REPORT OF THE 2010 ICCAT BLUE MARLIN DATA PREPARATORY MEETING

(Madrid, Spain – May 17 to 21, 2010)

SUMMARY

The Meeting was held in Madrid, Spain from May 17 to 21, 2010. The main objective of the meeting was to obtain catch estimates for blue marlin, from artisanal fleets in particular, as it is known that these fleets land marlins but do not report them to ICCAT, as occurs with many of the FAD fleets in the Caribbean; develop methods and data analysis to assist in the interpretation of historical CPUE indices for longline and examine methods in order to take into consideration the under reporting of catches by fleets which have been requested to release marlins. Likewise, for the next blue marlin stock assessment meeting, possible methods, as well as their requirements regarding data, should be reviewed.

RESUME

La réunion a eu lieu à Madrid (Espagne) du 17 au 21 mai 2010. La réunion avait pour objectif d'obtenir des estimations de capture de makaire bleu, notamment des flottilles artisanales dont on sait qu'elles débarquent des makaires mais ne les déclarent pas à l'ICCAT, comme bon nombre de flottilles des Caraïbes qui opèrent avec DCP; de développer des méthodes et des analyses de données susceptibles de faciliter l'interprétation des indices historiques de la CPUE palangrière et d'examiner les méthodes afin de tenir compte de la sous-déclaration des flottilles qui sont tenues de remettre à l'eau des makaires. Pareillement, la réunion devait examiner les méthodes possibles pour la prochaine évaluation du makaire bleu et ses besoins en matière de données.

RESUMEN

La reunión se celebró en Madrid, España, del 17 al 21 de mayo de 2010. El objetivo de la reunión era obtener estimaciones de captura de aguja azul, especialmente de las flotas artesanales que se sabe que desembarcan marlines pero no los declaran a ICCAT, al igual que muchas de las flotas de DCP del Caribe; desarrollar métodos y análisis de datos que puedan facilitar la interpretación de los índices históricos de CPUE del palangre y examinar métodos para tener en cuenta la infradeclaración en las flotas a las que se ha requerido que liberen marlines. Asimismo, deberían examinarse durante la reunión posibles métodos para la próxima evaluación de aguja azul y sus requisitos en cuanto a datos.

1. Opening, adoption of agenda and meeting arrangements

The Meeting was held at the ICCAT Secretariat in Madrid from May 17 to 21, 2010. Mr. Driss Meski, ICCAT Executive Secretary, opened the meeting and welcomed participants ("the Working Group").

Dr. Freddy Arocha (Venezuela), meeting Chairperson, welcomed meeting participants and proceeded to review the Agenda which was adopted without changes (**Appendix 1**).

The List of Participants is included in **Appendix 2**. The List of Documents presented at the meeting is attached as **Appendix 3**. The following participants served as rapporteurs:

Sections	Rapporteur
Items 1 and 10	P. Pallarés
Item 2	C. Palma, G. Scott and P. Lynch
Item 3	J. Hoolihan and P. Pinheiro
Item 4	D. Die and E. Prince
Item 5	H. Hazin, C. Wor, L. Kell and P. Bannerman
	1554

Item 6	L. Kell
Item 7	G. Scott
Item 8	F. Arocha
Item 9	F. Arocha, J. Hoolihan

2. Update of basic information

The Secretariat presented, at the beginning of the meeting, available blue marlin (BUM) fisheries and biological information, namely: Task I catch statistics (T1NC); Task I fleet characteristics (T1FC); Task II catch and effort (T2CE); Task II size samples (T2SZ); conventional tagging. Both data and catalogues (useful for getting a global perspective of the data coverage/availability) prepared contained the most up to date (as of 2010-05-17) information available in the ICCAT database. The time series covered all the years (1950 to 2009). Upon a working Group (WG) request, additional datasets were also prepared during the meeting with other billfish (white marlin-WHM, sailfish-SAI, billfish-BIL unclassified). All the revisions and new data reported during the meeting were analyzed and adopted by the Working Group and finally incorporated into the ICCAT database.

2.1 Task I (catches)

The Working Group reviewed the T1NC entire time series details and noted that 2009 catch reported was very incomplete, with only a few CPCs reporting in time this statistics: EU (EU-Spain, EU-Portugal, EU-France, EU-Denmark, EU-Netherlands), Sta. Lucia and Chinese Taipei. During the meeting, Ghana, the United States and Venezuela also provided preliminary estimates. In total, the 2009 reported catch only represented 25% of the 2008 reported catches.

Once again, the Working Group reaffirmed the importance of T1NC statistics and its timely availability to accomplish the objectives of this kind of data preparatory meeting. All ICCAT CPCs should report in a timely fashion (according the meeting work plan on data provisions), at least, provisional figures of Task I nominal catches. Otherwise, the Working Group cannot work with the most recent global Yield indicators. The blue marlin Task I catch estimates are presented **Table 1**.

The Working Group also revised the billfish unclassified (BIL) statistics and its implications on the possible underestimated catch trends of blue marlin and other billfish. Many CPCs are still reporting reasonable amounts of BIL as can be seen in Section 4. As in the 2006 assessment (Anon., 2007), a similar set of procedures were used to split the BIL unclassified catch figures into blue marlin, white marlin and sailfish. This exercise is described in item 4 of this report.

2.2 Task II (catch-effort and size samples)

The blue marlin related T2CE (catch and effort) and T2SZ (size samples) information was presented at the beginning of the meeting (both, catalogues and data).

In relation to T2CE, the Working Group noted the incompleteness of historical data for some of the most important series. Another drawback found was the lack of homogeneity in the series with variations in the units of effort (sometimes with no effort reported all), time stratification (by year, quarter and month), spatial distribution (1x1, 5x5, 10x10, 10x20 and 20x20 degree squares), species catch composition (weight, number, or both), etc. This evidence was already identified in past meetings. The Working Group encourages the respective CPCs to revise T2CE data in order to harmonize the series following the SCRS data requirements on Task II catch and effort statistics. The most recent 2009 T2CE statistics were reported within the deadline only by EU-Spain and Barbados (as BIL unclassified), Chinese Taipei (blue marlin and other billfish) and Canada (with zero blue marlin catch). During the meeting, only Ghana provided new T2CE gillnet statistics (2008 and 2009). The Ghana scientist indicated that a gillnet catch and effort series (back to 1980) is under revision (some inconsistencies were found in the CPUE estimations) and will be sent to ICCAT before the next SCRS meeting. The Secretariat offered its collaboration in putting together this important catch and effort data series.

In relation to T2SZ, the Working Group also noted the incompleteness and heterogeneity of historical size data in some of the most important fisheries. Some size sample series are very heterogeneous with variations in: size class types (length: 1, 2, 5cm; weight: 1, 2, 5, 10 kg); size frequency types (LJFL, WGT, CLCK, LD1, etc.); size interval types (lower limit, central point, upper limit, many times unknown); time stratification (by year, quarter and month); spatial distribution (1x1, 5x5, 10x10, 10x20 and 20x20 degree squares). The Working Group also

encourages the respective CPCs to revise T2SZ data in order to harmonize the series following the SCRS data requirements on Task II size samples. For 2009, T2SZ data was only reported in time by EU (EU-Spain, EU-Portugal, EU-France) and Chinese Taipei. During the meeting, additional size information was reported by Ghana, Venezuela and Uruguay. Important T2SZ data series were provided and adopted by the Working Group namely, Uruguay LL (2003 to 2009) and Venezuela LL (1992-2009). All the blue marlin size information available (1956 to 2009), was analyzed in detail with two main purposes: a) its potential to be used in integrated assessment models; b) its potential for a future creation of a catch-at-size/age estimation (size/age composition of the catches) to be used in structured type models. The details of this analysis are described in item 7.

2.3 Catalogue of available information

Table 2 compares the available T1NC and T2CE data thus far reported for blue marlin by flag and fleet for the most recent two decades. In the table, the solid color cells represent strata for which data have been reported. In the case of full compliance with CPCs' data reporting obligations, there would be no gaps in reports and thus no cells indicated with red dots. It is evident that there is large variability in the ability of CPCs to meet reporting obligations for blue marlin.

2.4 Size frequency analysis

A size-frequency analysis was conducted on blue marlin Task II size data for which length (lower jaw fork length, cm) and/or weight (kg) measurements were available. The analysis focused on data from the fisheries that constituted the bulk of the blue marlin catch; seven countries and four different fishing gears were represented (**Table 3**). Slight differences in data collection methodology were exhibited across the fisheries, such as specification of the minimum intervals used for measurement. In these instances, no conversions were made to a standard unit, because the differences were minimal and application of a scalar conversion may be inappropriate. Also, several fisheries reported length measurements that were uncharacteristically small. It was suspected that these small fish represented misclassifications and were not actually blue marlin. To account for these potential misclassifications, a lower threshold of 80 cm was imposed which represents a very small proportion of the overall data (<0.05%). Also, an uncharacteristically large blue marlin was reported, and an upper limit of 400 cm was adopted.

Basic summary statistics were calculated for each fishery by year, including minimum, median, mean, standard deviation of the mean, maximum, and the interquartile range. These statistics were summarized in tables, and the annual trends in the data were represented in figures (See Appendix 5). In general, lower jaw fork length (LJFL) centered around 200 cm in most fisheries. The exceptions to this were the coastal gillnet fisheries from Côte d'Ivoire and Ghana. For these fisheries LJFL centered around 240 cm. While variable through time, there were no clear trends in LJFL. Plots of cumulative probability across the observed range of LJFL by year were generated for the various longline fisheries, the U.S. sport fishery, and the handline fishery from Martinique combined, and a separate plot was generated for the gillnet fisheries. These figures indicate consistent patterns of size-selectivity for blue marlin across fisheries and through time. There were fewer time series available for weight-frequency analyses and with the exception of the U.S. sport fishery, the time series were short and/or incomplete. For these fisheries, average weight measurements tended to center around 70-100 kg, but variability between fisheries appeared higher than that observed for LJFL. This is likely due to fewer data, resulting in less robust estimates of summary statistics. Also, weight data from Martinique represented eviscerated weights. As with the analyses of LJFL, it is difficult to identify a clear trend in blue marlin weight over time. Cumulative probability plots across the observed weights over time were generated, and similar to LJFL plots, indicate consistent patterns of size-selectivity.

These analyses were informative in that they characterized the dynamics of the major fisheries as related to the size-distribution of blue marlin. This is a particularly useful exercise, because any potential impacts by the fisheries on the size-structure of the populations (i.e., growth overfishing) can be detected. Furthermore, these data are essential for conducting integrated stock assessments; a method that was recommended by the Working Group to be considered for blue marlin (See Section 7). Therefore, the Working Group recommends that a greater emphasis be placed on the collection and reporting of size-frequency data (following a standardized methodology) by ICCAT member nations.

3. Review of new biological, habitat, tagging data for blue marlin

3.1 Biology

The results of age and growth analysis were presented for blue marlin sampled between December 2004 and December 2006 from Brazil and Venezuela. Transverse sections of fin spines from 170 females and 429 males were analyzed. Relative marginal increment analysis was used to determine the periodicity of growth ring formation. Growth rates were estimated using back-calculation (von Bertalanffy growth function). Estimates for L_{inf} , k, and t₀ for females were 353.74, 0.06, and -6.15, respectively. For males, the estimates were 350.28, 0.05, and -9.47. Samples from very small and very large blue marlin were unavailable for analysis. The lack of a significant difference (p = 0.17) in the growth rate (k) between sexes was attributed to the absence of very large individuals.

A collaborative effort on the estimation of age structure and growth of Atlantic blue marlin led by Brazil has made progress towards estimating ages of over 500 fish originating mainly from the Venezuelan and Brazilian tropical longline fisheries. Spine sections were examined and ring counts, ring radius, and vascularization measures were obtained. These measurements confirm that vascularization obscures some of the early rings formed in the spines because the vascularized area enlarges with age. Preliminary analysis of these data reveal the presence of a first ring in fish less than 150 cm LJFL, and up to four rings in fish less than 180 cm LJFL. This contrasts the work of Prince *et al.* (1991) that, by reading daily rings in otoliths, reported that blue marlin of 150 cm LJFL are between 200 and 400 days old, whereas blue marlin of 180 cm LJFL have an age of between 300 and 500 days. Examination of the ring measurements conducted at the meeting revealed the possibility that some of the rings are false rings. The Working Group recommended that ring measurements and spine sections are examined to identify and exclude false rings and that authors of this work make sure that the work by Prince *et al.* (1991) is used to "anchor" the early growth estimates obtained from spine sections.

Document SCRS/2010/045 provides information obtained from Uruguay's Observers Program on the catch of blue marlin taken by the longline fleet flying Uruguayan and Japanese flag that operated in the southwestern Atlantic Ocean during the period from April 1998 to December 2009 and March-September 2009, respectively. Catches of this species occur in the Exclusive Economic Zone of Uruguay and adjacent waters during the summer where the water temperature is higher. In this region in particular, the CPUE observed for the Uruguayan and Japanese fleet was similar, from 0.01 to 0.05 fish per 1000 hooks. The fish caught by the Japanese fleet at a greater depth (100-200 meters) are larger (266 ± 60 cm) than those caught by the Uruguayan fleet (199 ± 35 cm) in shallower waters (30-80 meters). The sex ratio varied, with a larger proportion of females (1:3.4) in deeper waters, while in more shallow waters males predominated (1.9:1). According to this information, there could be spatial separation between sexes and some size classes, in the water column.

3.2 Habitat

Pop-up satellite archival tagging studies on blue marlin and sailfish by Prince *et al.* (2010) described the vertical habitat use and the impact on these species when in the eastern tropical Atlantic's (ETA) oxygen minimum zone (OMZ). A total of 32 sailfish (*Istiophorus platypterus*) and 47 blue marlin were monitored in the eastern tropical Atlantic and western North Atlantic (WNA). Both species spent a significantly greater proportion of time in near-surface waters inside the eastern tropical Atlantic, compared to the western North Atlantic. The authors contend that the near-surface density of billfish and tunas increases as a consequence of habitat compression in the eastern tropical Atlantic OMZ, therefore increasing vulnerability to surface gears. Because the eastern tropical Atlantic OMZ encompasses nearly all Atlantic equatorial waters, the potential for overexploitation is a concern of the authors. The potential variation in catchability inside versus outside the compression zones suggests that separate catch rate standardization for the two areas should be considered in order to minimize inaccuracies in stock assessment results. In response, the Working Group carried out exploratory analyses using historical longline data to determine if catches inside and outside the OMZ exhibited differences in encounter rates and catchability (see Section 6).

3.3 Tagging

Document SCRS/2010/041 provided an update of the U.S. conventional tagging data for blue marlin. A total of 57,287 blue marlins were tagged and released during the period 1955-2008. Of these, 809 (1.41%) were recaptured. Although tag deployments were made throughout the Atlantic, the majority of tagging effort took place in the western North Atlantic. Most of the recaptures occurred within two years, however several blue marlin were at-liberty >12 years. In terms of large-scale movements, blue marlin exhibited a broader range than white marlin or sailfish. For blue marlin recaptures, 20 individuals showed trans-Atlantic movement (i.e.,

crossing the mid-Atlantic ridge), while six indicated trans-equatorial movement. A single individual recorded an inter-oceanic movement, moving from the western North Atlantic to the Indian Ocean. These large-scale movements are consistent with the hypothesis of a single Atlantic-wide stock for blue marlin.

The ICCAT tagging data base for blue marlin was investigated to evaluate the potential utility of modeling movement and survivorship of blue marlin in the Atlantic Ocean within an integrated statistical modeling formulation. Substantial revision to the ICCAT data base may be forthcoming in the near future. Appendix 4 includes summaries of the release information by year, region and quarter and by year and main gear (Tables 1 and 2). As well as some additional quality control of the data undertaken by the Working Group to assign gear of release to the unclassified gear types (Table 2), based on expert knowledge of the tagging activities for blue marlin undertaken in the Atlantic. The Working Group also recommended that releases categorized as 'SPORT' be considered as RR releases for the purpose of assessment modeling. The result of this effort is also summarized in Appendix 4 (Table 3).

4. Review of blue marlin catch estimates (historical and current)

4.1 Examination of billfish unclassified catches

Task I data provided by the secretariat to the group contains 4,993 t of unclassified billfish (BIL) reported to ICCAT by various countries for the period 1980-2009. To improve the estimates of historical blue marlin catch, the Working Group attempted to estimate the amounts of blue marlin contained in these reports. The following procedure was followed to accomplish this:

- 1) BIL reports were reclassified for selected data series for which billfish species ratios are available for the period where BIL were reported for the same fleet and area
- 2) Remaining BIL reports not selected in item 1 were reclassified on the basis of Atlantic-wide billfish species ratios

Task I contains 72 data series (identified as unique FLAG, GEARGRP and AREA combinations) reporting BIL, representing catches for 47 different fleets (unique FLAG, GEARGRP combinations). BIL reports for many of these fleets represent small catches. Because of the time required to examine each fleet the group focused its work only on the BIL data for fleets that represented at least 1% of the total BIL catch, meaning fleets that reported more than 50 t of BIL (**Table 4**). Together these fleets represent 91% of the BIL reports.

In order to reclassify these BIL reports it was necessary to identify ratios of blue marlin, sailfish and white marlin to be used in the reclassification. It was considered that these ratios needed to be calculated from data available for the same fleet and area combination. If possible, ratios were obtained for the same period of years for which BIL was reported. If such data was not available, then ratios were obtained for 5 years prior or 5 years after the period when BIL was reported. In all cases ratios were only deemed to be reliable if the catches of classified billfish represented at least 10% of the BIL reports to be classified. According to these constraints there were enough data to reclassify BIL for all fleets except for EU-Portugal surface, EU-Italy longline and Namibia longline. It is unlikely, however, that catches of EU-Italy longline represent blue marlin; most likely they correspond to Mediterranean spearfish. For the other fleets, species composition ratios were computed whenever there were reported catches for the same area and fleet (**Table 5**). All calculations made in this analysis were conducted under the assumption that catches of spearfish are negligible. Such an assumption is known to be only partially correct; however, because of the difficulties in separating the different species of spearfish from white marlin, as reported in sections 3 and 9 of this report, that spearfish would not be considered in the calculations.

The ratios in **Table 5** were used to reclassify a total of 2,636 t of BIL reports, leaving a further 2,357 t of BIL to be reclassified. Ratios in **Table 5** show that species composition varies between areas and fleets. Unfortunately areas reported by different fleets are not consistently reported across fleets and may represent different geographical regions. As a result, the Working Group decided to calculate Atlantic-wide yearly ratios of billfish species composition by using the data from all fleets that reported billfish, including the catches obtained after using the ratios in **Table 5**. These yearly ratios were used to split the reminding 2,347 t mentioned above. This was done by grouping all remaining BIL reports for each year and no attempt was made to reclassify the catches of each data series. Thus these calculations are only indicative of the best estimate of the blue marlin Catch possibly contained in BIL reports that cannot be reclassified from fleet specific data (**Table 6**).

It is clear from these calculations that the current BIL reports contained in the task 1 database do not markedly changed the estimates of historical catches of blue marlin (**Figure 1**). This remains the case even if all the unclassified billfish were to be blue marlin. It is very important however, that countries responsible for these BIL reports attempt to split the data into species, or provide the Working Group with comments on the procedures adopted by the Working Group to assign these catches to each of the billfish species.

4.2 Review of FAD catches of blue marlin in Martinique and Guadeloupe

Martinique and Guadeloupe have an active FAD fishery from the mid-1980s. This fishery has been sparsely monitored but catches of Blue marlin are reported to be significant in the range of a few hundreds of tons per year (Reynal 2007). Catches from this fishery have only been reported by EC-France for years 2005, 2008 and 2009. The Working Group attempted to reconstruct the history of catches in these two islands from the data available:

- catch rate estimates from surveys of landings conducted in 2004-2005 and 2008-2009 in Martinique and 2009 in Guadeloupe
- estimates of historical participation from interviews of boat captains conducted in 2005-2006 in Martinique and Guadeloupe
- estimates of numbers of trips per boat per year from phone interviews and from calculations based on fuel tickets and fuel consumption rates.

Landings and effort estimates are preliminary and will be reviewed by the French scientist who provided the data to the Group.

According to the interviews of captains the fleet started using FADs in Martinique in 1985 and in Guadeloupe in 1989. The number of boats fishing on FADs rose steadily since then in both islands reaching about 300 in each island in 2005.

Estimates of fishing effort (number of trips per year) obtained for Martinique are considerably lower than those reported by Gobert (1989) for 1987, depending on the method used to reconstruct the numbers of trips per boat per year. The number of trips per year calculated from the phone interviews is about half of that calculated from fuel consumption data and about a fourth of the number calculated by Gobert (1989).

Estimates of catch rates per trip obtained during stratified random surveys in 2008-2010 in Martinique and Guadeloupe were used to reconstruct the total annual catch by assuming that these catch rates represent average catch rates for the fishery through the entire historic period. Annual catch was calculated as the product of the catch rate and the number of boats per year. Estimates of annual catch for 2008, the period for which there is more reliable data, are 289 t per year in Guadeloupe. Estimates for Martinique are more uncertain and are provided as a range. Low estimates are obtained from the data on phone interviews and the high estimates for 2009 for Martinique are lower than they have been for many years at between 160 t (low) and 320 t (high). Estimates for 2009 were not available for Guadeloupe.

The final estimates of historical harvest for both islands therefore start from a small catch of 10-30 t in 1985 made in Martinique to between 300-450 t for both islands in 1997, to the present estimate of between 500-750 t in 2008.

These catch estimates, with the exception of the years 2005, 2008 and 2009, have not been previously considered by the Working Group. The Working Group substituted the current blue marlin catch data in task I for this fishery with the estimates obtained by the Working Group during the meeting. The resulting estimates of total blue marlin harvest represent a significant increase in landings for the period since 1985 (**Table 7** and **Figure 2**) and suggest that the catch from these two islands may represent between 10% and 16 % of recent annual landings for the entire Atlantic.

5. Review of blue marlin catch rate information

The last assessment of blue marlin was conducted in 2006. A number of relative abundance indices were updated and estimated during the 2006 assessment for various fleets from 1968. During the 2006 assessment combined indices for blue marlin were estimated to have declined during the period 1990-2004. (Figure 3)

Five new documents were presented during the Preparatory meeting held in Madrid from 17-21May 2010 (Figure 4).

Document SCRS/2010/043 reported updated indices of abundance for blue marlin from the U.S. pelagic longline fishery in the northwest Atlantic and Gulf of Mexico for the period 1986-2009. Indices were estimated for both number of fish/1000 hooks and kg/1000 hooks. Generally, both indices exhibited declining trends from 1992 to 2002, and then remained low but relatively constant through 2006. Slight increases were noted during 2007-2009, although this may be an artifact of increased observer coverage and improved data collection by onboard observers.

Document SCRS/2010/044 reported updated indices of abundance for blue marlin from the U.S. recreational tournament fishery in the northwest Atlantic, U.S. Gulf of Mexico, Bahamas, and U.S. Caribbean for the period 1974-2009. Indices were estimated in weight (kg) and numbers of fish per 100 hours using data collected from 3,085 tournaments. Recreational catch of blue marlin and total fishing effort exhibited a linear relationship with increasing trends since the 1970s. The number of vessels and amount of fishing time per tournament has decreased since the 1990's. However, total fishing effort has continued to increase through the 2000's, due to an increase in the number of billfish tournaments per year. Overall, blue marlin CPUE increased through 1995 then decreased to a low in 2003, followed by a slight increase through 2009.

Document SCRS/2010/020 reported updated indices of abundance for blue marlin from the Venezuelan pelagic longline fishery for the period 1991-2009. The index of number of fish per 1000 hooks was estimated from data collected by scientific observers (Venezuelan Pelagic Longline Observer Program). The standardized CPUE series for blue marlin catch observed in the Venezuelan longline fleet reflects a decreasing trend from 1991-2004, followed by a moderate recovery to 2008, and sharp decline in 2009. It was noted by the Working Group that the CV increased during the last few years due to reduced observer coverage during that same time.

Document SCRS/2010/021 reported catch rates for blue marlin from the small scale fishery off La Guaira, Venezuela for the period 1991-2009, which derived from port sampling the 5,743 sets conducted by the artisanal gillnet fleet (35 vessels). The standardized CPUE series (in weight) showed an increasing trend since 1991, peaking in 1999, followed by a drastic decline to 2002, then gradually increasing through 2007. Since 2007, there has been a sharp decline back to a level consistent with 2002.

The Working Group decided to include the CPUE series reported in the document SCRS/1996/109 which included standardized catch rates for the Venezuelan sport fishery off Playa Grande Yachting Club from 1961 to 1995.

Document SCRS/2010/049 presented a standardized CPUE for blue marlin caught by the Brazilian tuna longline fleet between 1980 and 2008. A generalized linear model was used under the assumptions of delta-lognormal and tweedie error distributions and year, quarter, area and fishing strategy were considered as explanatory variables. The standardized series show a strong oscillation over time, with an increasing trend from 2000 on.

After the presentation of this document concerns were raised regarding the differences between the target strategy index included in this document and those presented in the SCRS/2010/036 document regarding the standardization of bigeye tuna captured by the same fleet, in the same period. This difference was explained by the fact that the methodology for estimating the fishing strategy index was modified. The PCA method employed in the SCRS/2010/036 was replaced by the k-means method. The author justified the change by their belief that PCA would provide biased results because its assumption of linearity is easily violated.

As it was already emphasized in previous discussions, the group agreed that more research, such as simulation exercises, should be developed regarding the effectiveness of such methods as well as the impacts of its use on the estimation of standardized series.

A comparison between the CPUE series used in the previous 2006 assessment and those reported in the 2010 data preparatory meeting is shown in **Figure 5**. Two different comparisons are provided for the Brazilian longline catch indices. The first shows the standardized series used in the 2006 assessment, estimated through a more traditional method, (ICCAT files- **Figure 5** bottom left) and the second shows the standardized indices presented in the Hazin, *et al.* (2007) (**Figure 5** bottom right) which was not included in the assessment because of the Working Group concerns about the impacts of using target strategy as an explanatory variable.

During the meeting, additional standardized CPUE series were generated for Japan, Chinese Taipei and Korea data series available at the Secretariat. A detailed description of the data and methods used for those series is included in Section 6.1; results of these standardizations are shown in **Figure 4** and **Table 8**.

6. Review of simulation work conducted to date

During the meeting standardized CPUE indices were prepared, using the most recent Task II catch and effort from the ICCAT database, for the main long-line fleets for which standardized series were not available; these were the fleets from Chinese Taipei, Japan and the Republic of Korea. Task II data were accessed directly via SQL in R using the RODBC package; this made it relatively straight forward to replicate the analysis for the different fleets once a protocol had been agreed upon by the group. It will also make it much easier to update the current analysis in the future or to duplicate it for other stocks, flags, gears and fisheries. All code used in the analysis will be available on Google code.

Standardization included a strata based on the hypothesized Hypoxia-Based Habitat Compression area described by Prince *et al* (2010) to evaluate its effect on catch rates. The strata identified whether catches were made inside the habitat compression area. Task II data is stratified by 5 degree squares and any square within which hypoxia occurred (either whole or in part) was defined as being in the compression area strata; this is because it was assumed that fishing would be concentrated in the compression area of the 5 degree square where catches would potentially be greatest.

Standardization was performed using GLMs assuming a delta-lognormal error model after inspection of the diagnostics (Ortiz and Arocha, 2004) due to the occurrence of a large proportion of zero catches. The Chinese Taipei series were split into two periods, 1968-1995 and 1996-2008 since there was a significant difference in the variance between the early and later time series.

After fitting the GLM for the year quarter interaction a residual pattern was seen for the compression effect in the Japanese and Chinese Taipei early and late series. For Japanese long-lines it appears that the probability of encountering blue marlin is higher inside the compression zone, but that when blue marlin were caught the CPUE was actually higher outside the zone; there was also variation over time in the strength of any habitat compression effect. The analysis of the Chinese Taipei long-line data showed a similar effect for both the early and late periods. However, for Korean longliners there appeared to be little effect.

Next a compression-year interaction was fitted. In the analysis of the Japanese long-line, catches have generally been higher in the habitat compression area in the later period, while outside the compression area catches appear to have been more variable. For the late Chinese Taipei longline series, like for the Japanese LL, catches were greater inside the compression area, although in the early period they were more similar. In contrast the Korean Republic series showed little effect due to habitat compression.

Although habitat compression appeared to affect catch rates, the effect on the standardized CPUE was relatively small, probably due to the fact that the number of observations from inside and outside the area was similar in magnitude and the standardized CPUE series (**Table 8**) were generated assuming a balanced design to replicate LSMEAN estimates. Details supporting the analysis are presented in SCRS/2010/060.

In the last assessment meeting it had been suggested that simulations of targeting should be conducted in order to evaluate bias in CPUE for stocks caught in mixed fisheries. However, little progress has been made in this regard apart from SCRS/2010/049 which included "Fleet strategy" as a covariate.

7. Review of potential methods to be used in the assessment

Historically, marlin assessments have mainly relied on trends in catch rates and biomass production analyses, owing among other issues, to the uncertainties related to age at size for this species. It is anticipated that these forms of analysis shall continue into the future, at least to form the basis of comparison with other modeling approaches which should also be applied.

Trend analysis was conducted in the 2006 assessment (Anon. 2007) and shall be updated in the 2011 assessment. This depends heavily on updated standardized catch rates from the fleets that have been used for this analysis in the past. Several of the critical time-series used in this analysis in 2006 were not updated by national scientists

for this meeting and should either be submitted by national scientists or derived from the TII c/f data held at the Secretariat. Some of this analysis was conducted at the Working Group meeting and is presented in Section 5 of this report.

Surplus production model applications (e.g. ASPIC, BSP) have been used in several assessments of blue marlin. Initial parameter settings are described in the 2000 detailed assessment report. These applications shall be updated to consider the more recent catch and effort data.

