underlying bycatch population size or changes in
fleet distribution in search of target species or vice versa. Even if such indicators were validated, ecosystem report
cards provide no guidance about an appropriate responsive management strategy. As a result, operationalizing
initiatives related to EAFM using indicator systems could prove challenging.

EcoTest Problem Statement

To meet the requirements of the precautionary approach and the ecosystem approach to fisheries management, we
require indicators for secondary species that may often be lacking sufficient data or capacity to conduct stock
assessments. These indicators must be theoretically sound and be validated empirically.

Aim

Use simulation modelling to identify data and algorithms that can inform stock status of secondary species and
then validate these empirically in cases where there have been defensible stock assessments.

Progress and Current Phase

Previous work synthesized the dynamics of six stock assessments (Phase 1) and consolidated those into a single
multi-species, multi-fleet operating model (OMs) (Phase 2) (Figure 1) (Huynh et al. 2022).



Phase 3 focuses on developing scenarios for the operating models, producing posterior predicted data, testing
proposed indicators, and identifying new indicators. Posterior predicted data is the Bayesian version of model
checking. Here, we document substantial progress in Phase 3 by demonstrating OM projections, synthesizing
posterior data, processing those data, and then fitting artificial neural networks to estimate stock status and identify
the relative contribution of data types.

Methods
Case study
The North Atlantic longline fishery was selected as a case study on the basis that:

— It has reasonably well documented spatial catch, effort and length composition data for a range of fleets
for both primary and secondary species

— Primary target species (e.g. bigeye tuna and swordfish) and several example secondary species
(sharks, marlins) have documented stock assessments (Table 1, Figure 1) that can be used to construct
initial operating models

— Several secondary species of similar life history to those with assessments may be of conservation
concern.

Further details of the longline case study are provided in Huynh et al. (2022).

Target variables

In this context, ecological indicators aim to either provide a classification or estimate a quantity of interest to
fishery managers. Possible target variables include:

(quantitative)
—  Spawning stock biomass relative to maximum sustainable yield (SSB/SSBwsy or ‘Brel’)
—  Spawning stock biomass relative to equilibrium unfished levels (SSB/SSBO0)
—  Brel relative to the average Brel across species

(qualitative)
— Red (Brel <0.5), Yellow (0.5 < Brel< 1), Green (1 < Brel)
—  Among stocks, this stock has the lowest stock depletion

In this first exploration, we identified Brel as the target variable and used the qualitative cut offs of 0.5 and 1 to
establish the performance of indicators.

Constructing operating models

The six stock assessments were combined into a single multi-stock, multi-fleet operating model in the OpenMSE
(Hordyk et al. 2024) framework. From this basis, it is possible to simulate future scenarios for population dynamics
(e.g. somatic growth, recruitment), data collection (biases, imprecision), and fishing (correlated, uncorrelated
exploitation rates among species, selectivity changes etc). Thus far, constant exploitation rate scenarios have been
tested that vary among the species and are uncorrelated. The next step is to simulate correlated (less challenging)
/ changing exploitation rates (systematic and inter-annual variability which is substantially more challenging)
among species. More than 20,000 iterations were run and posterior predicted data were simulated for each species
and iteration.

Processing posterior predicted data
For each simulation, a projected year was selected at random. The posterior predicted data up to that year were

then processed to provide data inputs to candidate indicator systems. Data were processed to such that they had
mean 0 and standard deviation 1. All fractions or rates were first log-transformed.



Data types and derived quantities available

For most secondary species that are not assessed, the typical data that are available include a catch history, recent
nominal catch per unit effort (e.g. numbers per set), recent catch-size data and a spatial range (at the 5x5 Task 2
data resolution) for catch observations. Based on these data streams various derived quantities were calculated for
each species (Tables 2 and Table 3, Figures 3 and 4).

Artificial neural networks

Artificial neural networks provide a flexible and powerful tool for revealing the information content of data inputs
and designing indicators that have a suitable statistical power to detect conditions of management concern. Using
the R packages Keras, Tensorflow, and Miniconda, sequential artificial neural networks were specified for the
purposes of solving regression problems. Various designs (depths and widths of layers) were explored. A model
with two hidden layers (8 nodes in the first layer, 4 in the second, and therefore 1,897 trainable parameters in total)
was the simplest that provided comparable fit to the training and validation datasets. The model was trained to
predict the true simulated Brel and the stock specific Brel relative to the mean of the other stocks using 244 derived
quantities as inputs (Tables 2 and 3). A total of 18,000 simulations were used for training, another 4,000
simulations for validation (a check as the neural network trains, that the fit to the training set is comparable to the
validation set - it is not overparameterized) and 1,000 for the completely independent testing dataset.

