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SUMMARY 

 

The GBYP aerial survey is intended to provide a fisheries independent index of abundance. 

Abundance estimates from successive years, however, may vary more than would be expected on 

the basis of survey observation error alone, due to inter-annual variations in the numbers of fish 

moving into or out of the survey areas or changes in vertical migration related to oceanographic 

conditions. The objective of this paper is to propose a methodology that could be used to estimate 

additional variance and be used to possibly design an integrated tagging and aerial survey. 

 

RÉSUMÉ 

 

Les prospections aériennes du GBYP visent à fournir un indice d'abondance indépendant des 

pêcheries. Les estimations de l'abondance d'années successives peuvent toutefois varier 

davantage que prévu en fonction des erreurs d'observation des prospections, en raison des 

variations interannuelles dans le nombre de poissons se déplaçant à l'intérieur ou à l'extérieur 

des zones de prospection ou des changements dans les migrations verticales liées aux conditions 

océanographiques. L'objectif de ce document est de proposer une méthodologie qui pourrait 

servir à estimer la variance supplémentaire et à concevoir une prospection aérienne et une autre 

prospection de marquage intégrées. 

 
RESUMEN 

 

La prospección aérea del GBYP tiene como objetivo proporcionar un índice de abundancia 

independiente de la pesquería. Sin embargo, las estimaciones de abundancia de años sucesivos 

pueden variar más de lo esperado en base solo al error de observación de la prospección, debido 

a las variaciones interanuales en los números de peces que entran o salen de las zonas de 

prospección o a los cambios en la migración vertical relacionados con las condiciones 

oceanográficas. El objetivo de este documento es proponer una metodología que podría utilizarse 

para estimar la varianza adicional y ser utilizada para diseñar una prospección aérea y otra de 

marcado integradas. 
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1. Introduction 

 

The over-riding objectives of fisheries management are the long-term sustainable use of fishery resources and the 

development of ways to optimise the benefit derived from them (Cochrane and Garcia, 2009). While the aim of a 

robust management framework is to ensure that objectives are met with high probability despite the presence of 

uncertainty or stressful environmental conditions (Radatz et al., 1990). To provide robust scientific management 

advice requires that our understanding of biological and ecological processes and data collection schemes are 

sufficient (Kell et al., 2015). 
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One of the main inputs in tuna stock assessments is commercial catch per unit effort (CPUE), used as a proxy for 

relative abundance. It has long been recognised, however, that CPUE does not accurately reflect trends in 

population abundance (e.g. Beverton and Holt, 1993; Harley et al., 2001; Maunder et al., 2006; McKechnie et al., 

2013; Polacheck, 2006). It has also been stated many times by the SCRS, that the fisheries data available to the 

SRCS for the bluefin assessment are unreliable. It is also known that oceanographic factors that affect the spatial 

distribution of populations vary (Fromentin et al., 2013; Bonhommeau et al., 2013; Di Natale and Tensek S., 2015) 

and the allocation of effort in response to management and economic drivers affects catch and effort independently 

of stock abundance (e.g. Paloheimo and Dickie). 

 

Aerial surveys are commonly used to provide fisheries independent indices for cetaceans (Hammond et al., 2002) 

and have recently been used to develop indices of abundance for large pelagics (Basson and Farley, 2014; Fro-

mentin et al., 2003). When designing any monitoring programme it is essential to determine the magnitude of 

population change that can be detected within management time scales (Nicholson and Jennings, 2004). This can 

be done by conducting a power analyses (see Gerrodette, 1987; Fortuna et al., 2014) if the variance of the index 

is known. See http://www.iccat.es/GBYP/Documents/ASURVEY/PHASE%203/Aerial_Survey_Feasibility_ 

Study_Phase3.pdf for a power analysis conducted for the GBYP aerial survey. 

 

Abundance estimates from successive years, however, vary more than would be expected on the basis of survey 

observation error alone; due to inter-annual variations in the numbers of fish moving into or out of the survey areas 

or changes in vertical migration related to oceanographic conditions. This additional variance, due to process error, 

reflects the extent to which abundance estimates from repeat surveys of the same area in successive years will vary 

more than would be expected due to observation error alone. 