With the increase in knowledge of growth patterning in blue marlin (see Section 3), the implication of agestructure to the assessment of blue marlin status should again be investigated through the application of age/sizestructured modeling approaches. Options range from delay-difference to age-structured production models and further to more fully integrated statistical stock assessment modeling approaches (e.g. Multifan-CL, Stock Synthesis, CASAL, etc.) which should be employed to take advantage of the catch, effort, size, and tagging information related to marlins held in the ICCAT data sets, as is being done with most of the other ICCAT stocks. In support of initiating such analyses, the Working Group evaluated the fleet-area specific catch at size distributions and the distribution of tag release and recapture information (see Sections 2 and 3).

To progress the potential application of a statistically integrated assessment model, the Working Group proposed to consider a geographic stratification of 4 Atlantic quadrants (NW, NE, SW and SE) as roughly depicted in **Figure 6**. Note that the SE quadrant in this figure encompasses the hypothesized Hypoxia-Based Habitat Compression area described by Prince *et al.* (2010). The Working Group recommended that quarterly catch, effort, and size information from LL, RR, GILL, PS, and OTH gears should be assembled by flag and gear to enable identification of the fisheries (area/gear/fleet combinations) that should be modeled in each of these areas. While this work was initiated during the Working Group meeting, substantially more intercessional work will need to be conducted to define the most appropriate fisheries to model and to account for the area definitions proposed, especially for longline fleets that operate across the area boundaries.

8. Recommendations

- 1) The Working Group recommended the need to stress that CPC's should report Task I and Task II for inter-sessional meetings by the deadlines provided by the Secretariat.
- 2) The Working Group recommended that anal spine sections and ring measurements be examined to identify and exclude "faux anneau" (false annual rings), and that authors of this work make use of the work by Prince *et al* (1991) to "anchor" the early growth estimates obtained from spine sections.
- 3) The Working Group recommended that the trend analysis conducted in the 2006 blue marlin stock assessment be updated in the 2011 stock assessment meeting.
- 4) The Working Group recommended that surplus production models conducted in the 2000 blue marlin stock assessment be updated in the 2011 stock assessment meeting.
- 5) The Working Group recommended to establish a protocol (web based) to continue progressing with the application of a statistically integrated assessment model that would take into consideration, seasonal catch, effort, size information for all gears, and the new geographical stratification proposed during the blue marlin data preparatory meeting.
- 6) The Working Group recommends that the genetic analysis proposal (**Appendix 6**) be considered at the next SCRS species group meeting.
- 7) The Working Group recommends that the ICCAT Manual be updated to consider the misidentification problems between roundscale spearfish, longbill spearfish and white marlin.
- 8) The Working Group recommends the preparation of identification sheets for all species of billfish, similar to those being prepared for sharks and small tunas.
- 9) The Working Group agreed that more research, such as simulation exercises, should be developed regarding the effectiveness of methods involving PCA and K-means, as well as the impacts of its use on the estimation of standardized series.
- 10) In noting that estimation of relative abundance indices is always best done at the highest spatio-temporal resolution warranted by the available data, the Working Group recommends that all CPCs, and especially those that have important catches of blue marlin, provide updated relative abundance indices obtained from such high resolution CPUE data.

11) The Working Group should conduct an analysis on gaps of reported catches from various CPC's by considering Task I and Task II data and the methods used during the sailfish data preparatory meeting in 2008 (Anon. 2009).

9. Other matters

Three SCRS documents on white marlin were presented during this section. Document SCRS/2010/042 reported on the age and growth analysis of white marlin caught by commercial and artisanal fleets in the western Atlantic (Brazil) and Caribbean (Venezuela). Transverse sections from anal spines were examined for 514 females and 420 males. The ring count median and mode was two for both females and males, while assigned ages ranged from one to ten years. The majority of individuals ranged from four to eight years of age. The mode of the ages was six for males and seven for females, but the median age was identical (six years) for both sexes. There was no significant difference in the age distribution by sex (Wilcoxon rank-sign test, p=0.09). The growth modeling curves for males and females were significantly different (Kimura likelihood ratio test), with females having a significantly lower K and a higher L_{∞} . There was no significant difference between t_0 parameters between the sexes. A paucity of samples from the youngest and oldest age classes hindered the fit of all three parameters simultaneously with a high degree of precision. Sexual dimorphism was apparent, whereby females were significantly larger, but not older, than males. The likelihood ratio tests estimated L_{∞} for females significantly higher, compared to males, while K for females was significantly lower. A retrospective genetic analysis of a sub-sample of the Brazilian spines indicated the presence of longbill and roundscale spearfish, adding uncertainty to these results. The proportion of misidentified samples may not be trivial, but at this time the extent of contamination is unknown. The samples reflect what is currently reported as white marlin.

Document SCRS/2010/027 addressed the issue of the presence of roundscale spearfish (*T. georgii*) in the Venezuelan longline catches in the western Caribbean and adjacent Atlantic waters. The document reported the proportion of roundscale spearfish to white marlin in the Venezuelan pelagic longline catch from the western Caribbean Sea and adjacent Atlantic waters. The data included macroscopic identification of 290 roundscale spearfish and 959 white marlin observed from 450 sets during the period 2002-2007. A distinct spatio-temporal distribution of roundscale spearfish was apparent, with the highest proportion (>65%) occurring in the northwestern Caribbean Sea during the third trimester (Jul-Sep). Roundscale proportions remained relatively high in this area throughout the year, with the exception of the first trimester (Jan-Mar), when nearly all observations consist of white marlin.

Document SCRS/2010/040 provided an update of the U.S. conventional tagging data for white marlin. A total of 51,969 white marlin were tagged and released during the period 1954-2008. Deployments were carried out predominantly in the western North Atlantic, Florida Straits, Bahamas, and northern Gulf of Mexico. There were 1,014 reported recaptures (1.95%). Days at-liberty ranged from 0 to 5,488 d (mean 700 d, SE 22). Three individuals made north to south trans-equatorial movements, while seven were reported making west to east trans-Atlantic movements. No white marlin have been reported making both trans-Atlantic and trans-equatorial movements. Most recaptures (59%) have been reported from the Venezuelan commercial and recreational fleets in the Caribbean. The remaining recaptures (41%) were distributed throughout the western and eastern North Atlantic. Tagging effort has decreased greatly since 2002.

Results of research conducted by Beekircher *et al.* (2009) were presented describing the effects of species misidentification on the population assessment of white marlin and roundscale spearfish. The authors reported that roundscale spearfish constitute a large proportion (~27%) of the overall 'white marlin' catch in the western North Atlantic, with high spatial variation within this region. Consequently, the current knowledge of white marlin biology is contaminated by the recently recognized, and morphologically similar, roundscale spearfish. Population assessment simulations using the 27% proportion of roundscale spearfish indicated that historical changes in the roundscale/white marlin ratio, and differences in the population growth rates do affect simulation results. This suggests that species misidentifications may have affected the accuracy of previous white marlin assessments for the western North Atlantic. Additional research on the life histories of both species has been proposed to corroborate the findings of historical studies.

Following the conclusions and recommendations of Beerkircher *et al.* (2009) and Shivji *et al.* (2006), the Working Group considered a proposal (**Appendix 6**) with the intent of obtaining the necessary information to attempt a white marlin assessment by 2012. This proposal describes efforts to continue and expand collaborative studies with Dr. Shivji's group (Shivji *et al.* 2006; Hoolihan *et al.* 2009; Beerkircher *et al.* 2009), to investigate Atlantic wide, spatial and temporal distribution of roundscale spearfish, longbill spearfish, and white marlin both

retrospectively, as well as currently, throughout their range. In addition, the work will also assess the frequency of misidentification of roundscale spearfish as white marlin or longbill spearfish in Atlantic fisheries.

White marlin size frequency analyses, similar to those conducted on blue marlin, were carried out during the meeting. Results are included as **Appendix 7**.

The Working Group acknowledged the vast improvement in the reliability of the connection, quality and speed of data access provided by the new wireless equipment available at the Secretariat. The productivity of the Working Group during the meeting benefitted from such continued improvements.

10. Adoption of the report and closure

The report was adopted during the meeting.

The Chairman thanked the Secretariat and participants for their hard work.

The meeting was adjourned.

Literature cited

- Anon, 2007, Report of the 2006 ICCAT Billfish Stock Assessment (Madrid, Spain, May 15 to 19, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(5): 1431-1546.
- Anon. 2009, Report of the 2008 ICCAT Sailfish Data Preparatory Meeting (Madrid, Spain, May 19 to 24, 2008). Collect. Vol. Sci. Pap. ICCAT, 64(6): 1765-1832.
- Beerkircher, L.R., Lee, D.W and Hinteregger, G.F. 2008, Roundscale spearfish *Tetrapturus georgii*: morphology, distribution, and relative abundance in the western North Atlantic. Bull. Mar. Sci., 82: 155–170.
- Beekircher, L., Arocha, F., Barse, A., Prince, E., Restrepo, V., Serafy, J. and Shivji, M. 2009, Effects of species misidentification on population assessment of overfished white marlin *Tetrapturus albidus* and roundscale spearfish *T. georgii*. Endang. Species Res., 9:81-90.
- Gobert, 1989, Fishing effort and production in the artisanal fisheries in the Martinique. Document scientifique. Pole de Recherche oceanologique et halieutique caraibe. Fort-de-France. No. 22, 98 p. 1989.
- Hazin, F.H.V., Hazin, H.G., Travassos, P. and da Mata Oliveira, I., 2007, Standardized catch per unit of effort of white marlin, *Tetrapturus albidus*, and blue marlin, *Makaira nigricans*, caught by the Brazilian tuna longline fleet. Collect. Vol. Sci. Pap. 60(5): 1652-1662.
- Hoolihan, J.P., Perez, N.F. Faugue, R.M. Bernard, A.M. Horn, R.L., Snodgrass, D. and Schultz, D.R. 2009, Surface mucous as a source of genomic DNA from Atlantic billfishes (Istiophoridae) and swordfish (Xiphiidae). Fish. Bull., 107: 339-342.
- Ortiz, M. and Arocha, F. 2004, Alternative error distribution models for standardization of catch rates of nontarget species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. Fish. Res. 70 (2004) 275-297.
- Prince, E.D., Lee, D.W., Zweifel, J.R. and Brothers, E.B. 1991, Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. Fish. Bull. 89:441-459.ICCAT. Suggested rules and procedures for the protection, access to, and dissemination of data compiled by ICCAT. *In* Report for Biennial Period, 2008-2009, Part II (2009), Vol. 2-SCRS: 287-295.
- Prince, Eric D., Luo, Jiangang, Goodyear, C. Phillip, Hoolihan, John. P., Snodgrass, Derke, Orbesen, Eric S., Serafy, Joseph E., Ortiz, Mauricio and Schirripa, Michael J. 2010, Ocean scale hypoxia-based habitat compression of Atlantic Istiophorid billfishes. Fish. Oceanogr. 19, Issue 6, pp. 448-462.
- Reynal, L; Nelson, L; Rivoalen, JJ; Lagin, A. 2007. Fishing effort and production of fishing associated with moored FADs in Martinique estimation by phone surveys. Gulf. Caribb. Res. Vol. 19, no. 2, p. 174.
- Shivji, M.S., Magnussen, J.E., Beerkircher, L.R., Hinteregger, G., Lee, D.W., Serafy, J.E. and Prince, E.D. 2006, Validity, identification, and distribution of the roundscale spearfish, *Tetrapturus georgii*: morphological and molecular evidence. Bull. Mar. Sci., 79:483-491.

RAPPORT DE LA RÉUNION ICCAT DE PRÉPARATION DES DONNÉES SUR LE MAKAIRE BLEU DE 2010

(Madrid (Espagne), du 17 au 21 mai 2010)

1 Ouverture, adoption de l'ordre du jour et organisation des sessions

La réunion a été tenue au Secrétariat de l'ICCAT à Madrid du 17 au 21 mai 2010. M. Driss Meski, Secrétaire exécutif de l'ICCAT, a ouvert la réunion et souhaité la bienvenue aux participants (« le Groupe de travail »).

Dr Freddy Arocha (Venezuela), Président de la réunion, a souhaité la bienvenue aux participants de la réunion et a passé en revue l'ordre du jour qui avait été adopté sans modification (**Appendice 1**).

La liste des participants se trouve à l'**Appendice 2.** La liste des documents présentés à la réunion est jointe à l'**Appendice 3**. Les personnes suivantes ont assumé les fonctions de rapporteur :

Sections	Rapporteur
Sections 1 et 10	P. Pallarés
Section 2	C. Palma, G. Scott et P. Lynch
Section 3	J. Hoolihan et P. Pinheiro
Section 4	D. Die et E. Prince
Section 5	H. Hazin, C. Wor, L. Kell et P. Bannerman
Section 6	L. Kell
Section 7	G. Scott
Section 8	F. Arocha
Section 9	F. Arocha, J. Hoolihan

2 Actualisation des informations de base

Au début de la réunion, le Secrétariat a présenté les informations halieutiques et biologiques dont il disposait sur le makaire bleu (BUM), à savoir : Statistiques de capture de Tâche I (T1NC) ; caractéristiques des flottilles de Tâche I (T1FC) ; données de prise et d'effort de Tâche II (T2CE) ; échantillons de taille de Tâche II (T2SZ) ; marquage conventionnel. Les données et les catalogues ainsi élaborés (utiles pour obtenir une perspective globale de la couverture/disponibilité des données) contenaient les informations les plus actualisées (au 17 mai 2010) disponibles dans les bases de données de l'ICCAT. La série temporelle a couvert toutes les années (de 1950 à 2009). A la demande du Groupe de travail, des jeux de données supplémentaires ont également été préparés pendant la réunion avec d'autres istiophoridés (makaire blanc (WHM), voiliers (SAI), istiophoridés non-classifiés (BIL). Le Groupe de travail a analysé et adopté toutes les révisions et les nouvelles données déclarées pendant la réunion et ils les a finalement incorporées dans la base de données de l'ICCAT.

2.1 Tâche I (captures)

Le Groupe de travail a examiné les informations détaillées contenues dans l'ensemble de série temporelle de T1NC et a constaté que la prise déclarée en 2009 était très incomplète, quelques CPC seulement ayant déclaré ces statistiques dans les délais prévus : UE (UE-Espagne, UE-Portugal, UE-France, UE-Danemark, UE-Pays-Bas), Ste Lucie et le Taïpei chinois. Au cours de la réunion, le Ghana, les Etats-Unis et le Venezuela ont également fourni des estimations préliminaires. Au total, la capture déclarée en 2009 ne représentait que 25% des prises déclarées en 2008.

Une fois de plus, le Groupe de travail a réitéré l'importance des statistiques de T1NC et de leur disponibilité en temps opportun afin d'accomplir les objectifs de ce type de réunion de préparation des données. Toutes les CPC de l'ICCAT devraient déclarer en temps opportun (en fonction du plan de travail de la réunion pour la transmission des données) au moins les chiffres provisoires des prises nominales de Tâche I. Sinon, Le Groupe de travail ne pourra pas travailler avec les indicateurs de production globale les plus récents. Les estimations des prises de makaire bleu de Tâche I sont présentées au **Tableau 1**.

Le Groupe de travail a également révisé les statistiques des istiophoridés non-classifiés (BIL) et leurs implications dans une éventuelle sous-estimation des tendances de capture du makaire bleu et d'autres

istiophoridés. De nombreuses CPC déclarent encore des volumes raisonnables d'istiophoridés, comme on peut le voir à la Section 4. Comme dans l'évaluation de 2006 (Anon., 2007), un ensemble similaire de procédures a été utilisé pour ventiler les chiffres de capture des istiophoridés non-classifiées en makaire bleu, makaire blanc et voilier. Cet exercice est décrit à la Section 4 du présent rapport.

2.2 Tâche II (prise-effort et échantillons de taille)

Les informations relatives à T2CE (prise et effort) et à T2SZ (échantillons de taille) du makaire bleu ont été présentées au début de la réunion (catalogues et données).

En ce qui concerne T2CE, le Groupe de travail a relevé le caractère incomplet des données historiques pour certaines des séries les plus importantes. Le manque d'homogénéité dans les séries présentait un autre inconvénient, en ce sens que des variations apparaissaient dans les unités d'effort (parfois aucun effort n'était déclaré), la stratification temporelle (par année, trimestre et mois), la distribution spatiale (carrés de 1x1, 5x5, 10x10, 10x20 et 20x20), la composition spécifique de la capture (poids, nombre ou les deux), etc. Ces divergences avaient déjà été identifiées au cours de réunions antérieures. Le Groupe de travail encourage les CPC respectives à réviser les donnés de T2CE afin d'harmoniser les séries en suivant les exigences de données du SCRS en matière de statistiques de prise et d'effort de la Tâche II. Les statistiques de T2CE les plus récentes au titre de 2009 ont été déclarées dans les délais seulement par UE-Espagne et la Barbade (comme istiophoridés non-classifiés), le Taïpei chinois (makaire bleu et autres istiophoridés) et le Canada (avec une capture nulle de makaire bleu). Pendant la réunion, seul le Ghana a fourni de nouvelles statistiques de T2CE au filet maillant (2008 et 2009). Le scientifique ghanéen a indiqué que la série de prise et d'effort de filet maillant (remontant à 1980) était en cours de révision (certaines incohérences apparaissaient dans les estimations de la CPUE) et qu'elle serait envoyée à l'ICCAT avant la prochaine réunion du SCRS. Le Secrétariat a offert sa collaboration dans la préparation de cette importante série de prise et d'effort.

En ce qui concerne T2SZ, le Groupe de travail a relevé le caractère incomplet et l'hétérogénéité des données de taille historiques pour certaines des pêcheries les plus importantes. Certaines séries d'échantillons de taille sont très hétérogènes et présentent des variations au niveau : Des types de classe de taille (longueur : 1, 2, 5 cm ; poids : 1, 2, 5, 10 kg) ; types de fréquence de taille (LJFL, WGT, CLCK, LD1, etc.) ; types d'intervalles de taille (limite inférieure, limite centrale, limite supérieure, souvent inconnu); stratification temporelle (par an, trimestre et mois); distribution spatiale (carrés de 1x1, 5x5, 10x10, 10x20 et 20x20). Le Groupe de travail encourage également les CPC respectives à réviser les données de T2SZ afin d'harmoniser les séries en suivant les exigences de données du SCRS en matière d'échantillons de taille de Tâche II. Pour 2009, l'UE (UE-Espagne, UE-Portugal et UE-France) et le Taipei chinois ont été les seuls à déclarer dans les délais impartis les données de T2SZ. Au cours de la réunion, le Ghana, le Venezuela et l'Uruguay ont présenté des informations additionnelles sur les tailles. Des séries de données de T2SZ importantes ont été fournies et adoptées par le Groupe de travail, à savoir Uruguay LL (2003 à 2009) et Venezuela LL (1992-2009). Toutes les informations disponibles sur la taille du makaire bleu (1956 à 2009) ont été analysées dans le détail dans deux buts principaux : a) son utilisation potentielle dans des modèles d'évaluation intégrés ; et b) la possibilité d'obtenir à l'avenir une estimation de la prise par taille/âge (composition taille/âge des captures) qui sera utilisée dans des modèles types structurés. Les détails de cette analyse sont décrits à la Section 7.

2.3 Catalogue des informations disponibles

Le **Tableau 2** compare les données disponibles de T1NC et T2CE déclarées jusqu'à ce jour pour le makaire bleu par pavillon et flottille pour les deux décennies les plus récentes. Dans le tableau, les cellules ombrées en foncé représentent les strates pour lesquelles des données ont été déclarées. Si les CPC respectent rigoureusement leurs obligations en matière de déclaration des données, il n'y a pas de lacune dans les déclarations et aucune cellule ne contient donc des points rouges. Il ne fait aucun doute que la capacité des CPC à répondre à leurs obligations de déclaration pour le makaire bleu fait l'objet d'une grande variabilité.

2.4 Analyse de la fréquence des tailles

Une analyse de fréquence des tailles a été réalisée sur les données de taille de Tâche II du makaire bleu pour lesquelles on disposait de mesures de taille (longueur maxillaire inférieur-fourche, cm) et/ou de poids (kg). L'analyse s'est centrée sur les données des pêcheries qui ont représenté la majorité de la prise de makaire bleu ; sept pays et quatre engins de pêche différents ont été représentés (**Tableau 3**). De légères différences dans la méthodologie de collecte des données sont apparues entre les pêcheries, telles que la spécification des intervalles minimum utilisés pour les mesures. Dans ces cas, aucune conversion à une unité standard n'a été réalisée, car les différences étaient minimes et l'application d'une conversion scalaire pourrait s'avérer inappropriée. De surcrôt,

plusieurs pêcheries ont déclaré des mesures de longueur anormalement petites. On a présumé que ces petits poissons représentaient une classification erronée et qu'en réalité il ne s'agissait pas de makaire bleu. Afin de tenir compte de ces classifications éventuellement erronées, un seuil plus faible de 80 cm a été imposé, ce qui représente une proportion très faible des données globales (<0,05%). En outre, un makaire bleu anormalement grand a déclaré, et une limite supérieure de 400 cm a été adoptée.

Des statistiques de base récapitulatives ont été calculées pour chaque pêcherie par année, y compris les minimum, les médianes, les moyennes, les déviations standard de la moyenne, des maximum, et les gammes d'interquartiles. Ces statistiques ont été récapitulées dans des tableaux, et les tendances annuelles des données ont été représentées dans des figures (cf. Appendice 5). En général, la longueur maxillaire inférieur fourche (LJFL) était d'environ 200 cm dans la plupart des pêcheries. Les pêcheries côtières de filet maillant de la Côte d'Ivoire et du Ghana faisaient figure d'exception. Pour ces pêcheries, la LJFL s'établissait à environ 240 cm. Même si elle est variable dans le temps, la LJFL n'a dégagé aucune tendance claire. Des diagrammes de probabilité cumulative parmi la gamme observée de LJFL par année ont été tracés pour les diverses pêcheries palangrières, la pêcherie sportive des Etats-Unis et la pêcherie à la ligne à main de la Martinique combinées, et un diagramme distinct a été réalisé pour les pêcheries de filet maillant. Ces figures indiquent des schémas cohérents de sélectivité par taille pour le makaire bleu entre les différentes pêcheries et dans le temps. Moins de séries temporelles étaient disponibles pour les analyses de fréquence de poids et, à l'exception de la pêcherie sportive des Etats-Unis, les séries temporelles étaient brèves et/ou incomplètes. Pour ces pêcheries, les mesures du poids moyen étaient généralement de l'ordre de 70-100 kg, mais la variabilité entre les pêcheries semblait plus élevée que celle observée pour la LFJL. Ceci est vraisemblablement dû à la disponibilité de moins de données, ce qui entraîne des estimations moins robustes des statistiques récapitulatives. Par ailleurs, les données de poids de la Martinique représentaient les poids éviscérés. Comme avec les analyses de la LJFL, il est difficile d'identifier une claire tendance du poids du makaire bleu dans le temps. Des diagrammes de probabilité cumulative des poids observés dans le temps ont été créés, et pareillement aux diagrammes de LJFL, ils indiquent des schémas cohérents de sélectivité par taille.

Ces analyses étaient informatives en ce sens qu'elles ont décrit la dynamique des principales pêcheries en ce qui concerne la distribution des tailles du makaire bleu. Il s'agit d'un exercice particulièrement utile, étant donné que tout impact potentiel des pêcheries sur la structure des tailles des populations (c'est-à-dire la surpêche de croissance) peut être détecté. En outre, ces données sont indispensables pour réaliser des évaluations de stocks intégrées ; méthode que le Groupe de travail avait recommandé d'envisager pour le makaire bleu (*cf.* Section 7). C'est pourquoi le Groupe de travail recommande que les pays membres de l'ICCAT mettent davantage l'accent sur la collecte et la déclaration des données de fréquence des tailles (suivant une méthodologie standardisée).

3 Examen des nouvelles données biologiques, relatives à l'habitat et au marquage pour le makaire bleu

3.1 Biologie

Les résultats de l'analyse de l'âge et de la croissance ont été présentés pour les makaires bleus échantillonnés entre décembre 2004 et décembre 2006 par le Brésil et le Venezuela. Les sections transversales des épines des nageoires de 170 femelles et 429 mâles ont été analysées. L'analyse de la croissance marginale relative a été utilisée afin de déterminer la périodicité de la formation des anneaux de croissance. Les taux de croissance ont été estimés à l'aide du rétro-calcul (fonction de croissance de von Bertalanffy). Les estimations pour L_{inf}, k et t₀ pour les femelles étaient de 353,74 ; 0,06 et -6,15 respectivement. Pour les mâles, les estimations se chiffraient à 350,28 ; 0,05 et -9,47. Les échantillons de très petits et très grands spécimens de makaire bleu n'étaient pas disponibles pour l'analyse. L'absence de différence considérable (p=0,17) dans le taux de croissance (k) entre les sexes a été attribuée à l'absence de très grands spécimens.

Un effort collaboratif, coordonné par le Brésil, visant à estimer la structure démographique et la croissance du makaire bleu de l'Atlantique a permis d'avancer dans l'estimation des âges de plus de 500 poissons provenant pour la plupart des pêcheries palangrières tropicales du Venezuela et du Brésil. Des sections du rayon épineux ont été examinées et l'on a procédé au comptage des anneaux, au calcul de leur dimension et l'on a mesuré leur vascularisation. Ces mesures confirment que la vascularisation obscurcit quelques-uns des anneaux initialement formés dans les rayons épineux étant donné que la zone vascularisée s'élargit avec l'âge. Les analyses préliminaires de ces données révèlent la présence d'un premier anneau dans des poissons de moins de 150 cm LJFL, et jusqu'à quatre anneaux dans des poissons de moins de 180 cm LJFL. Ce fait contraste avec les travaux de Prince *et al.* (1991) selon lesquels la lecture quotidienne d'anneaux d'otolithes a permis de constater qu'un makaire bleu de 150 cm LJFL a entre 200 et 400 jours, tandis qu'un makaire bleu de 180 cm LJFL a entre 300 et 500 jours. L'examen des mesures des anneaux réalisé à la réunion a révélé la possibilité que certains des anneaux

soient de faux anneaux. Le Groupe de travail a recommandé que les mesures des anneaux et les sections de rayons épineux soient examinées afin d'identifier et d'exclure les faux anneaux et que les auteurs de ces travaux fassent en sorte que les travaux de Prince et *al.* (1991) soient utilisés pour « consolider » les estimations de croissance précoces obtenues des sections du rayon épineux.

Le document SCRS/2010/045 fournit des informations obtenues du Programme d'observateurs de l'Uruguay sur les captures de makaire bleu réalisées par la flottille palangrière sous pavillon uruguayen et japonais qui opérait dans l'océan Atlantique sud-ouest entre avril 1998 et décembre 2009 et entre mars et septembre 2009, respectivement. Les prises de cette espèce ont lieu dans la Zone économique exclusive de l'Uruguay et dans les mers adjacentes pendant l'été lorsque la température de l'eau est élevée. Dans cette région notamment, les CPUE observées pour la flottille uruguayenne et japonaise étaient similaires, de 0,01 à 0,05 poisson pour 1.000 hameçons. Les poissons capturés par la flottille japonaise à une plus grande profondeur (100-200 mètres) sont plus grands (266 \pm 60 cm) que ceux capturés par la flottille uruguayenne (199 \pm 35 cm) dans des eaux moins profondes (30-80 mètres). Le sex-ratio a varié, les femelles représentant une plus grande proportion (1 : 3,4) dans les eaux plus profondes, tandis que dans les eaux moins profondes, les mâles prédominaient (1,9 : 1). Selon cette information, il pourrait exister une séparation spatiale entre les sexes et certaines classes de tailles, dans la colonne d'eau.

3.2 Habitat

Les études de marquage avec des marques-archives pop-up reliées par satellite réalisées sur le makaire bleu et le voilier par Prince et *al.* (en cours de révision) décrivaient l'utilisation de l'habitat vertical et son impact sur ces espèces lorsqu'elles se trouvent dans la zone de minimum d'oxygène (OMZ) de l'Atlantique tropical Est (ETA). Au total, 32 voiliers (*Istiophorus platypterus*) et 47 makaires bleus ont fait l'objet d'un suivi dans l'ETA et l'Atlantique Nord-Ouest (WNA). Les deux espèces ont passé bien plus de temps dans les eaux proches de la surface à l'intérieur de l'ETA par rapport à la WNA. Les auteurs soutiennent que la densité des istiophoridés et des thonidés à proximité de la surface augmente à cause de la compression de l'habitat dans l'OMZ de l'ETA, accentuant par conséquent leur vulnérabilité aux engins de surface. Etant donné que l'OMZ de l'ETA englobe pratiquement toutes les eaux équatoriales de l'Atlantique, le potentiel de surexploitation est un motif de préoccupation pour les auteurs. La variation potentielle de la capturabilité à l'intérieur par opposition à l'extérieur des zones de compression suggère qu'il serait bon d'envisager de standardiser des taux de capture distincts pour les deux zones afin de minimiser les inexactitudes dans les résultats des évaluations de stocks. En réponse, le Groupe de travail a réalisé des analyses exploratoires à l'aide des données palangrières historiques afin de déterminer si les prises effectuées à l'intérieur et à l'extérieur de l'OMZ présentaient des différences dans les taux de capture et la capturabilité (*cf.* Section 6).

3.3 Marquage

Le document SCRS/2010/041 a fourni une actualisation des données de marquage conventionnel des Etats-Unis en ce qui concerne le makaire bleu. Au total, 57.287 makaires bleus ont été marqués et remis à l'eau entre 1955 et 2008. Sur ce nombre, 809 (1,41%) ont été récupérés. Même si les marques ont été déployées dans tout l'Atlantique, la majorité de l'effort de marquage s'est concentré dans l'Atlantique Nord-Ouest. La plupart des récupérations ont eu lieu dans les deux ans, mais plusieurs makaires bleus ont été en liberté pendant plus de 12 ans. En termes de déplacements à grande échelle, le makaire bleu a fait preuve d'une plus large gamme de déplacements que le makaire blanc ou le voilier. En ce qui concerne les récupérations de makaires bleus, 20 spécimens ont réalisé des déplacements transatlantiques (c'est-à-dire qu'ils ont traversé la dorsale de l'Atlantique central), tandis que six spécimens ont effectué des déplacements transéquatoriaux. Des déplacements à l'océan Indien. Ces grands déplacements coïncident avec l'hypothèse d'un stock unique de makaire bleu englobant tout l'Atlantique.