The neural networks could be trained on various configurations / availability of data types. Two conditions were
tested in this initial work: all data inputs (n = 244) and all data inputs excluding the long-term CPUE data and the
spatial model (n = 232) (see Table 4, input data archetypes, below).

Results

The artificial neural networks trained very rapidly and achieved a very good fit to the simulated Brel data in just
20 epochs obtaining a mean absolute error of less than 0.2 (Figure 5).

Given the complete data, the models were remarkably accurate and precise, correctly identifying stock status into
three categories: Red (Brel < 0.5), Yellow (0.5 < Brel < 1) and Green (1 < Brel) in between 80% and 95% of
simulations (Figure 6). Removing the spatial model and the long-term CPUE data reduced this precision (Figure
6), but still allowed for high statistical power, correctly identifying 80% of simulations below 50% Brel in the
example of blue shark (Figure 6).

An Importance Function was developed to calculate the marginal weight of input revealing the information content
of each data source independently (Figure 7). This can reveal the marginal influence of any single data input, but
it does not capture the potentially large influence of an input in combination with levels of other inputs.

Discussion
Research Priority 1: Identify the Target Variable(s) for Ecological Indicators

Without clearly identifying the target variable of an ecological indicator, it is not possible to evaluate the
performance of existing indicators or design new indicators. Examples of target variables include spawning
biomass relative to MSY levels (Brel: overfished / underfished), slope in spawning biomass (or biomass), stock
level relative to other species, fishing mortality rate relative to FMSY (overfishing / underfishing).

Research Priority 2: Identify Levels of Target Variables that are Relevant to Management

It is important to clearly state conditions that are problematic in order to determine the performance of existing or
proposed indicators in terms of, for example statistical power and type | error. This forms the fundamental basis
for designing / refining / rejecting indicator systems. For example, for spawning biomass relative to MSY levels
40% and 50% are often identified as stock levels of conservation concern below which recruitment may be
impaired.



Research Priority 3: Establish Data Archetypes

Secondary species strongly differ in the types of data available and the duration over which such data have been
reported. A critical next step is the development of input data archetypes that represent the most likely
combinations of available data (e.g. Table 4) such that indicators can be developed and performance can be
characterised for each data archetype.

Promising Early Results Using Artificial Neural Networks

By simulating the dynamics of two target species and four secondary species, it was possible to generate a wide
range of posterior predicted data for the testing of candidate indicators of stock status. Neural networks offer a
highly flexible approach for establishing whether, for a given dataset information exists to quantify the target
variable. The accuracy and precision of the neural networks varied depending on the input data available to the
neural network indicators, but in general they performed very well given only nominal CPUE, catch and length
composition data (~80 to 90% classification success rate). This performance is superior to that which can be
typically obtained by simulation testing a correctly specified, data-rich stock assessment model. When only catch
data and length composition data were available, neural networks were still capable of between 70 and 80%
classification success rate.

Stress Tests

The success of the indicators is surprising given that exploitation rates were assumed to be independent among
species. Correlations in exploitation rate can be expected to increase the information content of catch ratios with
respect to relative stock status (CPUEstock1 / CPUEstock2 tends to Csiocki / Cstockz @S the common denominator effort,
becomes comparable). On the other hand, the exploitation rate scenarios of this demonstration were constant and
therefore allowed catch data to inform relative stock level. The neural networks performed similarly well in
updated simulations that included time-varying exploitation rate scenarios that have both interannual error in
exploitation rate and increasing and decreasing overall trends.

The indicators should also be trained on data arising from changing biological conditions such as systematic
changes in somatic growth, natural mortality rate and availability to fishing.

Multivariate Indicators

The sequential neural networks of this research are fitted to the simulated Brel for one stock. However, it is
possible to define multivariate networks that can predict multiple output data simultaneously that could include
F/IFMSY and those metrics across multiple stocks. Investigation of such approaches will come after a full
exploration of the data, information and indicator design for a single species and variable.