 

The objective of this paper is to propose a methodology that could be used to estimate the magnitude of additional 

variance. We first evaluate the power of an aerial survey to detect changes in population abundance for surveys 

with different assumed levels of precision and potential population growth rates. We then show how additional 

variance could be estimated and discuss how electronic tags could be used to help design an integrated tagging 

and aerial survey for use as an empirical management procedure (Hillary et al., 2013). 

 

 

2. Material and Methods 

 

An aerial survey of bluefin tuna has taken place since 2010 during the spawning season in the Mediterranean in 

areas where schools can be sighted close to the surface (Di Natale, 2011). If the vertical distribution of individuals 

in the spawning season varies by year, this may lead to inter-annual variability over and above that due to sampling 

alone. Therefore, integrating the variance of the abundance estimates over survey areas will only account for 

sampling variance. The missing variance component, additional variance, is due to the behaviour of individuals 

which may vary between years.  

 

As part of the GBYP, there is also an electronic tagging programme, with electronic satellite tags, designed to 

monitor the migration behaviour of fish over a maximum of twelve months; these tags report average time spent 

within a depth band. It may be possible to evaluate the impact of changes in the probability of detecting individuals 

due to vertical migration. It is more difficult to evaluate the impact of inter-annual difference in the use of survey 

(i.e. spawning) areas since the life of tags is only a maximum of twelve months. The time series of data is usually 

less, due to premature releases or fishing events. Other internal archival electronic tags, that have a recording life 

of up to nine years have been deployed under the GBYP, but none of these tags has been recovered so far. The 

approach discussed, however, could evaluate additional variance due to inter-annual variation in spatial 

distribution given a suitable tagging programme. 

 

2.1 Material 

 

The aerial survey conducted by the GBYP is based on a line transect sampling survey (Cañadas et al., 2010; 

Cañadas and Vazquez, 2010). The areas surveyed in 2014 are shown in Figure 1. Timing of the aerial surveys 

coincides with the peak of the spawning season, usually for about five weeks, varying from year to year depending 

on operational constraints. In 2015 the survey was conducted between June 1st and July 5th. The electronic tagging 

programme was designed to monitor the migration of fish over a twelve month period, these tags also reported 

average time spent within a depth band (in metres), i.e. at surface, between 0 and 2m, 2 and 10m and below 10m. 

Data related to bluefin tunas in the Mediterranean Sea during the spawning season are available from 41 electronic 

satellite tags from 2011 through 2015. 
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Usually, the GBYP aerial survey is able to detect tunas from the surface to up to a depth of 10m (for sightings just 

below or very close to the aircraft if tunas are not at the surface). Therefore, the percentage of time spent in the 

first 10m has an impact on the sighting probabilities of the survey. 

 

2.2 Methods 

 

2.2.1 Power Analysis 

 

A power analysis was conducted to evaluate the ability of the survey to detect trends for different population 

growth rates. The conditional population growth rates (r) at FMSY and five times FMSY were estimated using the 

Leslie Matrix (Caswell, 1989), as 0.08 and 0.22 respectively. A significance level of 5% and a detection power of 

60% were used, based on conventional practice. Survey CVs considered were 20%, 30% and 40%. 

 

2.2.2 Additional Variance 

 

All equations are given in Table 1. 

 

If an area of A blocks is covered at least once during two survey periods and Ñay is the actual abundance in the ath 

block in year y, Îay the relative abundance estimate and q the constant of proportionality, then assuming that the 

abundance estimates are multivariate log-normally distributed then they are given by equation (1), where ˜ɛay is a 

random error. The corresponding variance is given by equation (2) where n is the sampled numbers, ŵ the effective 

sample width (ESW) and Ê[si] mean school size (MSS).  

 

If the estimates share common parameters such as ESW and MSS across years and blocks then the error terms are 

correlated and the covariance between the two abundance estimates is given by equation (3), (Buckland et al., 

2001). 

 

To make the errors, ɛ=(ɛ1,…,ɛd)', satisfy the unbiasedness of abundance estimates and the variance-covariance 

formula (equation (3)), the mean, variance, and covariance of the errors in log space are given by equation (4), 

while if abundance varies randomly over year by equation (5), where Nay is the expected abundance in the ath block 

in year y, and ρay is a random effect accounting for inter-annual changes in the distribution of the fish population 

in the surveyed area.  