On a analysé la base de données de marquage de l'ICCAT pour le makaire bleu afin d'évaluer l'utilité potentielle de la modélisation des déplacements et de la survie du makaire bleu dans l'océan Atlantique dans une formulation de modélisation statistique intégrée. La base de données de l'ICCAT pourrait être considérablement révisée dans un proche avenir. L'**Appendice 4** présente des résumés de l'information lors de la remise à l'eau par année, région et trimestre et par année et engin principal (**Tableaux 1** et **2**). Le Groupe de travail a entrepris un contrôle additionnel de la qualité des données afin d'assigner l'engin de remise à l'eau aux types d'engins non-classifiés (**Tableau 2**), sur la base de l'expertise en matière d'activités de marquage du makaire bleu menées dans l'Atlantique. Le Groupe de travail a, en outre, recommandé que les remises à l'eau classifiées comme « SPORT » soient considérées comme des remises à l'eau RR aux fins de la modélisation de l'évaluation. Le résultat de cet effort est également récapitulé à l'**Appendice 4** (**Tableau 3**).

4 Examen des estimations des prises de makaire bleu (historiques et actuelles)

4.1 Examen des prises non-classifiées d'istiophoridés

Les données de la Tâche I que le Secrétariat a fournies au Groupe contiennent 4.933 t d'istiophoridés nonclassifiés que divers pays ont déclarées à l'ICCAT entre 1980 et 2009. Afin d'améliorer les estimations de la prise historique de makaire bleu, le Groupe de travail a tenté d'estimer les quantités de makaire bleu contenues dans ces déclarations. La procédure suivante a été suivie à cette fin :

- Les déclarations d'istiophoridés ont été reclassifiés pour des séries de données sélectionnées pour lesquelles on disposait des ratios d'espèces d'istiophoridés pour la période où les istiophoridés ont été déclarés pour la même flottille et la même zone.
- 2. Les déclarations d'istiophoridés restantes qui n'ont pas été sélectionnées au point 1 ont été reclassifiées sur la base des ratios d'espèces d'istiophoridés englobant tout l'Atlantique.

La Tâche I contient 72 séries de données (identifiées comme FLAG unique, combinaisons GEARGRP et AREA) de capture d'istiophoridés déclarées, qui représentent les captures de 47 flottilles différentes (FLAG unique, combinaisons GEARGRP). Pour nombre de ces flottilles, les déclarations d'istiophoridés représentent de faibles captures. En raison du temps nécessaire à l'examen de chaque flottille, le Groupe s'est concentré uniquement sur les données d'istiophoridés des flottilles qui représentaient au moins 1% de la prise totale d'istiophoridés, soit les flottilles qui déclaraient plus de 50 t d'istiophoridés (**Tableau 4**). Ensemble, ces flottilles représentent 91% des déclarations d'istiophoridés.

Afin de reclassifier ces déclarations d'istiophoridés, il a été nécessaire d'identifier les ratios de makaire bleu, de voilier et de makaire blanc devant être utilisés dans la reclassification. On a estimé que ces ratios devaient être calculés à partir des données disponibles pour la même combinaison de flottilles et zones. Si possible, les ratios ont été obtenus pour la même période d'années pour laquelle les istiophoridés ont été déclarés. Si ces données n'étaient pas disponibles, les ratios ont alors été obtenus pour une période de cinq ans antérieure ou postérieure à la période pour laquelle les istiophoridés étaient déclarés. Dans tous les cas, les ratios ont été jugés fiables uniquement si les prises d'istiophoridés classifiés représentaient au moins 10% des déclarations d'istiophoridés à classifier. Compte tenu de ces restrictions, il y a eu suffisamment de données pour reclassifier les istiophoridés pour toutes les flottilles, exception faite de la flottille de surface de UE-Portugal, de la flottille palangrière de UE-Italie et de la flottille palangrière de la Namibie. Il est toutefois peu probable que les prises palangrières de UE-Italie représentent du makaire bleu; elles correspondent très vraisemblablement au marlin de la Méditerranée. Pour les autres flottilles, les ratios de la composition par espèce ont été calculés chaque fois qu'il existait des prises déclarées pour les mêmes zone et flottille (Tableau 5). Tous les calculs de cette analyse ont été effectués selon le postulat que les prises de Tetrapturus spp. sont négligeables. Un tel postulat ne s'avère que partiellement correct; or, en raison des difficultés à séparer les différentes espèces de Tetrapturus spp. du makaire blanc, tel que cela a été indiqué aux sections 3 et 9 du présent rapport, le Tetrapturus spp. ne serait pas pris en compte dans les calculs.

Les ratios illustrés au **Tableau 5** ont été utilisés pour reclassifier un total de 2.636 t de déclarations d'istiophoridés, une quantité additionnelle de 2.357 t d'istiophoridés devant être reclassifiée. Les ratios du **Tableau 5** font apparaître que la composition spécifique varie entre les différentes zones et flottilles. Malheureusement, les diverses flottilles ne déclarent pas les zones de façon uniforme et ces dernières pourraient représenter des régions géographiques différentes. C'est pourquoi le Groupe de travail a décidé de calculer les ratios annuels de composition spécifique d'istiophoridés englobant tout l'Atlantique en utilisant les données de toutes les flottilles qui ont déclaré des istiophoridés, y compris les prises obtenues après avoir utilisé les ratios indiqués au **Tableau 5**. Ces ratios annuels ont servi à ventiler les 2.347 t restantes susmentionnées. Cela a été fait en regroupant toutes les déclarations d'istiophoridés restantes pour chaque année, sans reclassifier les prises de chaque série de données. Ces calculs n'indiquent donc que la meilleure estimation de la prise de makaire bleu éventuellement contenue dans les déclarations d'istiophoridés qui ne peuvent pas être reclassifiées à partir de données spécifiques aux flottilles (**Tableau 6**).

Il ressort clairement de ces calculs que les déclarations actuelles d'istiophoridés contenues dans la base de données de Tâche I ne changent pas de façon sensible les estimations des prises historiques de makaire bleu (**Figure 1**). Il en serait ainsi même si tous les istiophoridés non-classifiés étaient des makaires bleus. Il est toutefois très important que les pays responsables de ces déclarations d'istiophoridés essaient de ventiler les

données par espèces, ou fournissant au Groupe de travail leurs commentaires sur les procédures adoptées par ce dernier pour assigner ces captures à chaque espèce d'istiophoridés.

4.2 Examen des prises de makaire bleu effectuées avec des dispositifs de concentration du poisson (DCP) en Martinique et en Guadeloupe

Depuis le milieu des années 80, la Martinique et la Guadeloupe abritent une pêcherie active qui opère avec des dispositifs de concentration du poisson (DCP). Cette pêcherie a fait l'objet de très peu de suivi, mais on signale d'importantes captures de makaire bleu, de l'ordre de quelques centaines de tonnes par an (Reynal 2007). UE-France n'a déclaré les prises de cette pêcherie que pour les années 2005, 2008 et 2009. Le Groupe de travail a tenté de reconstruire l'historique des captures sur ces deux îles à partir des données disponibles :

- Estimations des taux de capture émanant des prospections des débarquements menées en 2004-2005 et 2008-2009 en Martinique, et en 2009 en Guadeloupe.
- Estimations de la participation historique à partir des entretiens réalisés auprès des capitaines des bateaux en 2005-2006 en Martinique et en Guadeloupe.
- Estimations du nombre de sorties par navire et par an à partir des entretiens téléphoniques et des calculs basés sur les tickets de combustible et les taux de consommation de combustible.

Les estimations des débarquements et de l'effort sont préliminaires et seront révisées par le scientifique français qui a fourni les données au Groupe.

D'après les entretiens réalisés auprès des capitaines, la flottille a commencé à utiliser les DCP en Martinique en 1985 et en Guadeloupe en 1989. Depuis lors, le nombre de navires pêchant avec des DCP a régulièrement augmenté sur les deux îles, atteignant environ 300 embarcations sur chaque île en 2005.

Les estimations de l'effort de pêche (nombre de sorties par an) obtenues pour la Martinique sont largement inférieures à celles déclarées par Gobert (1989) au titre de 1987, en fonction de la méthode utilisée aux fins de l'élaboration du nombre de sorties par navire par an. Le nombre de sorties par an calculé à partir des entrevues téléphoniques représente environ la moitié du nombre calculé à partir des données de consommation de carburant et constitue environ un quart du nombre calculé par Gobert (1989).

Les estimations des taux de capture par sortie obtenues pendant les prospections stratifiées aléatoirement entre 2008 et 2010 en Martinique et en Guadeloupe ont été utilisées pour établir la capture annuelle totale en postulant que ces taux de capture représentent les taux de capture moyens pour la pêche au cours de la période historique complète. La capture annuelle a été calculée en tant que produit du taux de capture et nombre de bateaux par an. Les estimations de la capture annuelle au titre de 2008, période pour laquelle on dispose de davantage de données fiables, s'élèvent à 289 t par an en Guadeloupe. Les estimations pour la Martinique sont plus incertaines et sont fournies en tant que fourchette. Des estimations basses ont été obtenues à partir des données provenant des entrevues téléphoniques et les estimations élevées proviennent des données de consommation de carburant. Au titre de 2008, les captures de la Martinique oscillaient entre 214 t (estimation basse) et 463 t (estimation élevée), sont inférieures à celles de nombreuses autres années. Aucune estimation au titre de 2009 n'est disponible pour la Guadeloupe.

Les estimations finales de la capture historique pour les deux îles commencent donc à partir d'une capture réduite de 10-30 t en 1985 réalisée en Martinique pour atteindre entre 300 et 450 t pour les deux îles en 1997 et arriver à l'estimation actuelle d'une capture oscillant entre 500 et 750 t, en 2008.

Ces estimations de capture, à l'exception des années 2005, 2008 et 2009, n'ont pas été considérées préalablement par le Groupe de travail. Le Groupe de travail a remplacé les données actuelles de capture de makaire bleu de Tâche I pour cette pêcherie par les estimations que le Groupe de travail a obtenues au cours de la réunion. Les estimations provenant de la capture totale de makaire bleu constituent une augmentation significative des débarquements pour la période commençant en 1985 (**Tableau 7** et **Figure 2**) et suggèrent que la capture de ces deux îles peut représenter entre 10 % et 16 % des débarquements annuels récents pour l'ensemble de l'océan Atlantique.

5 Examen des informations sur les taux de capture de makaire bleu

La dernière évaluation sur le makaire bleu a été réalisée en 2006. Pendant cette évaluation, des indices d'abondance relative pour différentes flottilles à partir de 1968 ont été mis à jour et estimés. Dans le cadre de cette évaluation, il a été estimé que les indices combinés pour le makaire bleu avaient connu une baisse entre 1990 et 2004 (**Figure 3**).

Cinq nouveaux documents ont été présentés pendant la réunion de préparation des données tenue à Madrid (Espagne) du 17 au 21 mai 2010 (Figure 4).

Le document SCRS/2010/043 fait état d'indices actualisés d'abondance pour le makaire bleu issus de la pêcherie palangrière pélagique des États-Unis menée dans l'Atlantique Nord-Ouest et le golfe du Mexique entre 1986 et 2009. Les indices ont été estimés en nombre de poissons/1.000 hameçons ainsi qu'en kg/1.000 hameçons. De manière générale, les deux indices présentaient des tendances à la baisse de 1992 à 2002 et sont ensuite restés à un niveau bas, mais relativement constant jusqu'en 2006. De légères augmentations ont été observées de 2007 à 2009, bien que ceci puisse être dû à une augmentation de la couverture d'observateurs et à l'amélioration de la collecte des données par des observateurs déployés à bord des navires.

Le document SCRS/2010/044 fait état d'indices actualisés d'abondance pour le makaire bleu issu de la pêcherie récréative avec tournois des États-Unis menée dans l'Atlantique Nord-Ouest, les États-Unis, le golfe du Mexique, les Bahamas et la mer des Caraïbes des États-Unis entre 1974 et 2009. Les indices ont été estimés en poids (kg) et en nombre de poissons par 100 heures au moyen des données collectées de 3.085 tournois. La capture récréative de makaire bleu et l'effort total de pêche présentaient une relation linéaire avec des tendances à la hausse depuis les années soixante-dix. Le nombre de navires et le volume de temps de pêche par tournoi ont connu une baisse depuis les années *quatre-vingt-dix*. Toutefois, l'effort total de pêche a continué d'augmenter jusqu'en 2000 en raison d'une augmentation du nombre de tournois de pêche d'istiophoridés par an. De manière globale, la CPUE du makaire bleu a augmenté jusqu'en 1995, a ensuite diminué et a atteint son niveau le plus bas en 2003, et a ensuite légèrement augmenté jusqu'en 2009.

Le document SCRS/2010/020 fait état des indices actualisés d'abondance pour le makaire bleu issu de la pêcherie palangrière pélagique du Venezuela entre 1991 et 2009. L'indice du nombre de poissons par 1.000 hameçons a été estimé à partir des données recueilles par les observateurs scientifiques dans le cadre du Programme d'observateurs de palangriers pélagiques du Venezuela. Les séries standardisées de la CPUE pour la capture de makaire bleu observée à bord de la flottille palangrière vénézuélienne font apparaître une tendance à la baisse de 1991 à 2004, suivie par un rétablissement modéré jusqu'en 2008 et par une baisse prononcée en 2009. Le Groupe de travail a signalé que le CV a augmenté pendant les dernières années en raison de la diminution de la couverture d'observateurs pendant cette période.

Le document SCRS/2010/021 fait état des taux de capture pour le makaire bleu provenant de la pêcherie à petite échelle de La Guaira (Venezuela) pour la période comprise entre 1991 et 2009, découlant de l'échantillonnage au port de 5.743 opérations de pêche menées par la flottille artisanale de filets maillants (35 navires). Les séries standardisées de la CPUE (en poids) présentaient une tendance à la hausse depuis 1991, avec un pic en 1999, et ont été suivies par une baisse brutale jusqu'en 2002 et par une hausse graduelle jusqu'en 2007. Depuis 2007, une forte chute a été accusée et le niveau a été ramené au niveau obtenu en 2002.

Le Groupe de travail a décidé d'inclure les séries de la CPUE consignées dans le document SCRS/1996/109 qui comprenaient les taux de capture standardisés pour la pêcherie sportive vénézuélienne du *Playa Grande Yachting Club* de 1961 à 1995.

Le document SCRS/2010/049 faisait état d'une CPUE standardisée pour le makaire bleu capturé par la flottille palangrière thonière du Brésil entre 1980 et 2008. Un modèle linéaire généralisé a été utilisé selon des postulats de distributions d'erreur delta-lognormale et d'erreur Tweedie. L'année, le trimestre, la zone et la stratégie de pêche ont été considérés en tant que variables explicatives. Les séries standardisées présentent une importante variation dans le temps, avec une tendance ascendante à partir de 2000.

Après la présentation de ce document, des préoccupations ont été exprimées au sujet des différences existant entre l'indice de stratégie cible inclus dans le document en question et celui présenté dans le document SCRS/2010/036 relatif à la standardisation du thon obèse capturé par la même flottille, au cours de la même période. Cette différence a été expliquée par le fait que la méthodologie d'estimation de l'indice de la stratégie de pêche avait été modifiée. La méthode PCA utilisée dans le SCRS/2010/036 avait été remplacée par la méthode des k-moyennes. L'auteur a justifié ce changement, car il était d'avis que la PCA fournirait des résultats faussés étant donné que le postulat de linéarité peut facilement être enfreint.

Tel que cela avait été souligné au cours de débats préalables, le Groupe a convenu qu'il serait opportun de réaliser davantage de recherche, telle que des exercices de simulation, afin d'analyser l'efficacité de ces méthodes et les impacts de leur utilisation sur l'estimation des séries standardisées.

Une comparaison entre les séries de la CPUE utilisées dans le cadre de la dernière évaluation de 2006 et celles communiquées au cours de la réunion de préparation des données de 2010 est présentée à la **Figure 5**. Deux comparaisons différentes sont fournies pour les indices de capture palangrière brésilienne. La première comparaison présente les séries standardisées utilisées dans l'évaluation de 2006. Ces séries ont été estimées au moyen d'une méthode plus traditionnelle (fichiers de l'ICCAT - **Figure 5** en bas à gauche) tandis que la deuxième comparaison présente les indices standardisés présentés dans le document de Hazin, *et al.* (2007) (**Figure 5**, en bas à droite) qui n'étaient pas inclus dans l'évaluation en raison des préoccupations exprimées par le Groupe de travail au sujet de l'impact de l'utilisation de la stratégie d'espèce cible en tant que variable explicative.

Pendant la réunion, des séries standardisées de CPUE supplémentaires ont été générées pour les séries de données du Japon, du Taipei chinois et de la Corée dont le Secrétariat disposait. Une description détaillée des données et des méthodes utilisées pour ces séries est présentée au titre du point 6 du présent rapport. Les résultats de ces standardisations sont présentés à la **Figure 4** et au **Tableau 8**.

6 Examen du travail de simulation réalisé jusqu'à ce jour

Pendant la réunion, des indices de la CPUE standardisée ont été préparés, en utilisant les données les plus récentes de prise et d'effort de Tâche II provenant de la base de données de l'ICCAT, pour les principales flottilles palangrières pour lesquelles des séries standardisées n'étaient pas disponibles (flottilles du Taipei chinois, du Japon et la République de Corée). L'accès direct aux données de Tâche II a pu être effectué par le biais de SQL dans R utilisant le programme RODBC, ce qui a permis de répéter relativement facilement l'analyse pour les différentes flottilles après l'adoption d'un protocole par le Groupe. Cela permettra également de mettre à jour plus facilement l'analyse actuelle a posteriori ou de la reproduire pour d'autres stocks, pavillons, engins de pêche et pêcheries. Tous les codes utilisés dans l'analyse seront disponibles dans le code Google.

La standardisation comprenait une strate fondée sur la zone postulée de compression de l'habitat fondée sur l'hypoxie décrite par Prince *et.al.* (en révision) afin d'évaluer ses effets sur les taux de capture. La strate identifiait les captures réalisées au sein de la zone de compression de l'habitat. Les données de Tâche II ont été stratifiées par carrés de 5° et les carrés au sein desquels l'hypoxie a été détectée (complètement ou partiellement) ont été inclus dans la strate de la zone de compression, étant donné qu'il avait été postulé que la pêche se concentrerait dans la zone de compression de carrés de 5° dans lesquels les captures seraient potentiellement supérieures.

La standardisation a été réalisée en utilisant des modèles linéaires généralisés postulant un modèle d'erreur delta lognormale après le contrôle des diagnostics (Ortiz et Arocha, 2004) en raison de l'existence d'une proportion importante de captures nulles. Les séries du Taipei chinois ont été divisées en deux périodes, à savoir 1968-1995 et 1996-2008, étant donné qu'il existait une différence significative de la variance entre les séries temporelles initiales et finales.

Après l'adaptation du GLM pour l'interaction année/trimestre, un schéma résiduel a été observé pour l'effet de compression des séries initiales et finales du Japon et du Taipei chinois. Dans le cas des palangriers japonais, il est apparu que la probabilité de localiser du makaire bleu est supérieure au sein de la zone de compression alors que, lors de la capture du makaire bleu, la CPUE était supérieure en dehors de la zone. Il existait également une variation dans le temps en ce qui concerne l'intensité de l'effet de la compression de l'habitat. L'analyse des données des palangriers du Taipei chinois présentait un effet semblable pour les périodes initiales et finales. Néanmoins, l'effet semblait limité pour les palangriers coréens.

Une interaction compression-année a ensuite été ajustée. Dans l'analyse des palangriers japonais, les captures étaient généralement supérieures dans la zone de compression de l'habitat pendant la période finale, alors que les captures réalisées en dehors de la zone de compression semblent avoir été plus variables. En ce qui concerne les séries palangrières finales du Taipei chinois, comme dans le cas des palangriers japonais, les captures étaient plus importantes à l'intérieur de la zone de compression, bien qu'elles se situaient à un niveau semblable pendant la période initiale. Par contre, les séries de la République de Corée semblaient ne pas avoir été altérées par la compression de l'habitat.

Si la compression de l'habitat semblait altérer les taux de capture, l'effet sur la CPUE standardisée était relativement limité, probablement car l'ampleur du nombre d'observations à l'intérieur et à l'extérieur de la zone était similaire et, car les séries de la CPUE standardisée (**Tableau 8**) ont été créées en postulant un modèle équilibré afin de reproduire les estimations LSMEAN. Des informations détaillées appuyant l'analyse sont présentées dans le document SCRS/2010/060.

Lors de la dernière réunion d'évaluation, il avait été suggéré que des simulations de stratégie de pêche devraient être réalisées afin d'évaluer les biais dans la CPUE pour les stocks capturés dans le cadre de pêcheries mixtes. Toutefois, peu de progrès ont été réalisés à cet égard à l'exception du document SCRS/2010/049 qui incluait la « stratégie de flottille » en tant que covariable.

7 Examen des méthodes potentielles à utiliser dans l'évaluation

Historiquement, les évaluations sur les istiophoridés reposaient principalement sur l'analyse des tendances des taux de capture et sur les analyses de production de la biomasse, parmi d'autres éléments, ce qui donnait lieu à des incertitudes ayant trait à l'âge par taille pour ces espèces. On peut s'attendre à ce que ces types d'analyse soient encore menés à l'avenir, au moins afin de constituer une base de comparaison avec d'autres approches de modélisation qui pourraient également être appliquées.

Les analyses de tendances ont été réalisées dans le cadre de l'évaluation de 2006 (Anon. 2007) et sera mise à jour lors de l'évaluation de 2011. Cela dépend en grande mesure des taux de capture standardisés mis à jour des flottilles qui ont été utilisés pour cette analyse par le passé. Plusieurs séries temporelles critiques utilisées dans l'analyse de 2006 n'ont pas été mises à jour par les scientifiques nationaux pour cette réunion. Elles devraient être soumises par des scientifiques nationaux ou dérivées à partir des données de prise et d'effort de Tâche II dont dispose le Secrétariat. Certaines de ces analyses ont été menées lors de la réunion du Groupe de travail et sont présentées au titre du point 5 du présent rapport.

Les applications du modèle de production excédentaire (par ex. ASPIC, BSP) ont été utilisées dans plusieurs évaluations sur le makaire bleu. Les spécifications initiales des paramètres sont décrites dans le rapport détaillé d'évaluation de 2000. Ces applications devraient être mises à jour afin d'intégrer les données de prise et d'effort les plus récentes.

Compte tenu de l'augmentation des connaissances portant sur la modélisation de la croissance du makaire bleu (*cf* point 3), l'implication de la structure par âge dans l'évaluation de la situation du makaire bleu devrait faire l'objet d'une nouvelle recherche par le biais de l'application d'approches de modélisation structurées par âge/taille. Les options vont du modèle de production à différences retardées au modèle de production structuré par âge ainsi qu'aux approches de modélisation d'évaluation des stocks statistiques totalement intégrés (par ex. Multifan-CL, Stock Synthèse, CASAL, etc.) qui devraient être utilisés pour mettre pleinement à profit les informations de capture, d'effort, de taille et de marquage relatives aux istiophoridés incluses dans les jeux de données de l'ICCAT, comme cela a été fait pour la plupart des autres stocks relevant de l'ICCAT. Pour soutenir le lancement de ces analyses, le Groupe de travail a évalué les distributions de la capture par taille spécifiques de la flottille/zone et la distribution de l'information relative au marquage et à la récupération (*cf*. points 2 et 3).

Afin de faire progresser l'éventuelle application d'un modèle d'évaluation statistique intégré, le Groupe de travail a proposé d'envisager une stratification géographique de quatre quadrants Atlantique (NO, NE, SO et SE) tel que l'illustre de manière générale la **Figure 6.** Il convient de noter que le quadrant SE dans cette figure englobe la zone postulée de compression de l'habitat fondée sur l'hypoxie décrite par Prince *et al.* (en révision). Le Groupe de travail a recommandé que les informations trimestrielles de prise, d'effort et de taille des engins de pêche suivants : palangre, canne et moulinet, filet maillant, senne et d'autres engins de pêche soient classées par pavillon et engin afin de permettre l'identification des pêcheries (combinaisons zone/engin/flottille) qui pourraient être modélisées dans chacune de ces zones. Bien que ce travail ait été commencé pendant la réunion du Groupe de travail, il sera nécessaire de procéder à davantage de travail intersession pour définir les pêcheries les plus appropriées devant être modélisées et pour représenter les définitions de zone proposées, notamment en ce qui concerne les flottilles palangrières qui opèrent au-delà des limites de la zone.

8 Recommandations

- 1. Le Groupe de travail a recommandé qu'il convient de souligner que les CPC doivent soumettre les données de Tâche I et de Tâche II pour les réunions intersessions dans les délais fixés par le Secrétariat.
- 2. Le Groupe de travail a recommandé que les sections d'épines anales et les mesures des anneaux soient examinées pour identifier et exclure les faux anneaux annuels et que les auteurs de ce travail utilisent le travail réalisé par Prince *et al.* (1991) afin de consolider les estimations de croissance initiale provenant des sections des épines.
- 3. Le Groupe de travail a recommandé que les analyses de tendances menées dans le cadre de l'évaluation du stock de makaire bleu de 2006 soient mises à jour à la réunion d'évaluation du stock de 2011.
- 4. Le Groupe de travail a recommandé que les modèles de production excédentaire réalisés dans le cadre de l'évaluation du stock de makaire bleu en 2000 soient mis à jour à la réunion d'évaluation du stock de 2011.
- 5. Le Groupe de travail a recommandé l'élaboration d'un protocole (basé sur la web) afin de poursuivre l'avancement de l'application d'un modèle d'évaluation statistiquement intégré qui pourrait prendre en considération les données de prise saisonnière, d'effort et de taille pour tous les engins, et la nouvelle stratification géographique proposée pendant la réunion de préparation des données sur le makaire bleu.
- 6. Le Groupe de travail a recommandé que la proposition d'analyse génétique (**Appendice 6**) soit examinée lors de la prochaine réunion du Groupe d'espèces du SCRS.
- 7. Le Groupe de travail a recommandé que le Manuel de l'ICCAT soit mis à jour pour y refléter les problèmes d'identification erronée du makaire épée, du makaire bécune et du makaire blanc.
- 8. Le Groupe de travail a recommandé la préparation de fiches d'identification pour toutes les espèces d'istiophoridés, semblables à celles qui sont en cours de préparation pour les requins et les thonidés mineurs.
- 9. Le Groupe de travail a convenu qu'il serait opportun de réaliser davantage de recherche, telle que des exercices de simulation, en ce qui concerne l'efficacité des méthodes PCA et des k-moyennes, ainsi que les impacts de leur utilisation sur l'estimation des séries standardisées.
- 10. En signalant que l'estimation des indices d'abondance relative fournit toujours de meilleurs résultats avec la résolution spatio-temporelle la plus élevée permise par les données disponibles, le Groupe de travail a recommandé à toutes les CPC, et notamment à celles qui présentent des captures importantes de makaire bleu, de fournir des indices actualisés d'abondance relative obtenus à partir des données de la CPUE de haute résolution.
- 11. Le Groupe de travail devrait réaliser une analyse portant sur les lacunes des captures déclarées par plusieurs CPC en considérant les données de Tâche I et de Tâche II et les méthodes utilisées pendant la réunion de préparation des données sur le voilier de 2008.

9 Autres questions

Trois documents du SCRS sur le makaire blanc ont été présentés au titre de ce point. Le document SCRS/2010/042 faisait état de l'analyse de l'âge et de la croissance du makaire blanc capturé par des flottilles commerciales et artisanales dans l'Atlantique Ouest (Brésil) et dans la Mer des Caraïbes (Venezuela). Les sections transversales des épines anales de 514 femelles et 420 mâles ont été examinées. La movenne et le mode de comptage des anneaux étaient de deux pour les mâles comme pour les femelles, alors que les âges attribués oscillaient entre un et dix ans. La majorité des spécimens avaient entre quatre et huit ans. Le mode des âges était de six pour les mâles et de sept pour les femelles, mais la moyenne d'âge était similaire (six ans) pour les deux sexes. Aucune différence significative n'a été relevée en ce qui concerne la distribution des âges par sexe (test des rangs signés de Wilcoxon, p=0,09). Les courbes de modélisation de croissance pour les mâles et les femelles étaient très différentes (test du rapport des vraisemblances de Kimura), pour lesquelles les femelles présentaient un K considérablement inférieur et un $L\infty$ supérieur. Aucune différence significative entre les paramètres t0 n'a été constatée entre les sexes. Le manque d'échantillons des classes d'âge les plus jeunes et les plus âgées a empêché l'ajustement des trois paramètres de manière simultanée à un niveau de précision élevé. Le dimorphisme sexuel était évident, les femelles étant significativement plus grandes, mais non pas plus âgées que les mâles. Les tests du rapport des vraisemblances ont estimé que L^{∞} était significativement plus élevé pour les femelles, par rapport aux mâles, alors que K pour les femelles était significativement inférieur. Une analyse génétique rétrospective d'un sous-échantillon d'épines brésiliennes a fait apparaître la présence de makaire

bécune et de makaire épée, ce qui ajoute davantage d'incertitudes à ces résultats. La proportion d'échantillons mal identifiés ne peut pas être insignifiante, mais pour l'heure l'étendue de la contamination n'est pas connue. Les échantillons reflètent ce qui est déclaré en tant que makaire blanc.