Empirical Testing and Ground Truthing

After using the simulation model to identify indicators that are theoretically informative, there are a number of
approaches for testing indicators against assessment models and subject to observed data:

(1) test the performance of the indicators against data-rich stock assessments that are provided with the same
simulated data inputs.

(2) Strip observed time data to do a retrospective analysis of indicator consistency in inference

(3) Apply the indicators to datasets that have been used to conduct defensible stock assessments and compare their
estimates.

All of these steps can also be conducted for any reproducible indicator that has been proposed in the literature.

Large, Generic Simulation

Depending on the success of the indicators for the longline case study, it may be possible to conduct a very large
fishery simulation exercise to identify generic indicator systems that can operate for a wide range of secondary
species such as turtles and sea birds. Such systems would require inputs that allow for differences in the biology,
ecology and fishery interactions among such species and fisheries. If such an indicator can be established it may
be possible (data permitting) to apply it to a very wide range of species in both the Atlantic and other oceans.
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Management Strategy Evaluation of MPs Incorporating Indicators

Ultimately it would be desirable to incorporate the neural network indicators in management procedures that can
be tested for the provision of management advice. These MPs could be tested for robustness to a wide range of
changing ecosystem conditions.

Code and data

All code, models and data used in these analyses are available from the public EcoTest GitHub repository:
https://github.com/Blue-Matter/EcoTest
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Table 1. Documented stock assessments (Stock Synthesis 3) used as the basis for constructing preliminary multi-stock,
multi-fleet operating models for the North Atlantic longline case study (Huynh et al. 2022).

Stock Reference Description

Primary

Bigeye tuna (BET) Anonymous (2021) M = 0.2 and steepness = 0.8

1948 - 2020

North Atlantic Schirripa and Hordyk Base Model (M = 0.2 and steepness =

swordfish (SWO) (2020) 0.75)

1948 - 2017

Secondary

Blue shark (BSH) Courtney (2016) Run 6 (Best convergence diagnostics, less

1969 - 2013 weight to the length composition
likelihood)

Shortfin mako (SMA)  Anonymous (2017), Run 1, steepness = 0.354

1948 - 2016 Courtney et al. (2017)

White marlin (WHM)  Anonymous (2020), Model 6 (Use all CPUE indices except

1954 - 2018 Schirripa (2020) EU_Spain longline, without a catch
multiplier, with variance reweighting)

Blue marlin (BUM) Anonymous (2018), Base Model (M = 0.122 and steepness =

1954 - 2016 Schirripa (2018) 0.50)



Table 2. Time series data from which derived quantities are calculated for use in indicators. Across 6 species, 20
data streams and 5 derived quantities, approximately 226 derived quantities are available.

Species (n = Data Stream (n = 20) Derived quantities (n = 5)
6)
Bigeye tuna Catches Current level / ref. point (e.g.
muL / Linf)
N. Atl. Nominal CPUE Current level / time series
swordfish mean
Blue shark Mean length (muL) Slope over last 5 years

Shortfin mako

Fraction mature

Slope over last 10 years

Catch ratio: Spec. 1/ Spec. 3

Residual correlation between detrended catch Spec. 1
and Spec. 2 (F correlation)

Residual correlation between detrended catch Spec. 1
and Spec. 3 (F correlation)

shark
Blue marlin Variability length Slope over last 20 years
White marlin Catch ratio: Spec. 1/ Spec. 2

Table 3. Additional species attributes/ derived metrics that may be submitted to the neural network.

Metric Description

M/K ratio The ratio of natural mortality rate to von Bertalanffy growth parameter K.
Maximum The oldest age reliably observed in the population

age

Lc/L50 Length at first capture relative to length at 50% mature

LFS/L50 Length at full selection relative to length at 50% mature

L50/ Linf Length at 50% mature relative to asymptotic length

Spatial models

A model that approximates the relationship between stock level and the spatial coverage of

catch or nominal catch per unit effort data.




Table 4. Examples of four data input archetypes.