 

The random effects are assumed to be independent and identically distributed (IID) with a normal distribution, 

equation (6), where σ is the additional coefficient of variation since Var[Ñay]=σ2Nay
2. 

 

The parameter of interest in this study is the additional variance σ2, equation (7). Where Y=log^N is the vector of 

log-abundance estimates, X is the design matrix for the fixed-effects in the linear predictor for logNay, D and Ẑ and 

are the variance-covariance matrix for ρ=(…,ρay,…) and ε.  

 

The best unbiased estimator of β is given by equation (8), where Y*=Y+½Zdiag(D)+½diag(^σ) and V(σ2)=^σ, and 

equation (9). Uncertainty is assessed by the inverse of the second derivative with respect to σ2. 

 

 

3. Results 

 
The aerial survey gave biomass estimates of 15,553t (-), 46,234t (40%) and 9,100t (45%) in 2010, 2011 and 2013 

respectively, equivalent estimates in numbers were 561,369 (41%) and 138,650 (35%) in 2011 and 2013 

respectively. Numbers in brackets give the survey CV. 

 

A power analysis was conducted for three levels of survey CV (20%, 30% and 40%) and annual and biennial 

survey frequencies (Figure 2). This shows, for example, that for a survey CV of 40% it would take 12 years before 

a population increase due to a 0.1 population growth rate could be detected.  

 

The variations in depth of individuals are shown by month and year in Figure 3, while Figures 4 and Figure 5 

show the change in oceanographic conditions in July between 2013 and 2014. Areas in black show zones where 

the oceanography is potentially not suitable for bluefin tuna spawning, having temperatures out of the best suitable 

range of 20.5 to 26 degree C. These plots show that there are environmental factors that may affect the distribution 

of bluefin and hence the probability of detection, i.e. q the relationship between population abundance (Ñ) and the 

index (I). 
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4. Conclusions 

 

 An aerial survey index with a CV of 40% means that a population growth rate of +/-0.25 will take about 

6 years to detect. The estimate of a 40% CV is solely based on the survey (i.e. measurement) error, 

additional variance due to factors such as changes in vertical migration and spatial distribution will mean 

the true CV in the aerial survey index will be greater. 

 

 Tagging data could be used to estimate changes in the distribution of spawning adults between years. 

This may allow q to be estimated by year and hence the survey indices to be adjusted. Before this can be 

done, however, it is important to estimate the magnitude of additional variance in the survey. Then to 

conduct a cost benefit analysis where different survey designs and their costs are compared to the survey 

CV. 

 

 Then tagging data should be analysed independently to provide estimates of process error, and compared 

to those from the aerial survey. This will help to specify a simulation study that could be used as an 

observation error model (OEM) as part of a management strategy evaluation (MSE). Either to evaluate 

whether the aerial survey could be used as an empirical harvest control rule (HCR), or a tagging aerial 

survey be developed using adaptive management. 

 

 The objective was to discuss the potential impact of variations in temporal and spatial distribution and to 

propose a methodology that could be used to design an integrated tagging study and aerial survey. Process 

error or additional variance results from the fact that the estimated sampling variances for the abundance 

estimates do not account for variability of abundance level, especially due to inter-annual changes in 

distribution of the population in the surveyed areas. If the additional variance is ignored, uncertainty on 

abundance estimates tends to be underestimated (Kitakado et al., 2008). Process error can be estimated if 

replicates of the surveys in each block are conducted in different years (Kitakado et al., 2005). 
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Table 1. (Equations) 

 

 

 

 
Figure 1. ICCAT GBYP aerial survey on spawning aggregations, areas surveyed in 2015. 
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Figure 2. Power Analysis: Power analysis; contours correspond to a probability of 0.6 that a change in the 

population size will be detected. i.e. the time (x-axis) taken to detect a change is given by the intercept between a 

curve and horizontal line corresponding to a given population growth rate (y-axis); panels correspond to survey 

CVs of 20,30 and 40%. 
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Figure 3. Depth Distribution of electronic tags; implanted under ICCAT GBYP 2012-2015.  
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Figure 4. Sea surface temperature in July 2013, scale goes from 26 (red) to 20.5 (blue) degrees Celsius. 

 

 

 
Figure 5. Sea surface temperature in July 2015, scale goes from 26 (red) to 20.5 (blue) degrees Celsius. 

 