Le document SCRS/2010/027 exposait la présence de makaire épée (*Tetrapturus georgii*) dans les captures palangrières vénézuéliennes de la mer des Caraïbes occidentale et des mers adjacentes de l'Atlantique. Le document faisait état de la proportion entre le makaire épée et le makaire blanc dans la capture palangrière pélagique du Venezuela depuis la mer des Caraïbes occidentale jusqu'aux mers adjacentes de l'Atlantique. Les données comprenaient l'identification macroscopique de 290 makaires épée et 959 makaires blancs observés pendant 450 sorties en mer entre 2002 et 2007. La distribution spatio-temporelle différente du makaire épée était évidente et la proportion la plus élevée (>65%) a été constatée dans la zone nord-ouest de la mer des Caraïbes pendant le troisième trimestre (de juillet à septembre). Les proportions de makaire épée sont restées à un niveau assez élevé dans cette zone pendant toute l'année, à l'exception du premier trimestre (de janvier à mars), lorsque presque toutes les observations correspondaient à du makaire blanc.

Le document SCRS/2010/040 fournissait une mise à jour des données de marquage conventionnel des États-Unis pour le makaire blanc. Un total de 51.969 makaires blancs ont été marqués et remis à l'eau entre 1954 et 2008. Les libérations ont eu lieu principalement dans l'Atlantique Nord-Ouest, les détroits de Floride, des Bahamas et le nord du golfe du Mexique. Un total de 1.014 récupérations communiquées ont eu lieu (1,95 %). Le temps écoulé en mer oscillait entre 0 et 5.488 jours (moyenne de 700 jours, SE 22). Trois spécimens ont réalisé des mouvements transéquatoriaux du nord au sud. Sept spécimens ont réalisé des mouvements transatlantique que transéquatorial. La plupart des récupérations (59 %) ont été déclarées dans les flottilles commerciales et récréatives du Venezuela dans la mer des Caraïbes. Les autres récupérations (41 %) étaient réparties dans l'ensemble de l'Atlantique Nord-Ouest et Est. L'effort de marquage a connu une forte baisse depuis 2002.

Les résultats de la recherche réalisée par Beekircher *et al.* (2009) ont été présentés. Cette recherche décrivait l'impact de la mauvaise identification des espèces dans l'évaluation de la population de makaire blanc et de makaire épée. Les auteurs indiquaient que le makaire épée représente une grande partie (environ 27 %) de la capture totale de « makaire blanc » dans l'Atlantique Nord-Ouest, avec une variation importante dans l'espace au sein de cette zone. Par conséquent, les connaissances actuelles sur la biologie du makaire blanc sont altérées par celles du makaire épée, récemment reconnues, dont la morphologie est similaire. Les simulations d'évaluation de population utilisant la proportion de 27 % du makaire épée indiquaient que les changements historiques du ratio makaire épée/makaire blanc et les différences des taux de croissance de la population altèrent les résultats de la simulation. Cela tend à confirmer que l'identification erronée des espèces pourrait avoir altéré la précision des évaluations précédentes de makaire blanc pour l'Atlantique Nord-Ouest. Il a été proposé de réaliser des recherches supplémentaires sur le cycle vital des deux espèces afin de corroborer les résultats des études historiques.

Suivant les conclusions et les recommandations de Beerkircher *et al.* (2009) et de Shivji *et al.* (2006), le Groupe de travail a examiné une proposition (**Appendice 6**) en vue d'obtenir les informations nécessaires qui permettraient de réaliser une évaluation sur le makaire blanc d'ici à 2010. Cette proposition décrit les efforts déployés visant à poursuivre et à étendre les études en collaboration avec le groupe du Dr. Shivji (Shivji *et al.* 2006; Hoolihan *et al.* 2009; Beerkircher *et al.* 2009), afin de procéder à des recherches sur la distribution spatio-temporelle dans l'ensemble de l'Atlantique du makaire épée, makaire bécune et makaire blanc, tant rétrospectivement qu'actuellement, dans toute la zone de distribution. De plus, le travail évaluera également la fréquence de l'identification erronée du makaire épée en tant que makaire blanc ou makaire bécune dans les pêcheries de l'Atlantique.

Pendant la réunion, des analyses de fréquence de tailles du makaire blanc, semblables à celles qui avaient été réalisées sur le makaire bleu, ont été réalisées. Les résultats sont présentés à l'**Appendice 7**.

Le Groupe de travail a souligné l'importante amélioration de la fiabilité de la connexion, de la qualité et de la vitesse d'accès aux données grâce au nouveau matériel sans câble installé au Secrétariat. Ces améliorations continues permettent d'améliorer la productivité du Groupe de travail pendant la réunion.

10 Adoption du rapport et clôture

Le rapport a été adopté pendant la réunion.

Le Président a remercié le Secrétariat et les participants pour leur travail intense. La réunion a été levée.

Références

- Anon, 2007, Report of the 2006 ICCAT Billfish Stock Assessment (Madrid, Spain, May 15 to 19, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(5): 1431-1546.
- Anon. 2009, Report of the 2008 ICCAT Sailfish Data Preparatory Meeting (Madrid, Spain, May 19 to 24, 2008). Collect. Vol. Sci. Pap. ICCAT, 64(6): 1765-1832.
- Beerkircher, L.R., Lee, D.W and Hinteregger, G.F. 2008, Roundscale spearfish *Tetrapturus georgii*: morphology, distribution, and relative abundance in the western North Atlantic. Bull. Mar. Sci., 82: 155–170.
- Beekircher, L., Arocha, F., Barse, A., Prince, E., Restrepo, V., Serafy, J. and Shivji, M. 2009, Effects of species misidentification on population assessment of overfished white marlin *Tetrapturus albidus* and roundscale spearfish *T. georgii*. Endang. Species Res., 9:81-90.
- Gobert, 1989. Fishing effort and production in the artisanal fisheries in the Martinique. Document scientifique. Pole de Recherche oceanologique et halieutique caraibe. Fort-de-France. No. 22, 98 p. 1989.
- Hazin, F.H.V., Hazin, H.G., Travassos, P. and da Mata Oliveira, I., 2007, Standardized catch per unit of effort of white marlin, *Tetrapturus albidus*, and blue marlin, *Makaira nigricans*, caught by the Brazilian tuna longline fleet. Collect. Vol. Sci. Pap. 60(5): 1652-1662.
- Hoolihan, J.P., Perez, N.F. Faugue, R.M. Bernard, A.M. Horn, R.L., Snodgrass, D. and Schultz, D.R. 2009, Surface mucous as a source of genomic DNA from Atlantic billfishes (Istiophoridae) and swordfish (Xiphiidae). Fish. Bull., 107: 339-342.
- Ortiz, M. and Arocha, F. 2004, Alternative error distribution models for standardization of catch rates of nontarget species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. Fish. Res. 70 (2004) 275-297.
- Prince, E.D., Lee, D.W., Zweifel, J.R. and Brothers, E.B. 1991, Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. Fish. Bull. 89:441-459.ICCAT. Suggested rules and procedures for the protection, access to, and dissemination of data compiled by ICCAT. *In* Report for Biennial Period, 2008-2009, Part II (2009), Vol. 2-SCRS: 287-295.
- Prince, Eric D., Luo, Jiangang, Goodyear, C. Phillip, Hoolihan, John. P., Snodgrass, Derke, Orbesen, Eric S., Serafy, Joseph E., Ortiz, Mauricio and Schirripa, Michael J. In Review Ocean Scale Hypoxia-Based Habitat Compression of Atlantic Istiophorid Billfishes. Fish. Oceanogr. 39 pp.
- Reynal, L; Nelson, L; Rivoalen, JJ; Lagin, A. 2007. Fishing effort and production of fishing associated with moored FADs in Martinique estimation by phone surveys. Gulf. Caribb. Res. Vol. 19, no. 2, p. 174.
- Shivji, M.S., Magnussen, J.E., Beerkircher, L.R., Hinteregger, G., Lee, D.W., Serafy, J.E. and Prince, E.D. 2006, Validity, identification, and distribution of the roundscale spearfish, *Tetrapturus georgii*: morphological and molecular evidence. Bull. Mar. Sci., 79:483-491.

INFORME DE LA REUNIÓN ICCAT DE 2010 DE PREPARACIÓN DE DATOS SOBRE AGUJA AZUL

(Madrid, España – 17 a 21 de mayo de 2010)

1 Apertura, adopción del orden del día y disposiciones para la reunión

La reunión se celebró en la Secretaría de ICCAT, en Madrid, del 17 al 21 de mayo de 2010. El Sr. Driss Meski, Secretario Ejecutivo de ICCAT, inauguró la reunión y dio la bienvenida a los participantes.

El Dr. Freddy Arocha (Venezuela), presidente de la reunión, dio la bienvenida a los participantes y procedió a revisar el orden del día, que se adoptó sin cambios (**Apéndice 1**).

La lista de participantes se adjunta como **Apéndice 2**. La lista de documentos presentados a la reunión se adjunta como **Apéndice 3**. Los siguientes participantes ejercieron las funciones de relatores: **1**).

P. Pallarés	Puntos 1 y 10
C. Palma, G. Scott and P. Lynch	Punto 2
J. Hoolihan and P. Pinheiro	Punto 3
D. Die and E. Prince	Punto 4
H. Hazin, C. Wor, L. Kell and P. Bannerman	Punto 5
L. Kell	Punto 6
G. Scott	Punto 7
F. Arocha	Punto 8
F. Arocha, J. Hoolihan	Punto 9

2 Actualización de la información básica

Al inicio de la reunión, la Secretaría presentó la información biológica y pesquera disponible sobre aguja azul (BUM), a saber: estadísticas de captura de Tarea I (T1NC); características de la flota de Tarea I (T1FC); captura y esfuerzo de Tarea II (T2CE); muestras de talla de Tarea II (T2SZ) y marcado convencional. Tanto los datos como los catálogos (que son útiles para obtener una perspectiva global de la disponibilidad/cobertura de los datos) preparados incluían la información más actualizada (a 17 de mayo de 2010) disponible en las bases de datos de ICCAT. La serie temporal cubría todos los años (1950-2009). A petición del Grupo, durante la reunión se prepararon conjuntos de datos adicionales con otros istiofóroridos (aguja blanca-WHM, pez vela -SAI, istiofóridos-BIL sin clasificar). El Grupo analizó y adoptó todas las revisiones de nuevos datos comunicados durante la reunión, que fueron finalmente incorporados a la base de datos de ICCAT.

2.1 Tarea I (capturas)

El Grupo examinó la información detallada de la totalidad de la serie temporal de T1NC, y constató que la captura comunicada de 2009 estaba muy incompleta, ya que sólo unas pocas CPC comunicaron estas estadísticas a tiempo: UE (UE-ESP, UE-PRT, UE-FRA, UE-DNK, UE-NDL), Santa Lucía y Taipei Chino. Durante la reunión, Ghana, Estados Unidos y Venezuela facilitaron también estimaciones preliminares. En total, la captura comunicada de 2009 representó sólo el 25% de las capturas comunicadas de 2008.

Una vez más, el Grupo reiteró la importancia de las estadísticas de T1NC y su disponibilidad dentro de los plazos establecidos para alcanzar los objetivos de este tipo de reunión de preparación de datos. Todas las CPC de ICCAT deberían comunicar al menos las cifras provisionales de las capturas nominales de Tarea I dentro de los plazos establecidos (de conformidad con el plan de trabajo para la provisión de datos). De no ser así, el Grupo no podrá trabajar con los indicadores de rendimiento global más recientes. En la **Tabla 1** se presentan las estimaciones de captura de Tarea I para la aguja azul.

El Grupo revisó también las estadísticas de istiofóridos sin clasificar (BIL) y sus implicaciones en las posibles subestimaciones de tendencias de captura de aguja azul y otros istiofóridos. Muchas CPC están comunicando todavía cantidades razonables de BIL, tal y como puede observarse en la Sección **4**. Al igual que en la evaluación de 2006 (Anón., 2007), se utilizó un conjunto similar de procedimientos para desglosar las cifras de

captura de BIL sin clasificar en aguja azul, aguja blanca y pez vela. Este ejercicio se describe en el punto 4 de este informe.

2.2 Tarea II (captura-esfuerzo y muestras de tallas)

Al comienzo de la reunión se presentó la información de aguja azul relacionada con T2CE (captura y esfuerzo) y T2SZ (muestras de tallas) (tanto catálogos como datos).

En relación con T2CE, el Grupo constató que los datos históricos estaban incompletos en algunas de las series más importantes. Otro inconveniente que se detectó fue la falta de homogeneidad en las series, ya que éstas presentaban variaciones en lo que concierne a: las unidades de esfuerzo (algunas veces no se comunica ningún esfuerzo), la estratificación temporal (por año, trimestre y mes), la distribución espacial (cuadrículas de 1°x1°, 5°x5°, 10°x10° y 20°x20°), la composición de la captura por especies (peso, número o ambos), etc. Estas divergencian ya se habían constatado en reuniones anteriores. El Grupo insta a las CPC respectivas a que revisen los datos de T2CE para armonizar las series siguiendo los requisitos para datos del SCRS en lo que concierne a las estadísticas de captura y esfuerzo de Tarea II. UE-ESP y Barbados (como BIL sin clasificar), Taipei Chino (BUM y otros marlines) y Canadá (con capturas cero de BUM) fueron los únicos que comunicaron las estadísticas nuevas de redes de enmalle para T2CE (2008 y 2009). El científico de Ghana indicó que la serie de captura y esfuerzo de redes de enmalle (que se remontan a 1980) está siendo objeto de revisión (se habían detectado algunas incoherencias en las estimaciones de CPUE), y que dicha serie se enviaría a ICCAT antes de la próxima reunión del SCRS. La Secretaría ofreció su colaboración en la preparación de esta importante serie de captura y esfuerzo.

En lo que concierne a T2SZ, el Grupo también indicó que los datos de talla históricos estaban incompletos y eran heterogéneos en algunas de las pesquerías más importantes. Algunas series de muestras de talla son muy heterogéneas, con variaciones en los tipos de clase de talla (talla: 1, 2, 5 cm; peso: 1, 2, 5, 10 kg); los tipos de frecuencias de tallas (LJFL, WGT, CLCK, LD1, etc.); los tipos de intervalos de talla (límite inferior, límite central, límite superior, muchas veces desconocido), la estratificación temporal (por año, trimestre y mes); la distribución espacial (cuadrículas de 1ºx1º, 5ºx5º, 10ºx10º y 20ºx20º). El Grupo también insta a las CPC respectivas a revisar los datos de T2SZ con el fin de armonizar las series siguiendo los requisitos para datos del SCRS en lo que concierne a las muestras de talla de Tarea II. Para 2009, los datos T2SZ fueron comunicados dentro de plazo únicamente por la UE (UE-ESP, UE-PRT, UE-FRA) y Taipei Chino. Durante la reunión Ghana, Venezuela y Uruguay comunicaron información adicional sobre tallas. Se presentaron importantes series de datos de T2SZ que fueron adoptadas por el Grupo, a saber, Uruguay LL (2003 a 2009) y Venezuela LL (1992-2009). Se analizó detalladamente toda la información disponible sobre talla de aguja azul (1956 a 2009), con dos fines principales: su potencial para ser utilizada en los modelos de evaluación integrados y b) su potencial para la obtención de estimaciones de captura por talla/edad (composición talla/edad de las capturas) en el futuro con miras a su utilización en los modelos estructurados. Los detalles del análisis se describen en la sección 7 de este informe.

2.3 Catálogo de información disponible

En la **Tabla 2** se comparan los datos de T1CE y T2CE disponibles comunicados hasta la fecha para la aguja azul por pabellón y flota para las dos últimas décadas. En la tabla, las celdas marcadas con colores sólidos representan los estratos para los que se han comunicado datos. En los casos de pleno cumplimiento de las obligaciones de comunicación de datos por parte de las CPC, no hay lagunas en los informes y, por tanto, no hay celdas marcadas con puntos rojos. Es evidente que existe una gran variabilidad en la capacidad de las CPC de cumplir sus obligaciones de comunicación para la aguja azul.

2.4 Análisis de frecuencias de tallas

Se realizó un análisis de frecuencias de tallas para los datos de talla de Tarea II de aguja azul para los cuales se disponía de mediciones de talla (mandíbula inferior a horquilla, cm) y/o de peso (kg). El análisis se centró en los datos de las pesquerías que constituyen el grueso de las capturas de aguja azul: siete países y cuatro artes de pesca diferentes estuvieron representados (**Tabla 3**). Se detectaron ligeras diferencias en la metodología de recopilación de datos entre las pesquerías, como las especificaciones para los intervalos mínimos utilizados para la medición. En estos casos, no se realizaron conversiones a una unidad estándar, ya que las diferencias eran mínimas y la aplicación de una conversión a escala podría ser inapropiada. Además, varias pesquerías comunicaron mediciones de talla que eran inusualmente pequeñas. Se cree que estos peces pequeños responden a una clasificación errónea y que en realidad no se trataba de aguja azul. Para tener en cuenta estas clasificaciones

erróneas potenciales, se impuso un umbral inferior de 80 cm, que representa una proporción muy pequeña de los datos globales (<0.05%). Asimismo, se comunicó un ejemplar de aguja azul inusitadamente grande, y se adoptó un límite superior de 400 cm.

Se calcularon las estadísticas resumidas básicas para cada pesquería por año, lo que incluye mínimos, medianas, medias, desviaciones estándar de la media, máximos y rangos de intercuartiles. Estas estadísticas se resumieron en tablas, y las tendencias anuales de los datos se representaron en figuras (véase el Apéndice 5). En general, la longitud mandíbula inferior-horquilla (LJFL) se situó en torno a 200 cm en la mayoría de las pesquerías. Las pesquerías costeras de redes de enmalle de Côte d'Ivoire y Ghana fueron una excepción. Para estas pesquerías, LJFL se situó en torno a 240 cm. Aunque con variaciones en el tiempo, no se observaron tendencias claras en la LJFL. Se generaron gráficos de probabilidad acumulada en el rango observado de LJFL por año para las diferentes pesquerías de palangre, la pesquería deportiva estadounidense y la pesquería de liña de mano de Martinica combinadas, y se elaboró un gráfico separado para las pesquerías de redes de enmalle. Estas cifras indican patrones coherentes de selectividad por talla para la aguja azul en las diferentes pesquerías y a lo largo del tiempo. Hubo menos series temporales disponibles para los análisis de frecuencias de pesos y, con la excepción de la pesquería deportiva estadounidense, las series temporales eran breves y/o incompletas. Para estas pesquerías, las mediciones del peso medio tendían a situarse en torno a 70-100 kg, pero la variabilidad entre pesquerías era superior a la observada para la LJFL. Es probable que esto se deba a la menor disponibilidad de datos, lo que da lugar a estimaciones menos robustas de las estadísticas resumidas. Asimismo, los datos de peso de Martinica estaban expresados en peso eviscerado. Como ocurría con los análisis de LJFL, resulta difícil identificar una tendencia clara en el peso de la aguja azul a lo largo del tiempo. Se generaron gráficos de probabilidad acumulada para los pesos observados en el tiempo y, al igual que sucedía en los gráficos de LJFL, éstos apuntaban a patrones coherentes de la selectividad por talla.

Estos análisis aportaban información, ya que caracterizan la dinámica de las principales pesquerías en lo que concierne a la distribución por tallas de aguja azul. Este es un ejercicio especialmente útil, porque puede detectarse cualquier impacto potencial de la pesquería en la estructura por tallas de la población (por ejemplo, sobrepesca de crecimiento). Además, estos datos son esenciales para realizar evaluaciones de stock integradas; un método que el Grupo recomendó que se considerase para la aguja azul (véase la sección 7). Por tanto, el Grupo recomendó que las naciones miembros de ICCAT pongan un mayor énfasis en la recopilación y comunicación de datos de frecuencia de tallas (siguiendo una metodología estandarizada).

3. Examen de los nuevos datos sobre biología, hábitat y marcado para la aguja azul

3.1 Biología

Se presentaron los resultados de los análisis de edad y crecimiento para la aguja azul que había sido objeto de muestreos realizados por Brasil y Venezuela entre diciembre de 2004 y diciembre de 2006. Se analizaron las secciones transversales de la espinas de las aletas de 170 hembras y 429 machos. Se utilizó el análisis del incremento marginal relativo para determinar la periodicidad de la formación de anillos de crecimiento. Se estimaron las tasas de crecimiento utilizando un retro-cálculo (función de crecimiento de von Bertalanffy). Las estimaciones para L_{inf}, k, y t₀ para las hembras fueron 353,74; 0,06; y -6,15, respectivamente. Para los machos, las estimaciones fueron 350,28; 0,05 y -9,47. No se dispuso para el análisis de muestras de ejemplares muy grandes o muy pequeños de aguja azul. El hecho de que no hubiese una diferencia significativa (p = 0,17) en la tasa de crecimiento (k) entre sexos se atribuyó a la ausencia de ejemplares muy grandes.

Un esfuerzo en colaboración, coordinado por Brasil, para estimar la estructura por edad y el crecimiento de la aguja azul del Atlántico ha realizado progresos en la estimación de las edades de más de 500 ejemplares procedentes sobre todo de las pesquerías palangreras tropicales brasileñas y venezolanas. Se examinaron las secciones de las espinas, se realizaron recuentos de anillos, así como mediciones de radios de anillos y de vascularización. Estas mediciones confirman que la vascularización oculta algunos de los anillos iniciales formados en las espinas, debió a que la zona vascularizada se amplía con la edad. Los análisis preliminares de estos datos revelan la presencia de un primer anillo en los ejemplares de menos de 150 cm LJFL y de hasta cuatro anillos en los de menos de 180 cm LJFL. Esto contrasta con el trabajo de Prince *et al.* (1991) que, mediante la lectura de anillos diarios en otolitos, comunicó que las agujas azules de 150 cm LJFL tienen entre 200 y 400 días de edad, mientras que las agujas azules de 180 cm tienen entre 300 y 500 días. El examen de la medición de anillos realizado en la reunión reveló la posibilidad de que algunos anillos fuesen anillos falsos. El Grupo recomendó que se examinen los anillos y secciones de espinas para identificar y excluir los anillos falsos, y que los autores de este trabajo se aseguren de que el trabajo de Prince *et al.* (1991) se utiliza para "afianzar" las estimaciones de crecimiento temprano obtenidas de las secciones de espinas.

En el documento SCRS/2010/045 se presenta la información del programa de observadores de Uruguay sobre captura de aguja azul realizada por la flota palangrera con pabellón uruguayo y japonés que operó en el océano Atlántico suroccidental desde abril de 1998 a diciembre de 2009 y desde marzo a septiembre de 2009, respectivamente. Las capturas de esta especie se realizan en la zona económica exclusiva de Uruguay y aguas adyacentes durante el verano, cuando la temperatura del agua es más elevada. En esta región en particular, las CPUE observadas para las flotas uruguaya y japonesa fueron similares, de 0,01 a 0,05 ejemplares por 1.000 anzuelos. Los ejemplares capturados por la flota japonesa a mayor profundidad (100-200 m) son más grandes (266 ± 60 cm) que los capturados por la flota uruguaya (199 ± 35 cm) en aguas más superficiales (30-80 metros). La ratio de sexos varió con una gran proporción de hembras (1:3,4) en aguas más profundas, mientras que en las aguas más superficiales predominaban los machos (1,9:1). De conformidad con esta información, podría haber una separación espacial entre sexos y algunas clases de talla en la columna de agua.

3.2 Habitat

Los estudios de marcado con marcas archivo pop-up por satélite en aguja azul y pez vela realizados por Prince *et al.* (en revisión) describen la utilización vertical del hábitat y el impacto en estas especies cuando se hallan en la zona de mínimo oxígeno (OMZ) del Atlántico tropical oriental (ETA). Se realizó un seguimiento de un total de 32 peces vela (*Istiophorus platypterus*) y 47 agujas azules en el ETA y en el Atlántico noroccidental (WNA). Ambas especies pasaron una proporción significativamente grande de tiempo en aguas cercanas a la superficie en el ETA, en comparación con el WNA. Los autores afirman que la densidad de marlines y túnidos cerca de la superficie se ha incrementado debido a la compresión en la OMZ del ETA, por lo que se ha incrementado su vulnerabilidad frente a las artes de superficie. Dado que la OMZ del ETA abarca casi la totalidad de las aguas ecuatoriales del Atlántico, los autores expresaron su preocupación por la potencial sobreexplotación que podría generarse. El potencial de variación de la capturabilidad dentro versus fuera de las zonas de compresión sugiere que debería considerarse una estandarización de tasa captura separada para las dos zonas con el fin de minimizar las inexactitudes en los resultados de la evaluación de stock. Para ello, el Grupo de trabajo procedió a realizar un análisis exploratorio con datos de palangre históricos para determinar si las capturas dentro y fuera de la OMZ exhiben diferencias en lo que concierne a las tasas de captura y capturabilidad (véase la Sección 6).

3.3 Marcado

En el documento SCRS/2010/041 se presenta una actualización de los datos de marcado convencional para la aguja azul. Se marcó y liberó un total de 57.287 agujas azules durante el periodo 1955-2008. De éstas, se recuperaron 809 (1,41%). Aunque los despliegues se realizaron por todo el Atlántico, la mayor parte del esfuerzo de marcado se realizó en el Atlántico noroeste. La mayoría de las recuperaciones se produjeron en los dos años siguientes, sin embargo varias agujas azules estuvieron en libertad más de 12 años. En términos de movimientos de gran escala, la aguja azul presentaba una distribución más amplia que la aguja blanca o el pez vela. Para las recuperaciones de aguja azul, 20 ejemplares realizaron movimientos trasatlánticos (por ejemplo, atravesando la cadena del Atlántico medio), mientras que seis realizaron movimientos trans-ecuatoriales. Sólo se registraron movimientos interoceánicos en un ejemplar, que se trasladó desde el océano Atlántico noroccidental hasta el océano Índico. Estos movimientos a gran escala son coherentes con la hipótesis de un único stock de aguja azul en todo el Atlántico.

Se analizó la base de datos de marcado de ICCAT para la aguja azul con el fin de evaluar la utilidad potencial de modelar el movimiento y la supervivencia de la aguja azul en el océano Atlántico, en el marco de una formulación de modelación estadística integrada. En un futuro cercano podrían realizarse revisiones importantes de la base de datos de ICCAT. En el **Apéndice 4** se incluyen resúmenes de la información de liberación por año, región y trimestre, y por año y arte principal (**Tablas 1** y **2**), así como algún control adicional de calidad de los datos emprendido por el Grupo para asignar un arte de liberación a los tipos de arte sin clasificar (**Tabla 2**), basándose en el conocimiento experto de las actividades de marcado de aguja azul realizadas en el Atlántico. El Grupo también recomendó que las liberaciones clasificadas como "SPORT" se consideren liberaciones RR a efectos de modelación de la evaluación. El resultado de este ejercicio se resume también en el **Apéndice 4** (**Tabla 3**).

4. Examen de las estimaciones de captura de aguja azul (histórica y actual)

4.1 Examen de las capturas de istiofóridos sin clasificar

Los datos de Tarea I facilitados por la Secretaría al Grupo incluyen 4.993 t de istiofóridos sin clasificar (BIL) declaradas a ICCAT por varios países durante el periodo 1980-2009. Para mejorar las estimaciones de captura histórica de aguja azul, el Grupo intentó estimar las cantidades de aguja azul incluidas en estas declaraciones. Para lograrlo, se siguió el procedimiento que se expone a continuación:

- 1. Se reclasificaron las declaraciones de BIL de series de datos seleccionadas para las cuales se disponía de ratios de especies de istiofóridos para el periodo en que BIL se comunicó y para la misma flota y la misma zona.
- 2. Las declaraciones de BIL restantes no seleccionadas en el punto 1 se reclasificaron basándose en las ratios de especies de istiofóridos para todo el Atlántico.

La Tarea II incluye 72 series de datos (identificadas como FLAG único, combinaciones GEARGRP y AREA) de capturas de BIL comunicadas, que representan las capturas de 47 flotas diferentes (FLAG único, combinaciones GEARGRP). Las comunicaciones de BIL para muchas de estas flotas representan capturas pequeñas. Dado el tiempo requerido para examinar cada flota, el Grupo centró su trabajo sólo en los datos BIL de las flotas que responden de al menos el 1% de la captura total de BIL, es decir, las flotas que comunicaron unas capturas superiores a 50 t de BIL (**Tabla 4**). Estas flotas agrupadas responden del 91% de las capturas comunicadas de BIL.

Con el fin de reclasificar estas declaraciones de BIL fue necesario identificar ratios de aguja azul, pez vela y aguja blanca para utilizarlas en la reclasificación. Se consideró que estas ratios tenían que calcularse a partir de los datos disponibles para la misma combinación de zona y flota. Cuando fue posible, se obtuvieron ratios para los mismos años para los que se comunicaron las capturas BIL. Cuando no se dispuso de estos datos, las ratios se obtuvieron para los cinco años anteriores o posteriores al periodo en que se comunicó BIL. En todos los casos, se estimó que las ratios eran fiables únicamente cuando las capturas de istiofóridos sin clasificar representaban al menos el 10% de las declaraciones de BIL que se tenían que clasificar. De conformidad con estas restricciones, hubo datos suficientes para reclasificar BIL para todas las flotas, con la excepción de la flota de superficie de UE-Portugal, la flota de palangre de UE-Italia y la flota de palangre de Namibia. Sin embargo, es poco probable que las capturas de flota de palangre de UE-Italia representen a la aguja azul; es más probable que correspondan a marlín del Mediterráneo. Para otras flotas, las ratios de composición por especies se calcularon cuando se habían comunicado capturas para la misma zona y flota (Tabla 5). Todos los cálculos de este análisis se realizaron partiendo del supuesto de que las capturas de Tetrapturus spp. eran insignificantes. Se sabe que este supuesto sólo es parcialmente correcto; sin embargo, dadas las dificultades que supone separar las diferentes especies de *Tetrapturus spp.* de la aguja blanca, tal y como se indica en las secciones 3 y 9 de este informe, se acordó no considerar Tetrapturus spp. en los cálculos.