Archetype

Data stream

Catch data

Recent length composition

Historical length composition

Recent CPUE

Historical CPUE

Spatial model(s)

No spatial

Recent CPUE | Only catch and recent composition
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By Species (BET, SWO, BSH, SMA, WHM, BUM)

'
"
'
i
H DATA SCA STOCK ASSESSMENT
Phase 1 E Catch, effort, length comp., Fishing Mortality Rate by Fleet (longline other)
: age comp., CPUE indices > Fishery selectivity
'
! maturity, somatic growth Historical numbers-at-age / SSB / recruitment
"
'
'
Multi-species exploitation Multi-species distribution
dynamics (Huynh et al. 2022) models (Huynh 2023)
Phase 2
MULTI-SPECIES OPERATING MODEL
Historical reconstruction, historical observations, reference points,
simulated projected data
OPERATING MODEL SCENARIOS POSTERIOR PREDICTED DATA
Regime shifts, target exploitation,
Range shifts, species interactions etc. range, trajectory in catch, effort.
Phase 3
NEW INDICATORS
STATUS QUO S S :
o Univariate, multivariate, multi-
¥ stock, Artificial Neural Networks
EVALUATION OF INDICATORS
Responsiveness, precision / accuracy as measures of stock status
Phase 4
DESIGN OF MANAGEMENT CLOSED-LOOP TESTING OF

PROCEDURES ECOSYSTEM-READY MPS

Multiple MPs that can incorporate - Multiple Mf's t_hat - i"'~"°rl":.'rate
ecosystem indicators into advice ecosystem indicators into advice

Figure 1. The components and phases of the EcoTest project.
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Figure 2. The maximum likelihood estimates of spawning biomass (kg) for the two primary and four secondary
species caught in the North Atlantic longline case study.
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Figure 3. An example of a time series of annual catch observations (grey points), a smoothed trend line (red) and
current smoothed level (blue triangle) relative to series mean (horizontal blue line), and mean slope in the smoothed
line over the last 5 (blue vertical dashed line) and 10 (green vertical dashed line) years. The vertical dashed black
line demarks the end of the historical assessed period and the start of the closed-loop projections that were used to
test indicator performance over a range of future scenarios for population and fishing dynamics.
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Figure 4. Task 2 nominal catch per unit effort for the Japanese longline fleet from 1970 - 2013. The top left panel
is the maximum likelihood estimate of the spawning stock biomass relative to MSY levels from the stock synthesis
assessment. The top middle panel shows the fraction of spatial cells that are above half the time series mean (the
fraction of circles in each plot / year, which are shaded red). The top right panel shows the correlation among the
assessment SSB/SSBMSY and the fraction of cells above half the time series mean, including a fitted logistic
regression model (green line). Optionally, these spatial models and their prediction of the spatial fraction, can be
added as covariates to the simulated data.
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Figure 5. Progression of the neural network training across 20 epochs (passes of the back propagation algorithm
through the neural network to numerically optimize for network weights) for the full blue shark data set (including
CPUE and spatial model data). The top panel shows the mean absolute error (MAE) in simulated vs neural-
network-predicted stock status (SSB/SSBMSY). The bottom panel shows the loss function (mean squared error)
which was used to train the neural network.
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Figure 6. Predictive performance of a preliminary neural network fitted to true stock status (SSB / SSBMSY)
using all data inputs (left panel) and all data inputs except CPUE time series and the spatial model (right panel).
The plotted data are for a completely independent testing dataset of 1000 data points. The mean absolute error of
the validation dataset is included in the top left of each panel. Plotted points are color coded according to the
predicted categorical stock status defined by the horizontal lines at 0.5 and 1 SSB / SSBMSY. The numbers plotted
on the chart indicate how the neural network assigned stocks status categories given each simulated category. The
numbers are the % predicted in each stock level given a simulated stock level (values sum to 100% in each
simulated level). The success rate is the number in the positive diagonal.
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Figure 7. The relative importance (weight) of the 30 most influential data inputs, for the neural network predicting
blue shark (BSH) stock status. I, C, CR, ML refer to time series of nominal CPUE, catches, catch ratios and mean
length, respectively. _rel” refers to the current level relative to the series mean. _s5 and _s10 refer to slope over
the most recent 5 and 10 years, respectively. The numbers (e.g. _4) refer to stocks in the order of BET, SWO,
BSH, SMA, BUM, WHM. Thus the most influential input for the full dataset for SHK was current (smoothed)
CPUE today relative to the mean of the series (see top panel of Figure 2).
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