Se utilizaron las ratios de la **Tabla 5** para reclasificar un total de 2.636 t de declaraciones de BIL, dejando otras 2.357 t de BIL por reclasificar. Las ratios de la **Tabla 5** muestran que la composición por especies presenta variaciones entre las diferentes flotas y zonas. Lamentablemente, las zonas comunicadas por las diferentes flotas no se comunican de un modo coherente, y podrían representar diferentes zonas geográficas. Por ello, el Grupo decidió calcular ratios de composición de especies de istiofóridos anuales para todo el Atlántico utilizando los datos de todas las flotas que comunicaron istiofóridos, e incluyendo las capturas obtenidas tras utilizar las ratios de la **Tabla 5**. Se utilizaron estas ratios anuales para desglosar las 2.347 t restantes mencionadas antes. Esto se realizó agrupando todas las declaraciones de BIL restantes para cada año, y no se intentó reclasificar las capturas de cada serie de datos. Por tanto, estos cálculos son sólo una indicación de la mejor estimación de la captura de aguja azul posiblemente incluida en las comunicaciones de BIL que no pueden reclasificarse a partir de datos específicos de las flotas (**Tabla 6**).

De estos cálculos se desprende claramente que las comunicaciones actuales de BIL incluidas en la base de datos de Tarea I no cambian de un modo significativo las estimaciones de captura histórica de aguja azul (**Figura 1**). Esto sería así incluso aunque todos los istiofóridos sin clasificar se considerasen aguja azul. Sin embargo, es importante que los países responsables de estas comunicaciones de BIL intenten separar los datos por especies o que faciliten al Grupo comentarios sobre los procedimientos adoptados por el Grupo para asignar estas capturas a cada especie de istiofóridos.

4.2 Examen de las capturas de aguja azul con dispositivos de concentración de peces (DCP) en Martinica y Guadalupe

Martinica y Guadalupe tienen una pesquería activa con DCP desde mediados de los ochenta. Esta pesquería ha sido objeto de un seguimiento escaso, pero se han comunicado capturas importantes de aguja azul, del orden de unos cientos de toneladas por año (Reynal 2007). Sólo UE-Francia ha comunicado capturas de esta pesquería para los años 2005, 2008 y 2009. El Grupo intentó reconstruir el historial de capturas en estas dos islas a partir de los datos disponibles:

- Estimaciones de tasas de capturas a partir de las prospecciones de desembarques realizadas en 2004-2005 y 2008-2009, en Martinica, y en 2009, en Guadalupe,
- Estimaciones de la participación histórica a partir de encuestas a patrones de buques realizadas en 2005-2006 en Martinica y Guadalupe, y
- Estimaciones del número de mareas por barco y por año obtenidas a partir de encuestas telefónicas y cálculos de recibos de combustible y tasas de consumo de combustible.

Las estimaciones de desembarques y esfuerzo son preliminares y serán revisadas por los científicos franceses que facilitaron los datos al Grupo.

Según las encuestas a los patrones, la flota comenzó a utilizar DCP en 1985, en Martinica, y en 1989, en Guadalupe. El número de barcos que pescó con DCP se ha incrementado en gran medida desde entonces en ambas islas, y en 2005 llegó a aproximadamente 300 unidades en cada isla.

Las estimaciones del esfuerzo pesquero (número de mareas por año) obtenidas para Martinica eran considerablemente inferiores a las comunicadas por Gobert (1989) para 1987, en función del método utilizado para reconstruir el número de mareas por barco y por año. El número de mareas por año calculado a partir de las encuestas telefónicas es aproximadamente la mitad que el número calculado a partir de los datos de consumo de combustible y aproximadamente un cuarto del número calculado por Gobert (1989).

Se utilizaron las estimaciones de las tasas de captura por marea obtenidas durante las prospecciones estratificadas aleatoriamente en 2008-2010 en Martinica y Guadalupe para reconstruir la captura total anual, asumiendo que estas tasas de captura representan las tasas de captura medias para la pesquería a lo largo de todo el periodo histórico. La captura anual se calculó como el producto de la tasa de captura y el número de barcos por año. Las estimaciones de captura anual para 2008, el periodo para el que se dispone de más datos fiables, se situaron en 289 t por año en Guadalupe. Las estimaciones para Martinica son más inciertas y se facilitan como una gama. Se obtuvieron estimaciones bajas a partir de las entrevistas telefónicas y estimaciones elevadas a partir de los datos consumo de combustible. Las capturas de Martinica para 2008 oscilaron entre 214 t (estimación baja) y 463 t (estimación alta). Las estimaciones de Martinica para 2009 son inferiores a las que se obtuvieron para varias años, situándose entre 160 t (estimación baja) y 320 t (estimación alta). No se dispone de estimaciones de 2009 para Guadalupe.

Por tanto, las estimaciones finales de captura históricas para ambas islas comienzan con una pequeña captura de 10-30 t en 1985, realizada en Martinica que ascendió hasta entre 300 y 450 t para ambas islas en 1997, y que alcanzó la estimación actual de 500-750 t, en 2008.

Estas estimaciones de captura, con la excepción de los años 2005, 2008 y 2009, no habían sido consideradas anteriormente por el Grupo. El Grupo sustituyó los datos de captura de aguja azul de Tarea I actuales para esta pesquería por las estimaciones obtenidas por el Grupo durante la reunión. Las estimaciones resultantes para la captura total de aguja azul suponen un incremento significativo en los desembarques para el periodo que se inicia en 1985 (**Tabla 7** y **Figura 2**), y sugieren que la captura de estas dos islas podría suponer entre el 10 y 16% de los desembarques anuales recientes para todo el Atlántico.

5 Examen de la información sobre tasa de captura de aguja azul

En 2006 se llevó a cabo la última evaluación de aguja azul. Durante dicha evaluación se actualizaron y estimaron índices de abundancia relativa para varias flotas desde 1968. También se estimó que los índices combinados para la aguja azul habían descendido durante el periodo 1990-2004 (**Figura 3**).

Se presentaron cinco documentos durante la reunión preparatoria que se celebró en Madrid del 17 al 21 de mayo de 2010 (**Figura 4**).

En el documento SCRS/2010/043 se presentaron índices de abundancia actualizados para la aguja azul de la pesquería palangrera pelágica estadounidense en el Atlántico noroccidental y en el Golfo de México para el periodo 1986-2009. Los índices se estimaron en número de ejemplares/1.000 anzuelos y en kg/1.000 anzuelos. En general, ambos índices mostraban tendencias descendentes desde 1992 a 2002, manteniéndose después bajos pero relativamente constantes hasta 2006. Se observaron ligeros incrementos en el periodo 2007-2009, aunque esto podría ser el resultado de una mayor cobertura de observadores y de una mejora en la recopilación de datos de los observadores embarcados.

En el documento SCRS/2010/044 se presentaron índices de abundancia actualizados para la aguja azul de la pesquería de torneos de recreo estadounidense en el Atlántico noroccidental, Estados Unidos, Golfo de México, Bahamas y Caribe estadounidense para el periodo 1974-2009. Los índices se estimaron en peso (kg) y en número de ejemplares por 100 horas utilizando los datos recopilados en 3.085 torneos. La captura de recreo de aguja azul y el esfuerzo pesquero total presentaban una relación lineal con las tendencias crecientes desde los años setenta. El número de buques y la cantidad de tiempo de pesca por torneo ha descendido desde los noventa. Sin embargo, el esfuerzo pesquero total ha seguido incrementándose hasta el año 2000, debido a un incremento en el número de torneos de pesca de istiofóridos por año. En general, la CPUE de la aguja azul se ha incrementado hasta 1995 inclusive, descendiendo a partir de entonces hasta el punto más bajo en 2003, descenso al que le siguió un ligero incremento hasta 2009 inclusive.

En el documento SCRS/2010/020 se presentaron índices de abundancia actualizados para la aguja azul de la pesquería palangrera pelágica venezolana para el periodo 1991-2009. El índice en número de ejemplares por 1.000 anzuelos se estimó a partir de los datos recopilados por los observadores científicos (programa de observadores de palangre pelágico de Venezuela). La serie de CPUE estandarizada para la captura de aguja azul observada en la flota de palangre venezolana refleja una tendencia descendente durante el periodo 1991-2004, seguida por una moderada recuperación hasta 2008, y un marcado descenso en 2009. El Grupo constató que el CV se había incrementado durante los años recientes debido a la reducción de la cobertura de observadores durante dicho periodo.

En el documento SCRS/2010/021 se presentaron tasas de captura de aguja azul comunicadas de la pesquería de pequeña escala en aguas de La Guaira, Venezuela, para el periodo 1991-2009, que se obtuvieron del muestreo en puerto de 5.743 operaciones de pesca realizadas por la flota artesanal de redes de enmalle (35 buques). La serie de CPUE estandarizada (en peso) mostraba una tendencia creciente desde 1991, con un máximo en 1999, seguido de un drástico descenso hasta 2002, tras el cual se produjo un incremento gradual hasta el año 2007 inclusive. A partir de 2007 se observó una marcada disminución, volviendo a un nivel semejante al de 2002.

El Grupo decidió incluir las series de CPUE comunicadas en el documento SCRS/1996/109, que incluían tasas de captura estandarizadas para la pesquería deportiva que se desarrolla en aguas frente al Yachting Club de Playa Grande desde 1961 a 1995.

En el documento SCRS/2010/049 se presenta la CPUE estandarizada para la aguja azul capturada por la flota palangrera atunera brasileña entre 1980 y 2008. Se utilizó un modelo lineal generalizado bajo supuestos de distribución de error delta-lognormal y tweedie; y año, trimestre, zona y estrategia de pesca se consideraron variables explicativas. Las series estandarizadas muestran una fuerte oscilación en el tiempo, con una tendencia creciente de 2000 en adelante.

Tras la presentación de este documento se manifestó la inquietud generada por las diferencias entre el índice de estrategia de especie objetivo incluido en este documento y los presentados en el documento SCRS/2010/036 en lo que concierne a la estandarización del patudo capturado por la misma flota en el mismo periodo. Esta diferencia se explicó por el hecho de que la metodología para estimar el índice de estrategia de pesca se había modificado. El método de análisis de componentes principales (PCA) empleado en el documento SCRS/2010/036 se sustituyó por un método k-medias. El autor justificó el cambio afirmando que creía que el PCA proporcionaría resultados sesgados porque su supuesto de linealidad puede infringirse fácilmente.

Tal y como se resaltó en debates previos, el Grupo acordó que deberían desarrollarse más trabajos de investigación, como ejercicios de simulación, para analizar la eficacia de dichos métodos, así como el impacto de su utilización en la estimación de series estandarizadas.

En la **Figura 5** se muestra una comparación entre las series de CPUE utilizadas en la evaluación anterior y las comunicadas en la reunión de preparación de datos de 2010. Se proporcionan dos comparaciones diferentes para los índices de captura del palangre brasileño. La primera muestra la serie estandarizada utilizada en la evaluación de 2006, estimada mediante un método más tradicional (archivos de ICCAT – **Figura 5**, extremo inferior

izquierdo) y la segunda muestra los índices estandarizados presentados en Hazin *et al.* (**Figura 5**, extremo inferior derecho), ésta última no se incluyó en la evaluación debido a que al Grupo le preocupaba el impacto de la utilización de estrategia de especie objetivo como variable explicativa.

Durante la reunión, se generaron series de CPUE estandarizadas adicionales para las series de datos de Japón, Taipei Chino y Corea disponibles en la Secretaría. En la Sección 6 de este informe se incluye una descripción detallada de los datos y métodos utilizados para estas series; los resultados de estas estandarizaciones se muestran en la **Figura 4** y la **Tabla 8**.

6 Examen del trabajo de simulación realizado hasta la fecha

Durante la reunión se prepararon índices de CPUE estandarizados. Se utilizaron los datos más recientes de captura y esfuerzo de Tarea II de la base de datos de ICCAT para las principales flotas palangreras para las que no se dispuso de series estandarizadas: Taipei Chino, Japón y República de Corea. Se accedió directamente a los datos de Tarea 2 a través de SQL en R utilizando el paquete RODBC. Esto hizo que fuera relativamente sencillo repetir el análisis para las diferentes flotas tras la adopción de un protocolo a este efecto por parte del Grupo. Con esto también se facilitará, en el futuro, la actualización de este análisis o su repetición para otros stocks, pabellones, artes y pesquerías. Todos los códigos utilizados en el análisis estarán disponibles en el código Google.

En la estandarización se incluyó un estrato para la hipotética comprensión del hábitat basada en la hipoxia descrita por Prince *et al.* (en revisión), con el fin de evaluar sus efectos en las tasas de captura. Dicho estrato identifica las capturas que se realizan dentro de la zona de compresión del hábitat. Los datos de Tarea II se estratificaron por cuadrículas de 5° y se incluyó en el estrato de zona de comprensión cualquier cuadrícula en la que se detectó hipoxia (en su totalidad o en parte); ya que se asumió que la pesca se concentraría en la zona de compresión de cuadriculas de 5° en las que las capturas serían potencialmente superiores.

La estandarización se realizó utilizando modelos lineales generalizados y asumiendo un modelo de error deltalognormal tras la inspección del diagnóstico (Ortiz y Arocha, 2004) debido a la presencia de una elevada proporción de capturas cero. La serie de Taipei Chino se dividió en dos periodos, 1968-1995 y 1996-2008, ya que hubo una diferencia significativa en la varianza entre la fase inicial y final de la serie temporal.

Tras ajustar el GLM para la interacción trimestre año, se observó un patrón residual para el efecto de compresión en las fases iniciales y finales de las series de Japón y Taipei Chino. Para el palangre japonés parece que la probabilidad de encontrar aguja azul es más elevada dentro de la zona de comprensión, pero cuando se captura la aguja azul, la CPUE fue realmente más elevada fuera de la zona; también se han observado variaciones en el tiempo en la fuerza de cualquier efecto de la compresión del hábitat. El análisis de los datos de palangre de Taipei Chino mostraba un efecto similar para la fase inicial y final del periodo. Sin embargo, para los palangreros coreanos parecía tener poco efecto.

A continuación se ajustó una interacción compresión-año. En el análisis del palangre japonés, las capturas han sido generalmente más elevadas en la zona de comprensión en la fase final del periodo, mientras que fuera de la zona de comprensión las capturas parecen haber presentado una mayor variación. Para la fase final de la serie de palangre de Taipei Chino, al igual que para el palangre japonés, las capturas fueron más elevadas dentro de la zona de comprensión, aunque en la fase inicial fueron similares. Por el contrario, la serie de la República de Corea no parecía estar afectada por la compresión del hábitat.

Aunque parece que la comprensión del hábitat afecta a las tasas de capturas, su efecto en la CPUE estandarizada fue relativamente pequeño, probablemente debido al hecho de que el número de observaciones dentro y fuera de la zona fue similar en magnitud y a que las series de CPUE estandarizadas (**Tabla 8**) se generaron asumiendo un diseño equilibrado con el fin de repetir las estimaciones LSMEAN. En el documento SCRS/2010/060 se presenta información detallada que respalda el análisis.

En la reunión de la última evaluación se sugirió que deberían realizarse simulaciones de estrategia de pesca para evaluar sesgos en la CPUE para los stocks capturados en pesquerías mixtas. Sin embargo, se ha avanzado muy poco en este sentido, con la excepción del documento SCRS/2010/049 que incluía "estrategia de flota" como una covarianza.

7 Examen de posibles métodos a utilizar en la evaluación

Históricamente, las evaluaciones de istiofóridos han dependido principalmente del análisis de las tendencias en las tasas de captura y de los análisis de producción de biomasa, debido, entre otras cosas, a las incertidumbres relacionadas con la edad por talla para estas especies. Se prevé que estas formas de análisis continuarán en el futuro, al menos para establecer la base de comparación con otros enfoques de modelación que también deberían aplicarse.

Los análisis de tendencias se llevaron a cabo en la evaluación de 2006 (Anón. 2007) y deben actualizarse en la evaluación de 2011. Esto depende enormemente de las tasas de captura estandarizadas actualizadas de las flotas que se han utilizado para este análisis en el pasado. Varias de las series temporales críticas utilizadas en este análisis en 2006 no fueron actualizadas por los científicos nacionales para esta reunión, por lo que los científicos nacionales deberían presentarlas o habría que derivarlas de los datos de captura/esfuerzo de Tarea II que mantiene la Secretaría. Algunos de los análisis fueron llevados a cabo en la reunión del Grupo de trabajo y se presentan en la sección 5 de este informe.

En diversas evaluaciones de aguja azul se han utilizado aplicaciones de modelos de producción excedente (por ejemplo ASPIC, BSP). Las especificaciones iniciales de los parámetros se describen en el Informe detallado de la evaluación de 2000. Estas aplicaciones deberían actualizarse para tener en cuenta los datos más recientes de captura y esfuerzo.

Con el aumento de los conocimientos sobre el patrón de crecimiento de la aguja azul (véase la sección 3), la implicación de la estructura de edad para la evaluación del estado de la aguja azul debería investigarse de nuevo mediante la aplicación de enfoques de modelación estructurados por edad/talla. Las opciones oscilan entre modelos de producción de diferencia retardada hasta modelos de producción estructurados por edad, y hasta enfoques de modelación de evaluación de stock estadísticos más plenamente integrados (por ejemplo, Multifan-CL, Stock Synthesis, CASAL, etc.) que deberían emplearse para aprovechar la información sobre captura, esfuerzo, talla y marcado relacionada con los istiofóridos incluida en los conjuntos de datos de ICCAT, al igual que se está haciendo con la mayoría de los restantes stocks de ICCAT. Para apoyar el inicio de dichos análisis, el Grupo de trabajo evaluó las distribuciones de captura por talla específicas de la flota-área y la distribución de la información sobre marcado y recaptura (véanse las secciones 2 y 3).

Para avanzar en la posible aplicación del modelo de evaluación estadísticamente integrado, el Grupo de trabajo propuso considerar una estratificación geográfica de cuatro cuadrantes atlánticos (NW, NE, SW y SE) tal y como se presentan aproximadamente en la **Figura 6**. Cabe señalar que el cuadrante SE en esta figura abarca el área de compresión del hábitat basado en la hipoxia descrito por Prince *et al.* (en revisión). El Grupo de trabajo recomendó que la información trimestral sobre captura, esfuerzo y talla de los artes LL, RR, GILL, PS y Oth se recopilara por pabellón y arte para permitir la identificación de las pesquerías (combinaciones área/arte/flota) que deberían modelarse en cada una de estas áreas. Aunque este trabajo se inició durante la reunión del Grupo de trabajo, será necesario realizar mucho más trabajo intersesiones para definir las pesquerías más adecuadas para las que se van a hacer modelos y para tener en cuenta las definiciones de área propuestas, especialmente respecto a las flotas de palangre que operan atravesando los límites de área.

8 Recomendaciones

- 1. El Grupo de trabajo recomendó la necesidad de resaltar que las CPC deberían comunicar los datos de Tarea I y Tarea II para las reuniones intersesiones en los plazos establecidos por la Secretaría.
- 2. El Grupo de trabajo recomendó que se examinen las secciones de espinas anales y las mediciones de los anillos para identificar y excluir los falsos anillos anuales, y que los autores de este trabajo utilicen el trabajo de Prince *et al.* (1991) para "afianzar" las estimaciones de crecimiento temprano obtenidas de las secciones de espinas.
- 3. El Grupo de trabajo recomendó que los análisis de tendencias llevados a cabo en la evaluación del stock de aguja azul de 2006 sean actualizados en la reunión de evaluación de stock de 2011.
- 4. El Grupo de trabajo recomendó que los modelos de producción excedente llevados a cabo en la evaluación del stock de aguja azul de 2000 sean actualizados en la reunión de evaluación de stock de 2011

- 5. El Grupo de trabajo recomendó establecer un protocolo (basado en la web) para continuar avanzando en la aplicación de un modelo de evaluación estadísticamente integrado que tendría en cuenta la captura estacional, esfuerzo e información de talla para todas las artes, y la nueva estratificación geográfica propuesta durante la reunión de preparación de datos sobre aguja azul.
- 6. El Grupo de trabajo recomienda que en la próxima reunión del grupo de especies del SCRS se considere la propuesta sobre análisis genéticos (**Apéndice 6**).
- 7. El Grupo de trabajo recomienda que el Manual de ICCAT sea actualizado para tener en cuenta los problemas de identificación errónea entre marlín peto, aguja picuda y aguja blanca.
- 8. El Grupo de trabajo recomienda la preparación de hojas de identificación para todas las especies de istiofóridos, similares a las que se están preparando para los tiburones y los pequeños túnidos.
- 9. El Grupo de trabajo acordó que deberían llevarse a cabo más investigaciones, como ejercicios de simulación, respecto a la eficacia de los métodos que implican el análisis de componentes principales (PCA) y K-medias, así como los efectos de su uso en la estimación de series estandarizadas.
- 10. Al indicar que la estimación de índices de abundancia relativa se hace siempre mejor a la mayor resolución espacio temporal que permitan los datos disponibles, el Grupo de trabajo recomienda que todas las CPC y especialmente aquellas con capturas importantes de aguja azul, faciliten índices de abundancia relativa actualizados obtenidos a partir de dichos datos de CPUE de alta resolución.
- 11. El Grupo de trabajo debería llevar a cabo un análisis de las lagunas de las capturas declaradas de varias CPC considerando los datos de Tarea I y Tarea II y los métodos utilizados durante la reunión de preparación de datos de pez vela en 2008.

9 Otros asuntos

Tres documentos del SCRS sobre aguja blanca fueron presentados en esta sección. El documento SCRS/2010/042 presentaba información sobre análisis de edad y crecimiento de la aguja blanca capturada por las flotas comerciales y artesanales en el Atlántico occidental (Brasil) y el Caribe (Venezuela). Se examinaron secciones transversales de las espinas anales para 514 hembras y 420 machos. La mediana y la moda del recuento de anillos fueron 2 tanto para hembras como para machos, mientras que las edades asignadas se encontraban entre uno y diez años. La mayoría de los individuos oscilaba entre cuatro y ocho años de edad. La moda de las edades era seis para los machos y siete para las hembras, pero la mediana de la edad era idéntica (seis años) para ambos sexos. No había diferencias significativas en la distribución de edades por sexo (prueba de los signos de Wilcoxon, p=0.09). Las curvas de modelación del crecimiento para machos y hembras eran significativamente diferentes (prueba de la ratio de verosimilitud de Kimura), en la que las hembras tenían una K significativamente menor y un $L\infty$ mayor. No había diferencias significativas entre los parámetros t0 entre los sexos. La escasez de muestras de la clase más joven y la clase mayor dificultó el ajuste de los tres parámetros simultáneamente con un alto grado de precisión. El dimorfísmo sexual era claro, por lo que las hembras eran significativamente más grandes, pero no mayores, que los machos. Las pruebas de la ratio de verosimilitud estimaron que $L\infty$ era significativamente más alto para las hembras en comparación con los machos, mientras que la K para las hembras era significativamente más bajo. Un análisis genético retrospectivo de una submuestra de espinas brasileñas indicó la presencia de agujas picudas y marlines peto, lo que añadía incertidumbre a los resultados. La proporción de muestras mal identificadas puede no ser trivial, pero en este momento se desconoce el alcance de la contaminación. Las muestras reflejan lo que se está declarando actualmente como aguja blanca.

El documento SCRS/2010/027 abordaba el tema de la presencia de marlín peto (*T. georgii*) en las capturas del palangre venezolano en el Caribe occidental y aguas adyacentes del Atlántico. El documento informaba sobre la proporción entre marlín peto y aguja blanca en la captura del palangre pelágico de Venezuela desde el Caribe occidental hasta aguas adyacentes del Atlántico. Los datos incluían la identificación macroscópica de 290 marlines peto y 959 agujas blancas observadas en 450 lances durante 2002-2007. La distribución espacio-temporal diferente del marlín peto era clara, y la mayor proporción (>65%) se produce en el Caribe noroccidental durante el tercer trimestre (julio-septiembre). Las proporciones de marlín peto permanecían relativamente altas en esta zona durante todo el año, con la excepción del primer trimestre (enero-marzo), cuando casi todas las observaciones correspondían a aguja blanca.

El documento SCRS/2010/040 presentaba una actualización de los datos de marcado convencional estadounidense para la aguja blanca. Se marcaron y liberaron en total 51.969 agujas blancas durante el periodo de 1954-2008. Las liberaciones tuvieron lugar principalmente en el Atlántico norte occidental, los Estrechos de Florida, Bahamas y Golfo de México septentrional. Se produjeron 1.014 recapturas comunicadas (1,95%). Los días en libertad oscilaban entre 0 y 5.488 (media de 700 d, SE 22). Tres ejemplares hicieron movimientos transecuatoriales de norte a sur, y siete hicieron movimientos transatlánticos de oeste a este. No se ha comunicado que ninguna aguja blanca hiciera ambos movimientos, transatlánticos y trans-ecuatoriales. La mayoría de las recapturas (59%) se han comunicado en las flotas comerciales y de recreo de Venezuela en el Caribe. El resto de las recapturas (41%) se distribuían a lo largo de todo el Atlántico norte occidental y oriental. El esfuerzo de marcado ha descendido enormemente desde 2002.

Se presentaron los resultados de la investigación realizada por Beekircher *et al.* (2009) describiendo los efectos de la identificación errónea de las especies en la evaluación de la población de aguja blanca y marlín peto. Los autores informaban de que el marlín peto constituye una gran proporción (~27%) de la captura total de "aguja blanca" en el Atlántico norte occidental, con una elevada variación espacial dentro de esta región. Por consiguiente, los conocimientos actuales sobre la biología de la aguja blanca están contaminados por los del marlín peto, recientemente reconocidos, y que es morfológicamente similar. Las simulaciones de evaluación de población utilizando la proporción del 27% de marlín peto indicaron que los cambios históricos en la ratio marlín peto/aguja blanca y las diferencias en las tasas de crecimiento de la población afectan a los resultados de la simulación. Esto sugiere que la identificación errónea de las especies podría hacer afectado a la precisión de evaluaciones anteriores de aguja blanca para el Atlántico norte occidental. Se ha propuesto realizar investigaciones adicionales sobre el ciclo vital de ambas especies para corroborar los hallazgos de los estudios históricos.

Siguiendo las conclusiones y recomendaciones de Beerkircher *et al.* (2009) y de Shivji *et al.* (2006), el Grupo de trabajo consideró una propuesta (**Apéndice 6**) para obtener la información necesaria para intentar realizar una evaluación de aguja blanca antes de 2012. Esta propuesta describe los esfuerzos para continuar y ampliar los estudios en colaboración con el grupo del Dr. Shivji (Shivji *et al.* 2006; Hoolihan *et al.* 2009; Beerkircher *et al.* 2009) para investigar la distribución espacial y temporal en todo el Atlántico del marlín peto, la aguja picuda y la aguja blanca, tanto retrospectivamente como actualmente, en toda su zona de distribución. Además, el trabajo evaluará también la frecuencia de la identificación errónea de marlín peto como aguja blanca o aguja picuda en las pesquerías del Atlántico.

Durante la reunión se llevaron a cabo análisis de frecuencia de tallas de la aguja blanca, similares a los realizados con la aguja azul. Los resultados se incluyen como **Apéndice 7**.

El Grupo de trabajo reconoció el enorme progreso alcanzado en la fiabilidad, velocidad y calidad de la conexión para el acceso a los datos que ha supuesto el nuevo equipo inalámbrico disponible en la Secretaría. La productividad del Grupo de trabajo durante la reunión se ha visto incrementada a causa de estas mejoras.

10 Adopción del informe y clausura

El informe fue adoptado durante la reunión.

- El Presidente dio las gracias a la Secretaría y a los participantes por el duro trabajo realizado.
- La reunión fue clausurada.

Referencias

- Anon, 2007, Report of the 2006 ICCAT Billfish Stock Assessment (Madrid, Spain, May 15 to 19, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(5): 1431-1546.
- Anon. 2009, Report of the 2008 ICCAT Sailfish Data Preparatory Meeting (Madrid, Spain, May 19 to 24, 2008). Collect. Vol. Sci. Pap. ICCAT, 64(6): 1765-1832.
- Beerkircher, L.R., Lee, D.W and Hinteregger, G.F. 2008, Roundscale spearfish *Tetrapturus georgii*: morphology, distribution, and relative abundance in the western North Atlantic. Bull. Mar. Sci., 82: 155–170.

- Beekircher, L., Arocha, F., Barse, A., Prince, E., Restrepo, V., Serafy, J. and Shivji, M. 2009, Effects of species misidentification on population assessment of overfished white marlin *Tetrapturus albidus* and roundscale spearfish *T. georgii*. Endang. Species Res., 9:81-90.
- Gobert, 1989. Fishing effort and production in the artisanal fisheries in the Martinique. Document scientifique. Pole de Recherche oceanologique et halieutique caraibe. Fort-de-France. No. 22, 98 p. 1989.
- Hazin, F.H.V., Hazin, H.G., Travassos, P. and da Mata Oliveira, I., 2007, Standardized catch per unit of effort of white marlin, *Tetrapturus albidus*, and blue marlin, *Makaira nigricans*, caught by the Brazilian tuna longline fleet. Collect. Vol. Sci. Pap. 60(5): 1652-1662.
- Hoolihan, J.P., Perez, N.F. Faugue, R.M. Bernard, A.M. Horn, R.L., Snodgrass, D. and Schultz, D.R. 2009, Surface mucous as a source of genomic DNA from Atlantic billfishes (Istiophoridae) and swordfish (Xiphiidae). Fish. Bull., 107: 339-342.
- Ortiz, M. and Arocha, F. 2004, Alternative error distribution models for standardization of catch rates of nontarget species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. Fish. Res. 70 (2004) 275-297.
- Prince, E.D., Lee, D.W., Zweifel, J.R. and Brothers, E.B. 1991, Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. Fish. Bull. 89:441-459.ICCAT. Suggested rules and procedures for the protection, access to, and dissemination of data compiled by ICCAT. *In* Report for Biennial Period, 2008-2009, Part II (2009), Vol. 2-SCRS: 287-295.
- Prince, Eric D., Luo, Jiangang, Goodyear, C. Phillip, Hoolihan, John. P., Snodgrass, Derke, Orbesen, Eric S., Serafy, Joseph E., Ortiz, Mauricio and Schirripa, Michael J. In Review Ocean Scale Hypoxia-Based Habitat Compression of Atlantic Istiophorid Billfishes. Fish. Oceanogr. 39 pp.
- Reynal, L; Nelson, L; Rivoalen, JJ; Lagin, A. 2007. Fishing effort and production of fishing associated with moored FADs in Martinique estimation by phone surveys. Gulf. Caribb. Res. Vol. 19, no. 2, p. 174.
- Shivji, M.S., Magnussen, J.E., Beerkircher, L.R., Hinteregger, G., Lee, D.W., Serafy, J.E. and Prince, E.D. 2006, Validity, identification, and distribution of the roundscale spearfish, *Tetrapturus georgii*: morphological and molecular evidence. Bull. Mar. Sci., 79:483-491.

TABLEAUX

Tableau 1. Prises nominales de Tâche I (t) de makaire bleu (BUM). Les cellules ombrées en 2009 indiquent les captures déclarées pendant la réunion.

Tableau 2. Catalogue des données disponibles de Tâche I et Tâche II sur le makaire bleu de 1990 à 2009 dont disposait le Groupe de travail. Les cellules colorées indiquent les données déclarées de Tâche I (gris), les données de prise et d'effort de Tâche II (rose) et les données de taille de Tâche II (vert). Les points rouges indiquent les celles pour lesquelles aucune information associée n'a été déclarée.

Tableau 3. Récapitulatif des sources de données de divers pays et engins utilisés dans l'analyse de fréquence des tailles du makaire bleu. Les mesures de la taille ont été consignées en tant que longueur maxillaire inférieur-fourche (LJFL), poids (WGT) ou poids éviscéré (EWGT).

Tableau 4. Flottilles déclarant des prises d'istiophoridés supérieures à 50 t depuis 1980. La composition spécifique (Sp. Comp) indique que l'on dispose de données pour les mêmes période, flottille et zone, et « autre » signifie qu'il existe des données mais que celles-ci se réfèrent aux cinq années antérieures ou postérieures à la période durant laquelle les istiophoridés ont été déclarés. Les données sur les istiophoridés n'ont pas été reclassifiées si les données de composition spécifique représentaient moins de 10% des déclarations d'istiophoridés.

Tableau 5. Ratios de la composition spécifique des istiophoridés estimés pour reclassifier les captures de BIL déclarées BIL pour les flottilles sélectionnées à partir du **Tableau 1**. BIL représente la capture déclarée comme istiophoridés non-classifiés. « Istiophoridés » représente la capture d'istiophoridés classifiés utilisés dans l'estimation des ratios de composition spécifique.

Tableau 6. Ratios annuels de composition spécifique des prises déclarées pour l'ensemble de l'Atlantique calculés pour les trois principales espèces d'istiophoridés (BUM, SAI et WHM) pour lesquelles des déclarations spécifiques aux espèces existent dans la Tâche I. Sont également illustrées, en t, les prises restantes d'istiophoridés non-classifiés (BIL) qui n'ont pas été reclassifiées avec les données des flottilles, mais plutôt reclassifiées avec les ratios annuels.

Tableau 7. Estimations de la prise historique (t) de makaire bleu de la Martinique et de la Guadeloupe réalisée par les flottilles de ligneurs pêchant avec des DCP amarrés. Les estimations de la Martinique ont différé en fonction de la façon dont le nombre de sorties a été calculé, à partir d'entretiens (estimation inférieure) ou de la consommation de combustible (estimation supérieure). Est également illustrée la prise de makaire bleu de toutes les autres flottilles et la prise atlantique totale comme fonction de l'estimation de la capture faible ou élevée de la Martinique.

Tableau 8. CPUE standardisée du makaire bleu disponible pendant la réunion de préparation des données sur le makaire bleu de 2010.

TABLAS

Tabla 1. Capturas nominales de Tarea I (t) de aguja azul (BUM). Las celdas sombreadas en 2009 indican que se comunicaron las capturas durante la reunión.

Tabla 2. Catálogo de información de Tarea I y Tarea II para aguja azul de 1990-2009 disponible para el Grupo. Los colores sólidos indican que se han comunicado datos para Tarea I (gris), Tarea II C/E (rosa) y Tarea II tallas (verde). Los puntos rojos indican celdas para las que no se ha comunicado información asociada.

Tabla 3. Resumen de las fuentes de datos de varios países y artes utilizados en el análisis de frecuencias de tallas de aguja azul. Las mediciones de talla se consignaron como longitud mandíbula inferior-horquilla y peso (WGT) o peso eviscerado (EWGT)

Tabla 4. Flotas que comunican capturas de BIL de más de 50 t desde 1980. La composición por especies (Sp.Comp.) indica que se dispone de datos para el mismo periodo, flota y zona, y "otros" indica que se dispone de datos, pero que éstos se refieren a los cinco años anteriores o posteriores al periodo en que se comunicaron las capturas BIL. Los datos de BIL no se reclasificaron en los casos en que los datos de composición por especies representaban menos del 10% de las comunicaciones de BIL.

Tabla 5. Ratios de composición por especies de istiofóridos estimadas para reclasificar las capturas de BIL comunicadas para las flotas seleccionadas de la **Tabla 1**. BIL representa la captura comunicada como istiofóridos sin clasificar. "Billfish" representa la captura de istiofóridos clasificados utilizados en la estimación de ratios de composición por especies.
Tabla 6. Ratio anual de composición por especies de las capturas comunicadas para todo el Atlántico calculada para las tres especies principales de istiofóridos (BUM, SAI y WHM) para las que existen comunicaciones especificadas por especies en Tarea I. También se muestran, en t, las capturas restantes de istiofóridos sin clasificar (BIL) que no se reclasificaron con datos de la flota sino mediante ratios anuales.

Tabla 7. Estimaciones de captura histórica (t) de aguja azul de Martinica y Guadalupe realizadas por las flotas de liña de mano que pescan con DCP fondeados. Las estimaciones de Martinica diferían en función del modo en que se calculó el número de mareas: a partir de encuestas (estimación baja) o consumo de combustible (estimación elevada). También se muestran las capturas de aguja azul de todas las demás flotas y la captura total del Atlántico como una función de la estimación de la captura baja o elevada de Martinica.

Tabla 8. CPUE estandarizadas de BUM disponibles durante la reunión de 2010 de preparación de datos de aguja azul.

FIGURES

Figure 1. Estimations des prises atlantiques de makaire bleu déclarées dans la Tâche I (BUM), reclassifiées à partir des istiophoridés non-classifiés avec des données spécifiques aux flottilles (FLEET), reclassifiées à partir des données annuelles agrégées (YEAR) et des istiophoridés non-classifiés restants estimés ne pas être des makaires bleus (SAI, WHM).

Figure 2. Estimations de la prise historique (t) de makaire bleu et de l'impact des estimations réalisées par le Groupe de travail sur la prise historique des flottilles de ligneurs de la Martinique et de la Guadeloupe pêchant avec des DCP amarrés. Les estimations pour la Martinique ont différé en fonction de la façon dont le nombre de sorties a été calculé, à partir d'entretiens (estimations faibles) ou de la consommation de combustible (estimations élevées).

Figure 3. CPUE standardisées du makaire bleu pendant la dernière évaluation en 2006.

Figure 4. CPUE standardisées du makaire bleu présentées pendant la réunion de préparation des données sur le makaire bleu de 2010.

Figure 5. Comparaison des séries de CPUE utilisées pendant l'évaluation de 2006 avec les séries actualisées présentées pendant la réunion de préparation des données de 2010.

Figure 6. Strates géographiques proposées pour envisager l'application d'un modèle d'évaluation des stocks statistique intégré qui pourrait tenir compte des déplacements du makaire bleu qui traverse ces zones. Les récupérations des marques apposées aux makaires bleus par rapport à ces zones sont illustrées dans le panneau de gauche. La ligne de séparation des quadrants NW et NE se situe au méridien 40°W et celles des quadrants SE et SW au méridien 20°W. La limite entre les quadrants NE et SE suit une ligne qui va depuis le point d'intersection sur la côte africaine à 25° de latitude et 10°N, 40°W. La limite entre les quadrants NW et SE suit la ligne qui relie les points 10°N, 40°W et 5°N, 40°W et 5° S de latitude, 25°W. La limite la plus méridionale du quadrant NW se situe à 5°S de latitude. La zone de compression de l'habitat produite par la zone de minimum d'oxygène de l'ETA est illustrée dans le panneau de droite (Prince *et al.*, en révision, avec l'autorisation de *Fisheries Oceanography*).

FIGURAS

Figura 1. Estimaciones de capturas de aguja azul en el Atlántico comunicadas en Tarea I (BUM) reclasificadas a partir de istiofóridos sin clasificar con datos específicos de la flota (FLEET), reclasificadas a partir de datos anuales agregados (YEAR) y los istiofóridos restantes sin clasificar que se estima que no son aguja azul (SAI, WHM).

Figura 2. Estimaciones de captura histórica (t) de aguja azul y del impacto de las estimaciones realizadas por el Grupo para la captura histórica de las flotas de liña de mano que pescan con DCP fondeados de Martinica y Guadalupe. Las estimaciones para Martinica diferían en función del modo en que se calculó el número de mareas, a partir de entrevistas (estimaciones bajas) o de consumo de combustible (estimaciones elevadas).

Figura 3. CPUE estandarizadas de aguja azul de la última evaluación de 2006.

Figura 4. CPUE estandarizadas de aguja azul presentadas durante la reunión de 2010 de preparación de datos de aguja azul.

Figura 5. Comparación entre las series de CPUE utilizadas durante la evaluación de 2006 y las series actualizadas presentadas durante la reunión de 2010 de preparación de datos.

Figura 6. Estratos geográficos propuestos para considerar la aplicación de un modelo de evaluación de stock estadístico integrado que podría tener en cuenta el movimiento de la aguja azul que atraviesa dichas zonas. Las recuperaciones de aguja azul en relación con estas zonas se muestran en el panel de la izquierda. La línea de separación de los cuadrantes noroccidental y nororiental se sitúa en el meridiano 40° W y la de los cuadrantes suroriental y suroccidental en el meridiano 20° W. El límite entre el cuadrante nororiental y el suroriental sigue una línea que va desde el punto de intersección en la costa africana en 25° de latitud y 10°N, 40°W. El límite entre los cuadrantes noroccidental y suroriental sigue la línea que enlaza los puntos 10°N, 40°W y 5°N, 40°W y 5° S de latitud, 25°W. El límite más meridional del cuadrante noroccidental se sitúa en 5°S de latitud. La zona de compresión del hábitat producida por la zona de mínimo oxígeno del ETA se muestra en el panel de la derecha (de Prince *et al.*, en revisión, cortesía de *Fisheries Oceanography*).

APPENDICES

Appendice 1. Ordre du jour.

Appendice 2. Liste des participants.

Appendice 3. Liste des documents.

Appendice 4. Examen de la base de données de marquage de l'ICCAT pour le makaire bleu.

Appendice 5. Analyse de la fréquence des tailles du makaire bleu.

Appendice 6. Proposition de recherche pour l'ampleur des travaux de l'ICCAT.

Appendice 7. Analyse de la fréquence des tailles du makaire blanc.

APÉNDICES

Apéndice 1. Orden del día.

Apéndice 2. Lista de participantes.

Apéndice 3. Lista de documentos.

Apéndice 4. Examen de la base de datos de marcado de ICCAT para la aguja azul.

Apéndice 5. Análisis de frecuencias de tallas de aguja azul.

Apéndice 6. Propuesta de investigación para el ámbito de trabajo de ICCAT.

Apéndice 7. Análisis de frecuencias de tallas de aguja blanca.

TOTAL TA PA ConderwiftPAPAPAPAPAPA				1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
int int <th>TOTAL</th> <th></th> <th></th> <th>39</th> <th>764</th> <th>772</th> <th>841</th> <th>2815</th> <th>4083</th> <th>7308</th> <th>9038</th> <th>8011</th> <th>6156</th> <th>3863</th> <th>2246</th> <th>2527</th> <th>3106</th> <th>2886</th> <th>3398</th> <th>2414</th> <th>3226</th> <th>3095</th> <th>3271</th>	TOTAL			39	764	772	841	2815	4083	7308	9038	8011	6156	3863	2246	2527	3106	2886	3398	2414	3226	3095	3271
ATY Idd S32 600 213 340 830 800 800 803 <td></td> <td>ATN</td> <td></td> <td>7</td> <td>91</td> <td>240</td> <td>231</td> <td>684</td> <td>653</td> <td>3452</td> <td>5141</td> <td>4809</td> <td>3682</td> <td>2040</td> <td>1173</td> <td>1381</td> <td>1601</td> <td>1845</td> <td>2150</td> <td>1315</td> <td>1616</td> <td>1916</td> <td>2076</td>		ATN		7	91	240	231	684	653	3452	5141	4809	3682	2040	1173	1381	1601	1845	2150	1315	1616	1916	2076
Imagine APM Gendine C 9 240 231 531 333 501 484 970 120 185		ATS		32	673	532	610	2131	3430	3856	3897	3202	2474	1823	1073	1146	1505	1041	1248	1099	1610	1179	1195
- Observarf. 0 0 0 0<	Landings	ATN	Longline	7	91	240	231	581	531	3331	5010	4645	3517	1884	970	1207	1388	1635	1967	1122	1406	1497	1683
spect (H_L-R) 0 <	Ū		Other surf.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	183	150
ATS Logdine S2 673 S2 670 S13 880 201 127 103 128 100 1100 100 Other strf. 0 0 0 0 <td></td> <td></td> <td>Sport (HL+RR)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>103</td> <td>122</td> <td>121</td> <td>131</td> <td>164</td> <td>165</td> <td>156</td> <td>203</td> <td>174</td> <td>213</td> <td>210</td> <td>183</td> <td>193</td> <td>210</td> <td>236</td> <td>243</td>			Sport (HL+RR)	0	0	0	0	103	122	121	131	164	165	156	203	174	213	210	183	193	210	236	243
best best <th< td=""><td></td><td>ATS</td><td>Longline</td><td>32</td><td>673</td><td>532</td><td>610</td><td>2131</td><td>3430</td><td>3856</td><td>3896</td><td>3201</td><td>2473</td><td>1819</td><td>1067</td><td>1134</td><td>1489</td><td>1018</td><td>1217</td><td>1051</td><td>1561</td><td>1100</td><td>1109</td></th<>		ATS	Longline	32	673	532	610	2131	3430	3856	3896	3201	2473	1819	1067	1134	1489	1018	1217	1051	1561	1100	1109
Sected ATN Congline 0 0 <			Other surf.	0	0	0	0	0	0	0	1	1	1	4	6	12	15	22	31	48	49	79	86
Disc ATM Longine 0 0 0 0			Sport (HL+RR)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
Internet 0 0 0 0 </td <td>Discards</td> <td>ATN</td> <td>Longline</td> <td>0</td>	Discards	ATN	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATS Longline 0 <			Other surf.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LandingATMBarkados000 <td></td> <td>ATS</td> <td>Longline</td> <td>0</td>		ATS	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Belize00 <td>Landings</td> <td>ATN</td> <td>Barbados</td> <td>0</td> <td>183</td> <td>150</td>	Landings	ATN	Barbados	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	183	150
Basil 0 <td></td> <td></td> <td>Belize</td> <td>0</td>			Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CanadaCanadaOO			Brasil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
China P.R.00			Canada	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chinese Taipei 0 0 0 0 0 0 0 27 8 2 14 131 374 348 369 133 300 155 183 105 Cuba 0 0 0 0 0 0 0 0 123 124 144 91 223 167 122 168 149 67 223 56 544 Dominican Republic 0 <			China P.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cuba0000000001231281449122316712210814967223516594Dominica000<			Chinese Taipei	0	0	0	0	0	0	9	27	8	2	34	131	374	348	369	193	300	155	183	105
Dominican Republic000 </td <td></td> <td></td> <td>Cuba</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>123</td> <td>128</td> <td>144</td> <td>91</td> <td>223</td> <td>167</td> <td>122</td> <td>108</td> <td>149</td> <td>67</td> <td>223</td> <td>516</td> <td>594</td>			Cuba	0	0	0	0	0	0	0	123	128	144	91	223	167	122	108	149	67	223	516	594
Dominican Republic000 </td <td></td> <td></td> <td>Dominica</td> <td>0</td>			Dominica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EULEspaña00<			Dominican Republic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EULFrance00<			EU.España	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EUPortugal00			EU.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grenada00 <td></td> <td></td> <td>EU.Portugal</td> <td>0</td>			EU.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jamaica00 <td></td> <td></td> <td>Grenada</td> <td>0</td>			Grenada	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Japan 7 91 240 231 581 379 3223 4759 4434 3330 1677 485 474 658 758 1223 335 229 267 551 Korea Rep. 0<			Jamaica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Korea Rep. 0 0 0 0 0 0 0 1 4 46 66 93 214 368 221 215 457 385 304 Liberia 0			Japan	7	91	240	231	581	379	3223	4759	4434	3330	1677	485	474	658	758	1223	335	229	267	551
Liberia00 </td <td></td> <td></td> <td>Korea Rep.</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>4</td> <td>46</td> <td>66</td> <td>93</td> <td>214</td> <td>368</td> <td>221</td> <td>215</td> <td>457</td> <td>385</td> <td>304</td>			Korea Rep.	0	0	0	0	0	0	0	0	1	4	46	66	93	214	368	221	215	457	385	304
Maroc 0 <td></td> <td></td> <td>Liberia</td> <td>0</td>			Liberia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mexico 0 <td></td> <td></td> <td>Maroc</td> <td>0</td>			Maroc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEI (ETRO) 0			Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Netherlands Antilles 0			NEI (ETRO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Panama 0 <td></td> <td></td> <td>Netherlands Antilles</td> <td>0</td>			Netherlands Antilles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Philippines 0 <th< td=""><td></td><td></td><td>Panama</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>10</td><td>208</td><td>62</td><td>44</td></th<>			Panama	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	208	62	44
Senegal 0 </td <td></td> <td></td> <td>Philippines</td> <td>0</td>			Philippines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
St. Vincent and Grenadines 0			Senegal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stat. Lucia 0 <th< td=""><td></td><td></td><td>St. Vincent and Grenadines</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>			St. Vincent and Grenadines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U.S.A. 0 <td></td> <td></td> <td>Sta. LUCIA</td> <td>0</td>			Sta. LUCIA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			TIMUau and Todago	0	0	0	0	102	116	115	128	161	162	140	107	169	207	204	170	101	200	0	241
			U.S.A.	0	0	0	0	103	0	0	120	101	105	149	197	100	207	204	3	7	10	234 1	241

Table 1. Task I nominal catches (t) of blue marlin (BUM). Shaded cells in 2009 indicate catches reported during the meeting.

	UK.Bermuda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	UK.British Virgin Islands	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	UK.Turks and Caicos	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ukraine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Venezuela	0	0	0	0	0	158	105	104	77	38	42	68	102	49	36	182	190	125	85	83
ATS	5 Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Benin	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Brasil	0	0	0	0	0	41	24	12	12	12	12	6	15	18	39	14	17	4	15	15
	China P.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Chinese Taipei	0	0	0	0	0	0	11	21	5	2	35	160	429	1016	560	742	628	537	369	422
	Cuba	0	0	0	0	0	0	0	22	26	32	27	221	113	43	41	17	22	75	170	195
	Côte D'Ivoire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	EU.España	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	EU.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gabon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ghana	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Japan	32	673	532	610	2131	3389	3821	3841	3156	2421	1693	588	472	302	247	172	85	117	17	57
	Korea Rep.	0	0	0	0	0	0	0	0	1	3	47	79	93	98	120	258	251	532	449	354
	Mixed flags (FR+ES)	0	0	0	0	0	0	0	1	1	1	4	6	12	15	22	31	48	49	79	86
	NEI (ETRO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Panama	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	244	72	51
	Philippines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Russian Federation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	S. Tomé e Príncipe	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	South Africa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	St. Vincent and Grenadines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Togo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.S.R.	0	0	0	0	0	0	0	0	1	3	5	13	12	13	12	14	36	52	8	15
	UK.Sta Helena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Uruguay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATN	N Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATS	Brasil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
TOTAL			2419	2181	1642	1527	1848	2032	2708	2142	2760	3311	2018	2144	2808	4219	4547	4151	2989	3044	4124	4062
	ATN		1366	1255	976	897	1085	1296	1650	1226	1390	1566	1095	927	954	1525	1952	1410	1084	1071	1537	1560
	ATS		1053	926	666	630	763	736	1058	916	1370	1745	924	1217	1855	2693	2595	2741	1905	1974	2587	2502
Landings	ATN	Longline	978	876	553	480	643	792	1162	821	932	1222	720	418	459	995	1607	982	625	613	1088	991
-		Other surf.	120	81	122	118	140	204	189	206	252	174	160	190	184	197	137	225	223	217	220	343
		Sport (HL+RR)	268	298	301	299	301	300	299	199	206	169	214	181	186	143	49	62	90	113	118	73
	ATS	Longline	933	739	526	490	498	430	822	533	975	1362	661	964	1530	2017	1958	2286	1490	1419	1764	1679
		Other surf.	120	186	138	139	263	304	234	383	394	382	262	253	324	675	634	453	414	553	821	822
		Sport (HL+RR)	0	1	2	1	2	2	2	0	1	1	1	0	1	1	2	1	0	1	2	2
Discards	ATN	Longline	0	0	0	0	0	0	0	0	0	0	0	138	124	191	159	142	146	127	111	153
		Other surf.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ATS	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Landings	ATN	Barbados	120	81	72	51	73	117	99	126	126	10	14	13	46	3	18	12	18	21	19	31
		Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Brasil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Canada	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		China P.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	48
		Chinese Taipei	169	64	81	51	160	98	100	125	102	148	117	52	26	11	937	716	336	281	272	187
		Cuba	250	220	97	156	162	178	318	273	214	246	103	68	94	74	112	127	135	69	39	85
		Dominica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Dominican Republic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		EU.España	0	0	0	0	0	0	0	0	3	4	1	0	8	7	5	1	6	7	6	2
		EU.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		EU.Portugal	0	0	0	0	0	0	1	2	1	8	12	8	2	1	1	4	2	15	11	10
		Grenada	0	0	0	0	1	1	12	6	8	11	36	33	34	40	52	64	52	58	52	50
		Jamaica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Japan	260	118	54	68	193	332	637	192	351	409	174	78	206	593	250	145	193	207	532	496
		Korea Rep.	174	307	185	67	48	71	19	43	110	154	36	13	14	252	240	34	11	2	16	16
		Liberia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	87
		Maroc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	13	13
		NEI (ETRO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71	134	149
		Netherlands Antilles	0	0	50	50	50	50	50	50	50	50	50	50	50	50	50	40	40	40	40	40
		Panama	47	87	42	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Philippines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Senegal	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	4	8	0	9	0
		St. Vincent and Grenadines	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2	2	2
		Sta. Lucia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Trinidad and Tobago	0	0	0	0	0	0	0	15	20	3	43	93	45	13	11	6	1	2	16	28
		U.S.A.	265	295	295	312	313	342	329	215	280	295	273	291	221	124	29	33	51	80	88	43
		U.S.S.R.	0	1	1	0	0	0	0	0	0	0	7	23	0	0	0	0	0	0	0	0

 Table 1 (cont.) Task I nominal catches (t) of blue marlin (BUM).

	UK.Bermuda	2	2	5	2	4	1	2	7	8	9	11	6	8	15	17	18	19	11	15	15
	UK.British Virgin Islands	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	UK.Turks and Caicos	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ukraine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Venezuela	79	80	94	134	81	106	83	172	117	219	218	60	76	149	70	49	66	74	122	106
AT	S Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Benin	0	0	0	0	0	6	8	0	9	10	7	4	12	0	6	6	6	6	5	5
	Brasil	41	100	49	34	23	28	30	27	32	33	46	51	74	60	52	61	125	147	81	180
	China P.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	25
	Chinese Taipei	240	107	177	139	129	104	150	47	70	165	98	265	266	462	767	956	488	404	391	280
	Cuba	159	100	113	180	187	108	118	123	159	205	111	137	191	77	90	62	69	0	0	0
	Côte D'Ivoire	0	0	0	0	0	0	0	0	100	100	100	100	130	82	88	105	79	139	212	177
	EU.España	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	12	40	37	49	38
	EU.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Gabon	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0
	Ghana	0	0	0	0	119	129	52	216	166	150	16	5	7	430	324	126	123	236	441	471
	Japan	4	17	15	66	115	136	495	248	482	691	335	362	617	962	967	755	824	719	991	913
	Korea Rep.	392	356	140	78	46	55	31	88	234	262	60	139	361	437	84	503	13	11	40	40
	Mixed flags (FR+ES)	109	134	136	126	144	169	174	167	118	122	135	132	137	144	199	137	116	146	133	126
	NEI (ETRO)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	103	192	214
	Panama	107	103	32	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Philippines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Russian Federation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	S. Tomé e Príncipe	0	0	0	0	0	0	0	0	0	0	0	0	28	19	17	18	21	25	28	33
	South Africa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	St. Vincent and Grenadines	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Togo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.S.R.	1	9	4	0	0	1	0	0	0	7	16	22	32	5	0	0	0	0	0	0
	UK.Sta Helena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Uruguay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT	'N Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	138	124	191	159	142	146	127	111	153
AT	'S Brasil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
TOTAL			5198	5463	5458	5086	4855	3683	2899	3556	2142	3445	2173	3168	4070	989
	ATN		1961	2011	2494	2017	2066	1072	791	1010	702	1555	754	967	1944	588
	ATS		3237	3452	2963	3069	2789	2611	2108	2547	1439	1891	1420	2200	2126	401
Landings	ATN	Longline	1339	1413	1300	1078	919	462	413	467	518	561	462	532	755	122
Ũ		Other surf.	363	440	1088	820	1051	489	240	502	119	951	193	273	954	460
		Sport (HL+RR)	64	60	56	38	36	97	89	22	31	18	62	120	197	5
	ATS	Longline	2193	2519	2068	1977	1775	1446	896	1212	844	1002	750	1254	901	261
		Other surf.	1041	863	893	1090	1014	1165	1212	1334	595	887	666	938	1224	140
		Sport (HL+RR)	2	28	0	0	0	0	0	0	0	2	1	9	1	
Discards	ATN	Longline	196	97	49	81	60	22	37	19	34	24	36	42	37	
		Other surf.	0	0	1	0	0	2	11	0	1	1	0	0	1	
	ATS	Longline	1	42	2	2	0	0	0	0	0	0	2	0	0	
Landings	ATN	Barbados	25	30	25	19	19	18	11	11	0	0	25	0	0	
		Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Brasil	0	0	0	0	15	0	0	0	0	0	0	0	0	
		Canada	0	0	0	0	0	0	0	0	0	0	0	0	0	
		China P.R.	41	51	79	133	9	31	15	17	10	49	0	4	2	
		Chinese Taipei	170	355	80	44	64	65	48	66	104	38	35	30	15	27
		Cuba	43	53	12	38	55	56	34	3	4	7	7	0	0	
		Dominica	0	0	0	0	0	64	69	75	36	44	55	58	106	
		Dominican Republic	0	41	71	29	19	23	0	207	0	0	0	0	0	
		EU.España	25	5	36	15	25	8	1	6	27	12	23	14	23	20
		EU.France	0	0	0	0	0	0	0	0	0	776	0	0	753	319
		EU.Portugal	7	3	47	8	15	17	1	31	27	24	36	56	56	39
		Grenada	26	47	60	100	87	104	69	72	45	42	33	49	54	
		Jamaica	0	24	0	0	0	0	0	0	0	0	0	0	0	
		Japan	798	625	656	427	442	155	125	148	174	251	199	221	459	
		Korea Rep.	41	16	0	0	0	0	0	0	0	3	14	30	0	
		Liberia	148	148	701	420	712	235	158	115	0	0	0	0	0	
		Maroc	0	0	0	0	0	0	0	0	0	12	0	0	0	
		Mexico	13	13	27	35	68	37	50	70	90	86	64	91	81	
		NEI (ETRO)	178	225	330	312	202	112	7	6	0	0	0	0	0	
		Netherlands Antilles	40	40	40	40	40	0	0	0	0	0	0	0	0	
		Panama	0	0	0	0	3	0	0	0	0	0	0	0	0	
		Philippines	0	0	5	38	38	0	0	0	0	0	0	0	1	
		Senegal	2	5	0	0	0	11	24	32	11	1	5	91	114	
		St. Vincent and Grenadines	0	1	0	0	0	0	19	0	0	0	0	1	3	
		Sta. Lucia	0	4	1	0	10	5	0	18	17	21	53	46	70	72
		Trinidad and Tobago	14	49	15	20	51	17	16	9	11	7	14	16	34	
		U.S.A.	43	46	50	37	24	16	17	19	26	16	17	9	13	5
		U.S.S.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	

 Table 1 (cont).
 Task I nominal catches (t) of blue marlin (BUM).

		UK.Bermuda	15	3	5	1	2	2	2	2	2	2	2	2	2	
		UK.British Virgin Islands	0	0	0	0	0	0	0	0	0	0	1	0	0	
		UK.Turks and Caicos	0	0	0	0	0	0	0	0	0	0	2	0	0	
		Ukraine	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Vanuatu	0	0	0	0	0	0	0	0	2	1	0	0	0	
		Venezuela	137	130	205	220	108	72	76	84	83	138	131	206	120	106
	ATS	Belize	0	0	0	0	0	0	0	0	0	0	0	4	0	
		Benin	5	5	5	5	5	0	0	0	0	0	0	0	0	
		Brasil	331	193	486	509	452	780	387	577	195	612	298	262	160	
		China P.R.	21	27	41	68	15	61	73	72	49	47	0	61	11	
		Chinese Taipei	490	1123	498	442	421	175	246	253	211	113	64	203	133	161
		Cuba	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Côte D'Ivoire	157	222	182	275	206	196	78	109	115	107	178	150	991	
		EU.España	133	117	159	110	115	86	27	6	24	12	68	25	32	32
		EU.Portugal	0	0	0	0	2	1	6	1	0	24	69	79	102	68
		Gabon	304	5	0	0	0	1	0	3	0	0	0	0	0	
		Ghana	422	491	447	624	639	795	999	415	470	759	405	683	191	140
		Japan	881	724	529	363	441	180	142	294	366	191	290	699	498	
		Korea Rep.	103	40	2	3	1	1	0	0	1	4	19	33	0	
		Mixed flags (FR+ES)	96	82	80	83	79	0	0	0	0	0	0	0	0	
		NEI (ETRO)	256	323	474	449	290	162	10	8	0	0	0	0	0	
		Panama	0	0	0	0	38	0	0	0	0	0	0	0	0	
		Philippines	0	0	2	33	0	0	0	0	0	0	0	0	7	
		Russian Federation	0	0	0	0	0	0	0	0	0	1	0	0	0	
		S. Tomé e Príncipe	36	35	33	30	32	32	32	32	9	21	26	0	0	
		South Africa	0	0	0	0	0	1	4	0	0	0	0	2	0	
		St. Vincent and Grenadines	0	0	0	0	0	0	1	0	0	0	0	0	0	
		Togo	0	23	0	73	53	141	103	775	0	0	0	0	0	
		U.S.S.R.	0	0	0	0	0	0	0	0	0	0	0	0	0	
		UK.Sta Helena	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Uruguay	0	0	23	0	0	0	0	0	0	0	0	0	0	
		Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	
Discards	ATN	Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	
		U.S.A.	196	97	50	81	60	25	49	19	35	25	36	42	38	
	ATS	Brasil	0	0	0	0	0	0	0	0	0	0	2	0	0	
		U.S.A.	1	42	2	2	0	0	0	0	0	0	0	0	0	

GearGrp DS LL t1nc t2ce 1990 2009 Ave Catch 19.8 Flag Barbados 25.0 30.0 24.6 11.4 18.6 11.4 t2sz t1nc t2ce 18.0 UN 31.0 20.6 12.0 21.0 19.0 25.0 18.0 t2sz t1nc t2ce t2sz t1nc t2ce Belize LL 3.8 3.8 3.8 5.4 GN 6.0 5.0 • Benin 5.0 6.0 6.0 5.0 5.0 5.0 5.0 t2sz t1nc t2ce t2sz t1nc t2ce t2sz Brasil GN 21.0 21.0 HL 0.4 0.3 0.1 t1nc t2ce t2sz t1nc 50.0 39.3 LL 60.0 79.0 169.0 308.0 340.1 577.0 194.0 609.8 241.4 148.9 118.3 288.1 2.0 470.9 206.: 447.2 42.8 186.4 194.8 49.6 891.3 19.5 66.5 228.5 SP 2.0 1.0 0.3 1.0 2.0 2.0 28.0 4.2 1.6 1.1 8.9 0.6 t2ce t2sz t1nc t2ce t2sz 0.8 9.0 • SU 0.3 3.3 t1nc t2ce t2sz t1nc 146.0 • UN 57.3 104.2 41.6 87.3 0.0 LL 0.0 ĕ t2ce 0.0 t2sz t1nc t2ce 2.0 65.0 • China P.R. LL 62.0 62.0 78.0 120.0 201.0 23.2 91.6 87.8 88.5 58.4 96.3 12.7 80.0 1319.0 147.7 684.8 778.1 654.0 2208.2 23.2 87.8 88.5 58.4 96.3 861.8 91.7 t2sz 148.0 Chinese Taipei LL t1nc t2ce t2sz t1nc t2ce 1704.0 824.0 663.0 467.0 660.0 1478.0 578.0 485.0 240.0 294. 188.0 605.3 486.0 11171.9 11729 14207 126.3 134.4 1303. 892. 770.9 782. 787.8 491.4 311. 224. 139.7 166. 3336 4011.6 412 312.0 150.4 88.0 421.0 139.0 541.0 177.0 992.0 157.0 1825.0 275.0 1364.0 206.0 1110.0 109.0 812.0 114.7 1234.0 107.0 Côte D'Ivoire GN 105.0 212.0 222.0 182.0 419.0 196.0 1046.0 77.9 816.0 91.0 198.2 79.0 351.0 177.6 . t2sz t1nc t2ce t2sz t1nc t2ce 50.0 50.0 33.6 33.6 257.0 202.0 829.0 3.2 • 4.3 • 7.1 6.7 41.0 Cuba LL 12.0 139.0 154.0 69.0 39.0 85.0 43.0 53.0 38.0 55.0 56.0 UN 73.1 t2sz t1nc 0.2 GN Dominica t2ce t2sz t1nc 0.2 • HL 64.3 • 69.2 • 40.6 23.4 84.6 56.4 23.4 t2ce t2sz 40.6 84.6 LL t1nc t2ce t2sz t1nc t2ce t2sz t1nc 0.2 0.2 0.2 ΤP 0.1 0.1 36.3 43.5 TR 14.1 20.6 29.8 • • • • t2ce t2sz t1nc 14.1 20.6 75.0 0.6 25.4 UN t2ce 0.5 t2sz Dominican Republic SU t1nc t2ce t2sz t1nc t2ce 40.9 71.1 29.4 19.0 • 40.1 23.0 207.0 115.0 UN t2sz t1nc t2ce t2sz 94.2 83.0 51.8 • EU.España 5.7 • 13.6 11.8 54.7 70.2 LL 42.8 43.5 124. 24.1 55.2 131.0 .08.0 49.0 71.0 4.0 UN t1n 4.0 2.3 t2ce 28.8 t2sz t1nc t2ce t2sz t1nc 0.0 0.0 • 0.1 0.1 LL t2ce t2sz t1nc t2ce 775.6 752.8 319.1 UN 764.2 82.0 170.0 t2sz

Table 2. Catalogue of available Task I and Task II information for BUM from 1990-2009 available to the Working Group. Solid colors indicate reported data for Task I (grey), Task II C/E (pink) and Task II sizes (green). Red dots indicate cells for which no associated information was reported.

Flag	Gear	Measurement	Years
Brasil	longline	LJFL	2005 - 2008
Chinese Taipei	longline	LJFL	1981 - 2009
Côte d'Ivoire	Gillnet	LJFL	1988 - 2004
Ghana	Gillnet	LJFL	1997 - 1999
Japan	longline	LJFL	1990 - 2008
Japan	longline	WGT	1998 - 2008
Martinique	Handline	EWGT	2004, 2005, 2008-2010
United States	Sport	LJFL	1971 - 1991
United States	Sport	WGT	1971 - 1991
United States	longline	WGT	1986 - 1988
United States	longline	LJFL	1999, 2002
Venezuela	longline	LJFL	1992 - 2009
Venezuela	Gillnet	LJFL	1991 - 2005

Table 3. Summary of data sources from various countries and gears used in the BUM size-frequency analysis. Size measurements were recorded as lower jaw fork length (LJFL), weight (WGT) or eviscerated weight (EWGT).

Table 4. Fleets reporting catches of BIL in excess of 50 t since 1980. Species composition (Sp. Comp) refers to whether there is data for the same period fleet and area, "other" denotes that there is data but for 5 years prior or 5 years after the period for which BIL were reported. BIL data were not reclassified if the species composition data represented less than 10% of the BIL reports.

Country	Gear	Catch	Years	Sp. comp.	Reclass.
EU-Portugal	SU	1279	87-90, 01-04	other	no
EU-Portugal	LL	847	98-08	yes	yes
St. Vinc. & Grenad.	LL	649	00-01	other	yes
Liberia	UN	649	84-93	other	yes
Korea Rep.	LL	349	04-08	yes	yes
EU-Italy	LL	264	08	no	no
Barbados	LL	172	07-09	other	yes
Uruguay	LL	131	91, 94-97,02-09	other	yes
Namibia	LL	124	02, 04-06, 08	no	no
Brasil	UN	89	01, 06, 08	yes	yes

Table 5. Billfish species composition ratios estimated to reclassify billfish reported as BIL for selected fleets from **Table 1**. BIL represents the catch reported as unclassified billfish. Billfish represent the catch of classified billfish used in the estimation of species composition ratios.

Country	Gear	Area	BIL	Billfish	BUM	SAI	WHM
EU-Portugal	LL	NE	384.1	234.6	58.5%	37.9%	3.5%
-		SE	85.4	233.1	61.8%	22.7%	15.4%
		SW	151.8	400.7	34.8%	58.8%	6.4%
St. Vinc. & Grenad.	LL	ATL	649.6	456.8	3.1%	64.0%	9.6%
Liberia ¹	UN		622.0	385.5	99.5%		0.5%
Korea Rep.	LL	NW	31	4			100.0%
		SE	285	143	40.5%		59.5%
		SOUT	12	166			100.0%
		SW	23	12			100.0%
Barbados	LL	WTROP	172	332	14.4%	66.7%	18.9%
Uruguay	LL	SW	131	45	51.1%		48.1%
Brasil	UN	SW	89	1210	28.8%	60.1%	11.0%

¹It was assumed that the UN gear reported to have caught BIL by Liberia was a gillnet, the only gear reported to have caught any billfish by this country, thus the catches of gillnet caught billfish were used to calculate billfish composition ratios for that fleet.

Table 6. Yearly species composition ratios of reported catches for the whole Atlantic calculated for the main three species of billfish (BUM, SAI and WHM) for which species specific reports exist in Task I. Also shown are the remaining catches of unclassified billfish (BIL) in tons that were not reclassified with fleet data, but rather reclassified with yearly ratios.

		()								
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
BUM	32%	32%	35%	24%	38%	40%	30%	30%	39%	49%
SAI	51%	48%	50%	56%	47%	39%	47%	49%	43%	30%
WHM	17%	20%	14%	20%	16%	21%	23%	21%	19%	21%
BIL		116				75		5	30	5
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
BUM	47%	50%	40%	40%	49%	50%	54%	58%	55%	54%
SAI	36%	31%	41%	40%	26%	29%	30%	27%	28%	29%
WHM	17%	19%	19%	20%	25%	22%	16%	15%	17%	17%
BIL	1	1	5	28		3	4	6	21	19
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
BUM	50%	44%	40%	47%	34%	47%	42%	44%	54%	48%
SAI	36%	45%	48%	44%	56%	45%	50%	49%	40%	43%
WHM	14%	11%	12%	9%	10%	8%	8%	7%	6%	9%
BIL	55	475	609	288	149	113	65	25	342	35

Table 7. Estimates of historical catch (t) of blue marlin made by fleets of Martinique and Guadeloupe by handline fleets fishing with moored FADs. Estimates for Martinique differed depending on how the the number of trips was calculated, from interviews (low) or fuel consumption (high). Also shown the blue marlin catch from all other fleets and the total Atlantic catch as a function of the estimate of low or high catch from Martinique.

	Martini	que	Guadaloupe	All others	Total	!
	Low	High			Low	High
1985	10	29	0	1848	1857	1876
1986	10	29	0	2107	2117	2136
1987	32	96	0	2708	2740	2804
1988	32	96	0	2142	2174	2238
1989	32	96	14	2888	2935	2999
1990	36	108	36	3526	3599	3670
1991	41	120	43	2086	2170	2250
1992	41	120	65	2334	2439	2519
1993	45	132	138	2979	3161	3249
1994	49	144	145	4429	4622	4718
1995	49	144	152	4584	4784	4880
1996	58	173	203	4192	4453	4568
1997	81	240	217	3069	3367	3526
1998	99	293	225	3066	3390	3584
1999	112	332	246	4127	4485	4705
2000	122	360	261	4066	4448	4687
2001	135	399	275	5203	5613	5877
2002	144	428	275	5495	5915	6198
2003	144	428	275	5481	5901	6184
2004	149	442	275	5106	5530	5823
2005	162	481	275	5030	5468	5786
2006	162	481	275	4191	4629	4947
2007	160	474	268	3518	3946	4260
2008	214	463	289	3997	4500	4749
2009	156	319	N/A	2386	2543	2705

_	Brasil	U.S. LL	U.S. Rec	Venezuela LL	Venezuela Small Scale	Venezuela Sport	Japan	Chinese Taipei - early	Chinese Taipei - late	Korea
1956							4.230			
1957							7.550			
1958							4.300			
1959							3.680			
1960						0.160	2.360			
1901						0.169	5.000			
1962						0.235	4.720			
1963						0.087	2 190			
1965						0.065	1.050			
1966						0.187	0.940			
1967						0.128	0.810	0.800		
1968						0.119	0.960	4.990		
1969						0.136	0.880	4.160		
1970						0.123	0.540	3.030		
1971						0.065	0.430	2.020		
1972						0.032	0.280	1.590		
1973						0.024	0.310	1.420		
1974			0.746			0.047	0.170	0.960		
1975			0.566			0.016	0.200	0.470		0.000
1976			0.762			0.011	0.140	0.270		0.230
1977			0.857			0.021	0.150	0.210		0.470
1970			1 089			0.020	0.100	0.090		0.470
1020	0.022		1.002			0.047	0.120	0.140		0.040
1960	0.022		1.022			0.043	0.150	0.220		0.040
1981	0.095		1.152			0.068	0.150	0.570		1.130
1982	0.518		1.051			0.031	0.470	0.460		0.090
1983	0.209		0.870			0.072	0.410	0.360		0.240
1984	0.090		1.016			0.140	0.470	0.430		0.610
1985	0.078		0.884			0.061	0.570	0.150		0.860
1986	0.026	1.838	0.763			0.054	0.270	0.160		0.650
1987	0.090	1.297	1.360			0.064	0.270	0.400		1.370
1988	0.039	1.327	1.188			0.038	0.270	0.520		1.660
1989	0.278	1.905	1.123			0.066	0.410	0.320		1.730
1990	0.190	1.819	1.166			0.017	0.280	1.320		1.900
1991	0.219	1.239	1.202	0.630	10.920	0.040	0.230	0.460		1.050
1992	0.255	1.869	1.209	0.340	12.590	0.052	0.310	1.080		0.940
1993	0.047	2.060	1.067	0.230	15.700	0.039	0.340	0.690		
1994	0.263	1.610	1.203	0.430	32.340	0.108	0.260	0.700		
1995	0.031	1.229	1.281	0.380	31.480	0.094	0.200		0.170	
1996	0.025	1.252	1.129	0.310	25.070		0.340		0.360	0.570
1997	0.554	0.743	1.134	0.330	30.470		0.260		2.650	
1998	0.220	0.694	1.088	0.310	40.840		0.260		1.750	0.710
1999	0.179	0.589	1.361	0.220	68.120		0.360		1.360	0.330
2000	0.243	0.539	1.133	0.300	24.920		0.350		1.230	
2001	0.518	0.380	0.724	0.220	18.240		0.110		1.640	4.760
2002	0.159	0.490	0.724	0.210	16.810		0.110		1.580	
2003	0.325	0.282	0.686	0.130	20.130		0.130		0.900	0.200
2004	0.261	0.433	0.936	0.110	23.380		0.110		0.570	0.370
2005	0.362	0.486	0.937	0.110	25 500		0.160		0.610	1.430
2006	0.330	0.345	0.988	0.330	28.570		0.160		0.680	1.560
2007	0.274	0.446	0.987	0.250	33 000		0.410		0.690	1.300
2008	0.300	0.669	0.818	0 350	25.510		0.410		0.410	1 480
2009	2.200	0.460	1.146	0.200	17.960				0.400	

Table 8. BUM standardized CPUEs available during the 2010 blue marlin data preparatory meeting.

Figure 1. Estimates of Atlantic catch of blue marlin reported in Task I (BUM), reclassified from unclassified billfish with fleet specific data (FLEET), reclassified from aggregated yearly data (YEAR) and remaining billfish unclassified estimated not to be blue marlin (SAI, WHM).

Figure 2. Estimates of historical catch (t) of blue marlin and the impact of estimates made by the working group of the historical catch made by handline fleets fishing with moored FADs of Martinique and Guadeloupe. Estimates for Martinique differed depending on how the the number of trips was calculated, from interviews (low) or fuel consumption (high).

Figure 3 .BUM standardized CPUEs during the last assessment in 2006.

Figure 4. BUM standardized CPUEs presented during the 2010 blue marlin data preparatory meeting.

Figure 5. Comparison between CPUE series using during the 2006 assessment and the updated series presented during the 2010 blue marlin data preparatory meeting.

Figure 6 Geographic strata proposed to consider application of an integrated statistical stock assessment model that could account for movement of BUM across these areas. Tag recoveries for BUM relative to these areas are shown in the left hand panel. NW and NE quadrants are separated at the 40° W meridian and the SE and SW quadrants at the 20° W meridian. The border between the NE and SE quadrants falls along the line intersecting the African coast at 25° latitude and 10°N, 40°W. The border between the NW and SE quadrants falls along the lines between 10°N, 40°W and 5°N, 40°W and 5° S latitude, 25°W. The southernmost boundary of the NW quadrant is at the 5°S latitude. The habitat compression area resulting from the eastern tropical Atlantic oxygen minimum zone is shown in the right hand panel (from Prince *et al.*, 2010).

Appendix 1

AGENDA

1. Opening, adoption of agenda and meeting arrangements

- 2. Update of basic information
 - 2.1 Task I (catches)

2.2 Task II (catch-effort and size samples)

- 3. Review of new biological, habitat, tagging data for blue marlin
- 4. Review of blue marlin catch estimates (historical and current)
- 5. Review of blue marlin catch rate information
- 6. Review of simulation work conducted to date
- 7. Review of potential methods to be used in the assessment
- 8. Recommendations
- 9. Other matters
- 10. Adoption of the report and closure

Appendix 2

LIST OF PARTICIPANTS

SCRS CHAIRMAN

Scott, Gerald P. SCRS Chairman, NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149

Tel: +1 305 361 4261, Fax: +1 305 361 4219, E-Mail: gerry.scott@noaa.gov

CONTRACTING PARTIES

BRAZII.

Hazin. Humberto

UFRPE/DEPAq, Laboratorio de Oceanografía Pesqueira (LOP), Rua Dom Manuel de Medeiros, s/n, Dois Irmaos Recife-PE, Tel: +55 81 3320 6500, Fax: +55 81 3320 6501, E-Mail: hghazin@hotmail.com

Pinheiro, Patricia

Rua Dom Manoel de Medeiros, s/n, Dois Irmaos, Recife Pernambuco Tel: +55 81 33 206511, Fax: +55 81 33206512, E-Mail: pinheiropb@yahoo.com.br

Wor, Catarina

Universidade Federal rural de Pernambuco-UFRPE, Departamento de Pesca e Aquicultura - DEPAq, Rua Dom Manoel de Medeiros, s/n - Dois Irmaos, 52171-900 Recife Pernambuco Tel: +55 81 3320 6511, Fax: +55 81 3320 6512, E-Mail: catarinawor@gmail.com

EUROPEAN UNION

Reynal, Lionel IFREMER, Point Fost, 97231 Le Robert, MARTINICA Tel: +33 05 9665 1950, Fax: +33 05 9665 1941, E-Mail: lionel.reynal@ifremer.fr

GHANA

Bannerman, Paul

Ministry of Fisheries, Marine Fisheries Research Division, P.O. Box BT 62, Tema Tel: +233 222 02346, Fax: +233 222 06627, E-Mail: paulbann@hotmail.com

UNITED STATES

Die, David

Cooperative Unit for Fisheries Education and Research University of Miami, 4600 Rickenbacker Causeway, Miami Florida 33149

Tel: +1 305 421 4607, Fax: +1 305 421 4221, E-Mail: ddie@rsmas.miami.edu

Hoolihan, John

NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami Florida 33149 Tel: +1 305 365 4116, Fax: +1 305 361 4562, E-Mail: john.hoolihan@noaa.gov

Lynch, Patrick

Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062 Tel: +804 684 7885, Fax: +804 684 7327, E-Mail: pdlynch@vims.edu

Prince, Eric D.

NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami Florida 33149 Tel: +1 305 361 4248, Fax: +1 305 361 4219, E-Mail: eric.prince@noaa.gov

URUGUAY

Domingo, Andrés Dirección Nacional de Recursos Acuáticos-DINARA, Sección y Recursos Pelágicos de Altura, Constituyente 1497, 11200 Montevideo Tel: +5982 40 46 89, Fax: +5982 41 32 16, E-Mail: adomingo@dinara.gub.uy

VENEZUELA

Arocha, Freddy Instituto Oceanográfico de Venezuela Universidad de Oriente, A.P. 204, 6101 Cumaná Estado Sucre Tel: +58293 400 2111- móvil: 58 416 693 0389, Fax: , E-Mail: farocha@sucre.udo.edu.ve;farochap@gmail.com

ICCAT SECRETARIAT C/Corazón de María, 8 – 6º planta; 28002 Madrid Tel: +3491 4165600; Fax: +3491 4152612; E-Mail: info@iccat.int

Kell, Laurie Palma, Carlos Pallarés, Pilar

Appendix 3

LIST OF DOCUMENTS

- SCRS/2010/020 Standardized catch rates for blue marlin (*Makaira nigricans*) from the Venezuelan pelagic longline fishery off the Caribbean Sea and the western central Atlantic: Period 1991-2009. Arocha, F. and Ortiz, M.
- SCRS/2010/021 Catch rates for blue marlin (*Makaira nigricans*) from the small scale fishery off la Guaira, Venezuela: Period 1991-2009. Arocha, F., Ortiz, M. and Marcano, L.A.
- SCRS/2010/027 Proportion of *Tetrapturus georgii* (SPG) with respect to *T. albidus* (WHM) in the Venezuelan pelagic longline catch in the western Caribbean Sea and adjacent Atlantic waters during 2002-2007. Arocha, F. and Silva, J.
- SCRS/2010/040 Updated U.S. conventional tagging data base for Atlantic blue marlin (1955-2008), with comments on potential stock structure. Orbesen, E.S., Snodgrass, D., Hoolihan, J.P. and Prince, E.D.
- SCRS/2010/041 The U.S. conventional tagging data base updates for Atlantic white marlin (1954-2008). Snodgrass, D., Orbesen, E.S., Hoolihan, J.P. and Prince, E.D.
- SCRS/2010/042 Modeling growth in white marlin. Drew, K. and Die, D.J.
- SCRS/2010/043 Updated blue marlin (*Makaira nigricans*) catch rates from the U.S. pelagic longline in the northwest Atlantic and Gulf of Mexico 1986-2009. Ortiz, M. and Hoolihan, J.P.
- SCRS/2010/044 Updated blue marlin (*Makaira nigricans*) catch rates from the U.S. recreational tournament fishery in the northwest Atlantic, U.S. Gulf of Mexico, Bahamas and U.S. Caribbean 1973-2009. Hoolihan, J.P., Ortiz, M. and Prince, E.D.
- SCRS/2010/045 Analisis de la captura, distribucion y composicion de tallas de la aguja azul, *Makaira nigricans*, observada en la flota de palangre uruguaya (1998-2009). Domingo, A. and Pons, M.
- SCRS/2010/048 Age and growth of blue marlin (*Makaira nigricans*). Pinheiro, P.

- SCRS/2010/049 Standardized CPUE series of blue marlin caught by Brazilian tuna longline fisheries in the southwestern Atlantic Ocean (1980-2008). Hazin, H.G., Hazin, F., Travassos, P. And Frédou, T.
- SCRS/2010/060 Standardisation of blue marlin CPUE taking into account habitat compression. Kell, L., Palma, C. and Prince, E.

Appendix 4

REVIEW OF THE ICCAT TAGGING DATABASE FOR BLUE MARLIN

The tables below summarize the ICCAT tagging data base information for blue marlin.

Table 1. Summary of blue marlin tag release events by geographical region and year held in the ICCAT tagging database. Note that electronic tag releases and pop-ups are not included in this summary. Geographic regions used for the summary: E/W boundary 30°W longitude, N/S boundary 5°N latitude.

tagBUM by reReg	ion																				
Count of strTags	ReRegions(4)	ReQuarter			NE				N 13 A /									014/			
PoVoor	1	2	24	(block)	INE 1	2	2	4	1	2	2	4	(block)	SE 1	2	2	4	500	2	- 2	
1955	1	3	54	(Dialik)	· ·	2	3	4		2	1		(Diarik)		~	3	4			3	-
1955	4	5			-					3		2		_							
1950					-				1	5		~									
1950					-						2										
1953		1			-				1	3	2										
1961					-					5				-							
1962					-				1	a	3	2		-							
1963					-		-		36	64	7	8			1	-	-				_
1964		1			-		-	-	18	37	4	3									_
1965					-		-	-	10	21	14	5				-	-				_
1966					-		-	-	13	11	15	3				-	-		1		_
1967					-		-		7	14	18	4				-	-		· ·		_
1968								-	11	12	39	5									_
1969					-		-		11	32	50	9									
1970					-		-	-	11	19	34	5									
1971					-				4	46	53	10									
1972									7	23	77	3									
1973						1			8	33	52	1									
1974					-				6	12	77										
1975					-				5	18	71										
1976							-	-	3	11	127	1									
1977							-	-	12	18	131	9									
1978					-		-	-	7	56	229	8									
1979									18	38	205	21				-	-				
1980	2				1		-		34	86	345	14		1		-	-				
1981					-				14	88	313	17									
1982					-				6	102	235	19									
1983					-				15	84	289	27									
1984						1		1	19	124	309	66									
1985					1	4			29	217	295	61		1							
1986					2			11	28	215	446	90									
1987						2	37	5	41	203	908	170									
1988					9	35	89	14	31	302	1066	145			4	1					1
1989					2	9	85	6	79	378	1325	148		1				1		1	2
1990			12		2	8	61	3	47	384	1326	218			7	4	11		2		
1991	3	30	13 3		1	2	64	3	70	574	1392	428		4	6	1	1				
1992	7	4	32		2	4	144	8	193	723	1187	245		5			3	1			4
1993	3	6	10 4		4	12	204	4	173	741	1495	340		7	4	2	4	26	17	12	26
1994	1	3	20 1		3	30	206	31	231	797	1336	443		17	11	1	3	13	2	7	3
1995	2	8	14 3		1	44	319	53	276	924	1217	477		19	7	2	16	13	172	117	9
1996	2	6	19 6		7	88	308	29	340	961	1546	851		22	4	7	9	33	25	12	6
1997	1	8	32		6	159	150	16	266	891	1309	453		17	18	5	6	14	2	1	2
1998		3	1		7	157	78	4	440	1018	1056	370		16	13	6	13	27	3	1	14
1999		3	13 1		5	97	55	10	444	1392	2004	489		25	26	22	21	5	1		14
2000		5	25		11	101	119	20	163	838	1193	357		36	60	12	27	64	18	3	31
2001	6		2		42	119	125	7	193	566	892	232		11	16	6	32	53	5	7	54
2002		6	83		37	134	77	4	146	658	931	237		32	32	26	23	12	2	3	6
2003	5	24	13 8		19	23	12	4	95	290	399	79		24	1		2	2	2		
2004	1	6	13		4	12	2	2	18	84	110	16				1	2				1
2005		1	1			1			6	43	11	1									
2006		1	9					2	13	73	128	21				1	5	1	9	1	4
2007		1	1		2		4		17	57	85	2		1							5
2008	2				1				9	12	1	2							1		
(blank)				71									1								

Table 2. Summary of blue marlin tag release events by main gear and year held in the ICCAT tagging database. Note that electronic tag releases and pop-ups are not included in this summary. Geographic regions used for the summary: E/W boundary 30°W longitude, N/S boundary 5°N latitude.

tagBUM	(4 r	egion	s) ł	oy Gear	& Q	uart	er (F	Rel)													
															F						
number																					
D. M	BB	GILL	-	HAND	LL	-	-		NONE	RR				SPOR	-	0		UNCL			
Revear	4	1	2	1	1	2	3	4	3	1	2	3	4	1	2	3	4	1	2	3	4
1955						_	1	_							-						
1956						2		2			1				_						
1958										1					_						
1959												2									
1960						1				1	2										
1961											3								2		
1962											9	2	2		L			1		1	
1963										36	65	7	8								
1964										18	37	4	3								
1965								1		10	21	14	4								
1966										13	12	15	3								
1967										7	14	18	4								
1968										11	12	39	5								
1969										11	32	50	9								
1970										11	19	34	5								
1971										4	46	53	10								
1972										7	23	77	3								
1973										8	34	52	1								
1974							1			6	12	76									
1975										5	18	71									
1976						2				3	9	127	1								
1977						1	1			12	17	130	9								
1978					1	28	38	4		6	28	191	4								
1979					2	2	36	12		16	36	169	9								
1980					17	7	51	4		10	79	294	10					9			
1981					5	10	13			9	78	300	17								
1982					1	1	3			5	101	232	19								
1983					1		1			14	84	288	27								
1984							13	2		19	125	296	65								
1985					6	42	31	16		25	179	264	45								
1986					16	16	9	10		14	199	437	91								
1987					11	11	27	24	1	30	194	917	151								
1988				5	7	30	21	17		28	311	1135	143								
1989					19	23	9	3		64	364	1402	151								2
1990					7	19	35	5		42	382	1356	217								10
1991					11	31	18	9		52	426	1074	340					12	125	365	83
1992			1		41	63	51	9		115	482	871	168					45	181	409	83
1993					52	50	75	29		91	447	971	174		1			67	276	667	171
1994					32	17	12	33		79	337	613	146		9		2	153	477	925	299
1995	1				19	39	30	10		96	417	512	125	1	2			193	689	1113	419
1996					16	31	34	21		44	289	500	184					342	758	1339	690
1997					23	7	10			193	1022	1385	434					87	41	70	43
1998					4	3	1	1		78	267	367	114			1		408	921	772	286
1999					1	2				430	1491	2021	520					48	23	60	14
2000						1	3			232	949	1180	246	2	1			40	66	144	189
2001					1	1	2			16	101	178	27		1	7		282	603	843	298
2002						4				28	145	200	45					199	677	837	225
2003						5				86	311	409	85			1		54		1	
2004					10	5	2			10	90	110	21					2	1	1	
2005										6	44	11	1								
2006		1			3	15	2	7		10	66	127	23						1	1	2
2007						1				20	56	89	7								
2008					2					7	13	1	2								

unt of strT	1	Regi	Ges V											1985	1			1	6		23			1		_	
unit of stille	,	NE	5066		NW			SE			SW				2			4	42		175						
ReYea	ReQuar 💌	LL	OTH	RR	LL	OTH	RR	LL	OTH	RR	LL	OTH	RR		3	_			31		264						
1955	3				1		-							1086	4			2	16		45						
1900	4				2		1							1300	2			2	16		199						
1958	1				-		1								3				9		437						
1959	3						2								4			11	10		80						
1960	1						1							1987	1				11		30						
1061	2				1		2								2			37	27	1	880						
1962	2						1								4			5	24		146						
	2						9							1988	1			9	7		24						
	3						3								2			35	30		272			4			
	4						2								3			89	21		1045			1			4
1963	1						30			1				1989	4	-		2	19		60			1			1
	2						7			-				1000	2			9	23		355						
	4						8								3			85	9		1316						1
1964	1						18								4			6	3	2	143						2
	2						37							1990	1	_		2	7		40			7			0
	3					_	4								2			61	35		305			4			2
1965	4		-				10								4			3	5	6	207		4	7			
	2						21							1991	1			1	11	11	48		1	3			
	3						14								2			2	31	125	418			6			
4000	4				1		4								3			3	10	356	3/11		1				
1900	2						13						1	1992	1			2	41	40	112		4	1			1
	3				1		15	1			1				2			4	63	150	510						
L	4						3								3	1		143	50	292	845						
1967	1						7							4000	4			8	9	73	163		1	2		2	2
	2						14	I						1993	1	1	2	9	52 49	35 175	517		4	3		с 9	21
	3						4								3	3	3	198	72	479	944		2			9	3
1968	1	-					11								4		1	3	27	120	193		3	1	2	22	2
	2						12							1994	1	1.	1	2	32	124	75		15	2		13	
	3						39								2	1	21	8	16	451	330		4	1		1 7	1
1000	4						5	I							3	1	27	3	32	266	145		3			2	1
1909	2						32							1995	1			1	19	159	98		19			11	2
	3						50								2	1	26	17	38	485	401		6	1		172	
	4						9								3	2	257	60	28	735	454		2			117	
1970	1						11							1006	4	1	37	15	9	365	103		16	1		22	9
	2						19							1990	2		79	9	29	649	283		4		2	23	
	4						5								3		254	54	34	1063	449		5	2	-	10	2
1971	1						4								4		29		21	639	191		8	1		6	
	2						46							1997	1			6	21	62	183			17	2	6	6
	3						53								2	_	0	159	7	7	877		0	18			2
4070	4						10								4		3	147	10	15	438		3	6			2
1972	2						23							1998	1		5	2	4	72	364		4	12		1	26
	3						77								2		150	7	3	428	587		11	2			3
	4						3								3		39	39	1	475	580		6				1
1973	1						8							4000	4	_		4	1	136	233		6	7		4	10
	2			1			33							1999	2		1	C 80	2	22	425		0	26		1	4
	3						52								3			55	-	60	1944			22			
1974	1						6								4			10		10	479		4	17			14
	2						12							2000	1		3	8		25	138		10	26		2	62
	3				1		76								2		4	97	1	47	1062		13	47		2	16
1975	1						5								4		9	100	3	145	212		24	3		11	20
	2						71							2001	1		37	5	1	181	11		11	-		53	
1976	1						3								2		112	7	1	471	94		15	1		5	
	2				2		9								3		118	7	2	709	181		6			7	
	3						127							2002	4		35	2		207	25		31	1		54 10	2
1077	4						1	I				-		2002	2	1	124	9	3	513	142		31	1		2	-
1311	2				1		17								3	1	72	5		732	199		26			3	
	3				1		130								4		3	1		193	44		23			6	_
	4						9							2003	1	-		19	5	28	67 295		24	4		2	2
1978	1				1		6					<u> </u>			2	1		12	2	1	200 398						2
	2				28		28	I			-				4	1		4			79			2			
	4				4		4							2004	1			4	10	1	7						
1979	1				2		16								2	1		12	5		79						
	2				2		36								3			2	2		108			1			4
	3				36		169							2005	4			2			6			2			
1080	4			1	12	7	9		1					2000	2			1			43						
1000	2				7		79								3						11						
	3				51		294								4						1						
	4				4		10							2006	1	_			3		10				0		1
1981	1				5		9								2	1			0		128	1			9		
	2				10		78	I							4	1		2	1		21	5			2		2
	4				13		17							2007	1			2			17			1			
1982	1				1		5								2				1		56						
	2				1		101								3	1		4	I		85						E
	3				3		232							2008	4	1			2		- 2						5
1093	4				4		19							2000	2	1			<u> </u>		12						1
1903	2						84								3						1						
	3				1		288								4						2						
	4						27																				
1984	1						19	I																			
	2			1	13		124																				
	4			1	2		64																				

Table 3. Summary of blue marlin tag-release information classified by region, year, quarter, and major gear types after review by the Working Group. Note that electronic tag releases and pop-ups are not included in this summary. Geographic regions used for the summary: E/W boundary 30°W longitude, N/S boundary 5°N latitude.

BLUE MARLIN SIZE FREQUENCY ANALYSIS

This Appendix includes the results of the size-frequency analysis that was conducted on blue marlin catch data for which length (lower jaw fork length, cm) and/or weight (kg) measurements were available.

Table 1. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Japan longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1990	110	176.0	195	199.5	34.9	216.2	360	712
1991	112	174.0	188	204.8	48.9	218.0	372	402
1992	125	175.0	190	192.4	26.3	206.5	256	106
1993	150	180.0	200	204.0	29.0	229.0	285	129
1994	116	182.0	212	212.0	40.6	234.5	324	191
1995	124	200.0	224	228.2	42.2	250.0	364	290
1996	123	183.0	200	204.3	29.8	220.5	320	631
1997	103	178.0	198	198.8	31.4	218.0	342	743
1998	95	182.2	204	201.1	36.6	225.0	335	450
1999	87	165.0	182	187.3	31.2	210.0	310	690
2000	112	175.0	196	196.5	30.3	215.0	317	428
2001	145	186.0	198	204.2	29.2	220.0	317	164
2002	121	185.0	213	209.6	31.6	231.0	324	400
2003	100	182.0	201	203.2	29.0	221.0	289	352
2004	134	171.0	194.5	196.6	30.3	215.2	320	333
2005	81	150.0	178	171.7	41.9	200.2	298	288
2006	135	178.0	194	198.8	30.1	218.0	318	157
2007	115	181.0	198	202.4	32.4	225.0	290	175
2008	151	190.0	209.5	209.9	27.8	224.0	315	106

Table 2. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Chinese Taipei longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1981	90	155.0	180	187.5	44.0	215.0	350	793
1982	90	165.0	185	196.3	42.5	230.0	350	673
1983	100	165.0	245	223.6	57.1	275.0	310	380
1984	100	165.0	220	213.8	50.8	255.0	290	790
1985	90	170.0	185	192.5	36.7	210.0	315	559
1986	100	155.0	175	173.9	24.5	190.0	350	442
1987	105	155.0	190	187.4	36.1	210.0	290	181
1988	90	150.0	170	165.6	25.5	180.0	235	117
1989	105	145.0	160	167.7	43.0	170.0	275	181
1990	105	155.0	170	173.0	26.2	185.0	300	412
1991	120	160.0	165	179.0	43.5	175.0	295	55
1992	130	160.0	175	189.2	37.8	210.0	290	312
1993	110	170.0	210	211.8	44.7	250.0	325	313
1994	110	165.0	205	209.0	49.6	250.0	350	988
1995	85	130.0	165	174.0	53.2	210.0	315	2251
1996	85	141.2	175	182.8	49.3	215.0	320	3518
1997	85	160.0	180	191.4	42.0	220.0	315	2036
1998	85	165.0	175	188.5	38.7	200.0	285	1078
1999	90	150.0	165	167.9	29.8	190.0	250	920
2000	85	150.0	180	176.1	31.7	200.0	230	389
2001	85	130.0	165	168.1	47.9	195.0	315	599

2002	85	160.0	170	179.5	38.5	190.0	340	1631
2003	90	160.0	180	189.9	42.9	215.0	350	1345
2004	85	180.0	195	203.4	36.3	225.0	300	1065
2005	90	180.0	200	207.4	38.8	240.0	300	1261
2006	95	185.0	210	208.9	39.5	235.0	320	631
2007	85	185.0	210	208.8	38.2	235.0	330	1320
2008	110	180.0	205	205.6	37.6	230.0	340	1000
2009	105	195.0	215	217.1	34.3	240.0	345	1073

Table 3. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Venezuela longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1992	110	173.5	188	193.5	38.3	210.0	303	88
1993	115	174.0	187	190.2	28.7	207.2	308	84
1994	105	180.0	188	190.1	27.5	198.0	343	197
1995	127	170.0	184	187.2	29.1	196.0	378	274
1996	130	178.0	186	195.1	28.5	208.0	272	170
1997	119	184.0	190	194.8	28.0	202.0	384	113
1998	109	180.0	187	191.0	23.9	204.0	257	101
1999	157	177.2	188	194.4	23.7	203.8	280	54
2000	135	186.0	197	205.0	28.9	217.0	285	92
2001	163	178.0	183	190.8	25.3	190.0	298	111
2002	133	177.0	184	187.8	17.1	198.0	251	68
2003	152	178.0	187.5	196.0	28.5	206.0	318	78
2004	147	184.2	194.5	198.8	26.0	208.8	270	50
2005	155	183.8	200	216.4	41.0	244.8	344	52
2006	105	187.0	202.5	204.4	30.9	218.8	308	170
2007	134	181.5	192.5	194.0	32.2	200.0	289	26
2008	118	184.0	193.5	193.8	34.5	214.0	267	32
2009	158	179.0	192	199.3	32.5	210.0	280	21

Table 4. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Venezuela gillnet fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1991	137	186.5	209	206.0	32.5	222.0	303	75
1992	132	188.0	200	201.1	27.1	210.5	335	292
1993	160	195.0	205	208.2	23.4	217.0	370	278
1994	148	192.0	202	204.1	22.2	217.0	337	770
1995	144	190.5	200	201.8	20.0	212.0	357	615
1996	122	193.0	203	205.2	23.4	214.5	376	491
1997	89	196.0	207	209.4	27.6	221.2	360	316
1998	123	197.0	208	210.9	21.7	225.0	384	1728
1999	107	189.0	202	203.0	25.6	217.0	377	2420
2000	145	196.0	206	210.5	22.2	223.0	370	1200
2001	157	196.0	205	209.2	20.9	219.0	362	765
2002	119	197.0	208	214.2	29.3	230.0	372	560
2003	121	197.0	206	210.0	25.4	220.0	375	754
2004	122	190.0	203	209.2	33.9	219.0	364	1393
2005	126	194.0	201	204.1	24.3	212.0	370	1344

Table 5. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Côte d'Ivoire gillnet fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1988	140	195.0	245	245.7	53.5	290.0	390	552
1989	160	205.0	260	254.9	54.8	300.0	385	253
1990	100	195.0	242.5	242.4	51.9	285.0	380	418
1991	130	205.0	250	250.5	51.7	295.0	370	459
1992	140	195.0	245	247.1	55.4	290.0	380	351
1993	160	215.0	255	259.7	50.9	300.0	385	541
1994	150	205.0	250	248.8	49.9	285.0	385	933
1995	110	190.0	230	233.5	50.3	275.0	370	985
1996	115	185.0	210	222.4	45.5	260.0	340	1010
1997	145	210.0	235	242.0	43.8	270.0	385	853
1998	140	215.0	245	247.3	48.3	280.0	375	335
1999	100	185.0	205	212.6	42.1	245.0	355	1397
2000	115	200.0	235	236.0	45.2	270.0	375	1036
2001	125	195.0	230	232.9	43.4	265.0	380	802
2002	130	190.0	210	224.8	45.0	257.5	380	1751
2003	125	190.0	230	232.3	48.8	270.0	385	1601
2004	145	195.0	225	232.3	46.3	265.0	385	1000

Table 6. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Ghana gillnet fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1997	170	200.0	245	246.6	45.2	280.0	340	11972
1998	145	205.0	245	242.3	42.0	265.0	350	10040
1999	160	210.0	250	245.1	43.4	270.0	395	14197

Table 7. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the U.S. sport fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1971	147	196.5	221	221.9	35.0	245.5	307	83
1972	140	198.0	220	220.9	30.6	241.0	309	208
1973	150	196.0	219.5	223.2	33.5	250.8	300	250
1974	152	200.5	218	223.5	31.2	246.0	303	335
1975	158	200.0	221	225.6	32.2	251.0	314	281
1976	146	211.5	232	233.6	30.9	257.0	312	251
1977	150	209.8	235	232.7	32.4	256.0	328	316
1978	137	201.0	224	225.2	34.7	249.0	330	332
1979	144	206.0	231	232.2	34.7	257.0	360	338
1980	149	205.0	223	228.6	34.3	251.0	355	353
1981	119	205.0	224	227.2	34.5	250.0	318	569
1982	135	201.0	221	227.4	33.3	252.2	326	384
1983	114	195.0	215	220.3	34.6	246.0	340	807
1984	146	196.0	219	222.6	36.2	249.0	335	623
1985	140	194.0	214	220.2	34.5	246.0	346	568
1986	139	199.0	215	220.9	34.2	241.0	370	389
1987	156	215.0	234	237.1	33.1	263.0	327	277
1988	161	192.0	217	221.7	37.3	246.0	331	402
1989	175	222.0	236.5	241.5	29.2	254.8	355	178
1990	153	226.0	242	243.3	27.0	263.0	327	141
1991	175	228.0	245.5	246.8	29.4	265.8	322	122

Table 8. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the U.S. longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1999	129	175.5	190	198.5	38.0	213.0	320	50
2002	125	170.0	190	196.4	42.5	210.0	360	775

Table 9. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin lower jaw fork lengths (cm) reported by the Brazil longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
2005	92	160.0	180	186.2	41.3	208.0	380	5367
2006	86	186.0	206	207.3	38.8	228.0	394	3337
2007	120	190.0	208	213.1	36.4	234.0	338	778
2008	164	180.0	192	200.7	24.8	216.0	272	113

Table 10. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin weights (kg) reported by the Japan longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1970	35	55.0	65	99.6	78.6	120.0	385	104
1971	25	65.0	115	133.3	81.2	187.5	495	307
1972	25	110.0	155	155.1	67.7	195.0	415	91
1973	25	83.8	120	121.2	67.3	150.0	425	52
1975	5	75.0	102.5	95.0	48.6	115.0	170	12
1978	55	55.0	72.5	72.5	20.2	90.0	90	4
1990	22	57.0	76	86.2	40.3	103.0	203	164
1991	35	55.0	76	85.4	40.2	103.0	250	133
1992	33	61.5	75	97.7	55.4	122.5	240	19
1993	40	62.0	86.5	90.7	32.0	120.0	155	64
1995	35	75.0	96	103.9	42.6	124.0	254	164
1996	25	56.5	75.5	83.9	37.0	103.2	184	72

Table 11. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin weights (kg) reported by the U.S. sport fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1971	24	69.0	95	91.2	50.4	107.0	161	5
1972	50	66.0	81	96.7	39.0	124.0	190	19
1973	34	53.3	73	94.5	53.3	138.0	205	14
1974	26	66.0	92	106.3	50.0	147.5	209	43
1975	49	89.0	110	116.1	42.8	140.0	201	25
1976	45	86.8	107	118.0	50.8	135.8	278	50
1977	34	75.8	100	110.4	48.9	145.5	254	42
1978	26	75.5	124	125.7	55.0	171.0	254	55
1979	11	61.5	90	106.2	55.4	151.5	217	83
1980	21	70.0	96	101.1	47.6	119.0	302	73
1981	21	79.8	114	117.6	51.8	148.5	261	128
1982	18	69.0	102	117.3	66.8	157.0	487	125
1983	12	68.0	105	108.2	53.6	138.8	441	124
1984	25	63.0	84.5	105.4	60.9	142.8	374	142
1985	34	58.0	76	92.8	49.9	111.0	245	118
1986	5	59.5	89	106.4	68.1	134.0	329	88
1987	11	94.5	141.5	145.9	66.4	184.5	348	86
1988	9	74.8	121	137.7	86.6	184.8	492	140
1989	36	84.0	137	146.6	79.6	205.0	427	81
1990	72	130.0	157.5	177.9	65.3	222.5	335	56
1991	40	105.0	146	159.1	75.2	193.0	342	57

Table 12. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin weights (kg) reported by the U.S. longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1986	10	48.0	63	71.4	37.5	89.0	190	73
1987	17	43.0	56	70.6	45.3	81.0	244	123
1988	42	53.5	78	82.4	35.4	98.5	160	27

Table 13. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for blue marlin gutted weights (kg) reported by the Martinique handline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
2004	10	45.0	70	83.9	64.2	100.0	600	315
2005	10	50.0	70	88.3	57.7	120.0	400	298
2008	20	45.0	70	74.4	46.3	80.0	300	105
2009	5	43.8	50	75.3	79.6	70.0	550	80
2010	20	40.0	55	76.8	77.2	77.5	400	30

Figure 1. Time series of blue marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Japan (JPN-LL) and Chinese Taipei (TAI-LL). The numbers plotted represent sample size for each year.

Figure 2. Time series of blue marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Venezuela (VEN-LL) and Brazil (BR-LL). The numbers plotted represent sample size for each year.

Figure 3. Boxplot of blue marlin lower jaw fork length for the longline fishery from the U.S. (US-LL). The bar represents the annual median with the box encompassing the interquartile range.

Figure 4. Time series of blue marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the gillnet fisheries from Venezuela (VEN-GN) and Côte d'Ivoire (CIV-GN). The numbers plotted represent sample size for each year.

Figure 5. Time series of blue marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the gillnet fishery from Ghana (GHA-GN) and the U.S. sport fishery (US-SP). The numbers plotted represent sample size (US-SP) and catch at size (GHA-GN) for each year.

Figure 6. Time series of blue marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the longline fisheries from Japan (JPN-LL) and Chinese Taipei (TAI-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 7. Time series of blue marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the longline fisheries from Venezuela (VEN-LL) and Brazil (BR-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 8. Time series of blue marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the gillnet fisheries from Venezuela (VEN-GN) and Côte d'Ivoire (CIV-GN). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 9. Time series of blue marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the gillnet fishery from Ghana (GHA-GN) and the sport fishery from the U.S. (US-SP). The numbers plotted represent sample size (US-SP) and catch at size (GHA-GN) for each year, and the error bars reflect one standard deviation of the mean.

Figure 10. Times series of blue marlin weight expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Japan (JAP-LL) and the U.S. (US-LL). The numbers plotted represent sample size for each year.

Figure 11. Time series of blue marlin weight (gutted weight for MAR-HD) expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the sport fishery from the U.S. (US-SP) and the handline fishery from Martinique (MAR-HD). The numbers plotted represent sample size for each year.

Figure 12. Time series of blue marlin weight expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the longline fisheries from Japan (JAP-LL) and the U.S. (US-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 13. Time series of blue marlin weight (gutted weight for MAR-HD) expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the sport fishery from the U.S. (US-SP) and the handline fishery from Martinique (MAR-HD). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 14. Annual cumulative probability of blue marlin lower jaw fork length measurements reported by the U.S. sport fishery (US-SP) and the long line fisheries from Japan (JPN-LL), Chinese Taipei (CTP-LL), Venezuela (VEN-LL), US (US-LL) and Brazil (BR-LL).

Figure 15. Annual cumulative probability of blue marlin lower jaw fork length measurements reported by the gillnet fisheries from Venezuela (VEN-GN), Côte d'Ivoire (IVC-GN) and Ghana (GHA-GN).

Figure 16. Annual cumulative probability of blue marlin total weight and eviscerated weight (for Martinique only) reported by the U.S. sport fishery (US-SP), the longline fisheries from Japan (JPN-LL) and the U.S. (US-LL) and the handline fishery from Martinique (MAR-HD).

Appendix 6

A RESEARCH PROPOSAL FOR ICCAT SCOPE OF WORK

Genetic Identification of Atlantic Billfishes: Current and Retrospective Analysis of Roundscale Spearfish/White Marlin Ratios and Inferences on Historical and Current White Marlin Assessment Results •

Background and rationale

Despite longstanding problems with billfish species identification (see NMFS-SEFSC 2002 Atlantic Billfish Research Plan), there have been few attempts using genetic analyses to solve these problems. Only three studies have been published over the past decade (Chow 1994; Innes *et al.* 1998 and McDowell and Graves 2002), with findings being either too preliminary or requiring multiple procedural steps to identify species. Lengthy procedures are impractical for screening large numbers of samples quickly. Therefore, there is an urgent need for an accurate and streamlined method of species identification that is suitable for management and stock assessment applications. This is particularly relevant for morphologically similar species such as the white marlin *Tetrapturus albidus*, roundscale spearfish *T. georgii*, and longbill spearfish *T. pfluegeri* (Shivji *et al.* 2006; Beerkircher *et al.* 2008).

Goals and objectives

The white marlin is considered among the most overexploited species under ICCAT management jurisdiction (ICCAT, 2002). Its population status has become highly uncertain with the realization that: (1) longstanding misidentifications of white marlin (WHM) have occurred with the roundscale spearfish (RSS) (Shivji *et al.* 2006); and. (2) WHM and RSS have unknowingly been assessed and managed as a single species (Beerkircher *et al.* 2008, Beerkircher *et al.* 2009). Beerkircher *et al.* (2009) combined genetic identification with retrospective model simulations to examine how changes in the historical trend of RSS/WHM catch ratios might have affected assessment results. Several catch and demographic scenarios were examined, including a constant fraction of RSS catches, as well as scenarios in which the fraction of RSS caught increased, or decreased, over time. The results clearly showed that the historical trend in RSS/WHM catch ratios can impact the perceived current status for each species.

The simulation results suggested the white marlin stock is overfished, confirming previous ICCAT assessment results. The ratio of biomass relative to B_{MSY} (Biomass at Maximum Sustainable Yield) could potentially have ranged considerably. The historical trend in RSS/WHM catches was found to substantially impact the perceived population trajectories for both species. Some scenarios suggested that either population may have fallen below MSY as early as the mid-1960s, while other scenarios suggest that overfished status was attained more recently (1980s or 1990s). Therefore, to reduce uncertainties in the white marlin stock assessment, it is important to determine the spatial and temporal RSS/WHM ratios.

Nova Southeastern University (NSU) has contracted with the SEFSC since 2004 to develop genetic methods for Atlantic billfish identification. These assays provide a rapid and accurate method to identify billfishes. This is particularly important for fish dressed at sea, whereby the morphological characteristics needed to differentiate species have been removed prior to port sampling. Shivji, *et al.* (2009 reported the genetic identification of the roundscale spearfish, validating its presence in the Atlantic and extending its known distribution to include the western North Atlantic (**Figure 1**). This project proposes to continue and expand collaborative studies with Dr. Shivji's group (NSU) to investigate the spatial and temporal distribution of roundscale spearfish, longbill spearfish, and white marlin (Shivji *et al.* 2006; Hoolihan *et al.* 2009; Beerkircher *et al.* 2009). In addition, the work will investigate the frequency of misidentification of roundscale spearfish as white marlin, or longbill spearfish (**Figure 2**). This expanded collaboration will include scientists from Venezuela, Brazil, Uruguay, United States, and possibly other ICCAT member countries. In order to encourage the participation of other countries, we propose that project be funded through the budget of the ICCAT Enhanced Research Program for Billfish.

Although the Shivji *et al.* (2006) identified the meristic similarity between white marlin and roundscale spearfish, subsequent studies (Beerkircher *et al.* 2008, Beerkircher *et al.* 2009, Shivji lab, unpublished data) have addressed this issue more comprehensively. Results suggested the misidentification problem is more widespread than first thought. Overall, nearly 25% of the catch from the western North Atlantic identified as "WHM" (by onboard scientific observers) were subsequently identified with genetic analysis as RSS. Furthermore, nearly 50% of the samples identified as longbill spearfish in the Brazilian fishery have been genetically identified as

RSS.

Clearly, the extent of the misidentification problem appears significant. The relatively high frequency of misidentification along with the simulation results indicates that temporal changes in the historical RSS/WHM ratios could potentially have a large impact on white marlin assessment results (WMBRT 2007; Beerkircher *et al.* 2009). Given the critical importance of incorporating good estimates of both historical and current catches to obtain accurate assessments, this project will use the DNA analyses developed by M. Shivji to examine RSS/WHM ratios from biological tissues of presumed "WHM" collected from 1976 to the present. Preliminary genetic analysis comprising 85 samples previously identified as "WHM" indicated that 20% were actually RSS (11%) or longbill spearfish (9%).

Budget

Over 900 historical biological samples from presumed white marlin are currently available for genetic analysis. This task requires the employment of a full-time, trained technician. Nearly the entire US\$ 40K proposed budget **Table 1**) is allocated for the technician's annual salary. However, a small portion of these funds (~ US\$ 2K) will be applied to sample shipment expenses. A second year of funding at US\$ 38K may be needed to support a technician for 2012, considering the very large number of samples to be analyzed. In this case, we intend to pursue funding from NOAA and other sources for this purpose.

References

- Beekircher, L.R., Lee, D.W. and Hinteregger, G.F. 2008, Roundscale spearfish *Tetrapturus georgii*: Morphology, distribution, and relative abundance in the western North Atlantic. Bull. Mar. Sci. 82(1): 155-170.
- Beekircher, L., Arocha, F., Barse, A., Prince, E., Restrepo, V., Serafy, J. and Shivji, M. 2009, When a marlin is a spearfish: Species misidentification clouds previous population assessment and management of the overfished white marlin and roundscale spearfish. Endang. Species Res. 9:81-90.
- Chow, S. 1994 Identification of billfish species using mitochondrial cytochrome b gene fragment amplified by polymerase chain reaction. Report of the 2nd ICCAT Billfish Workshop. Collect. Vol. Sci. Pap. ICCAT, 41: 549-556.
- Innes, B.H., Grew, P.M. and Ward, R.D. 1998, PCR-based genetic identification of marlin and other billfish. Mar. Freshw. Res 49: 383-388.
- Hoolihan, J.P., Perez, N.F., Faugue, R.M., Bernard, A.M., Horn, R.L., Snodgrass, D. and Schultz, D.R. 2009, Surface mucous as a source of genomic DNA from Atlantic billfishes (Istiophoridae) and swordfish (Xiphiidae). Fish. Bull. 107(3): 339-342.
- McDowell, J.R. and Graves, J.E. 2002, Nuclear and mitochondrial markers for specific identification of istiophorid and xiphiid billfishes. Fish. Bull. 100:537-544.
- ICCAT (International Commission for the Conservation of Atlantic Tunas) .2002. Executive Summary Report for White Marlin. ICCAT, Madrid, Spain. *In* Report for Biennial Period, 2000-2001, Vol. 2: 76-82.
- Shivji, M.S., Magnussen, J.E. Beerkircher, L.R., Hinteregger, G., Lee, D.W., Serafy, J.E. and Prince, E.D. 2006, Validity, identification, and distribution of the roundscale spearfish, *Tetrapturus georgii*: morphological and molecular evidence. Bull. Mar. Sci. 79:483-491.
- WMBRT (White Marlin Biological Review Team). 2007 Atlantic White Marlin Status Review. Report to National Marine Fisheries Service, Southeast Regional Office, December 10, 2007. 88 pp.

Table 1. Budget plan for genetic identification of Atlantic billfishes, retrospective analysis of roundscale spearfish/white marlin ratios, and inferences on historical white marlin assessment results.

Budgetary Item	Cost
Technician annual salary	US\$ 38K
Sample shipping expenses	US\$ 2K

Figure 1. Photographs illustrating the greater distance between the anus and first anal fin in roundscale spearfish (A), compared to white marlin (B). Probes mark positions of respective anal openings. Photo adopted from Shivji *et al.* (2006).

Figure 2. Photographs of longbill spearfish (A) and roundscale spearfish (B). Images courtesy of US POP.

Appendix 7

WHITE MARLIN SIZE FREQUENCY ANALYSIS

Catch-at-size data from the fisheries that make up a majority of the white marlin catch were analyzed in a manner similar to the blue marlin size-frequency analysis. Length measurements represented lower jaw fork length (LJFL, cm) and weight measurements were in kg. Data from eight countries and three different fishing gears were analyzed (**Table 1**). Slight differences in data collection methodology were exhibited across the fisheries, such as specification of the minimum intervals used for measurement. In these instances, no conversions were made to a standard unit, because the differences were minimal and application of a scalar conversion likely would have biased the data. Also, once again, several fisheries reported suspicious length measurements that were likely erroneous, and therefore were not included in the analyses. Only length measurements between 50 and 400 cm were considered.

Basic summary statistics were calculated for each fishery by year, including minimum, median, mean, standard deviation of the mean, maximum, and the interquartile range. These statistics were summarized in tables below, and the annual trends in the data were represented in figures below. In general, LJFL averaged between 140-160 cm for most fisheries, with the exception of the Côte d'Ivoire gillnet fishery. Average lengths for this fishery centered around 170-180 cm across all years analyzed. Similar to blue marlin, average LJFL of white marlin in the catch was variable, but exhibited no clear trends. Plots of cumulative probability across the observed range of LJFL by year were generated for longline and U.S. sport fisheries combined, and a separate plot was created for the gillnet fisheries. These figures indicate consistent patterns of size-selectivity for white marlin across fisheries and through time. Weight-frequency analyses were also conducted and with the exception of the U.S. sport fishery, the time series were short and/or incomplete. For the fisheries analyzed, average weights tended to be between 20 and 30 kg, with the U.S. longline fishery reporting smaller fish in their catch (~18 kg). As with the analyses of LJFL, it is difficult to identify a clear trend in white marlin weight over time in the catch. Cumulative

probability plots across the observed weights over time were generated, and similar to plots for LJFL, indicate consistent patterns of size-selectivity across fisheries and through time.

Flag	Gear	Measurement	Years
Brasil	Longline	LJFL	1971 - 2008
Canada	Longline	LJFL	1999 - 2001; 2003 - 2007
Chinese Taipei	Longline	LJFL	1981 - 2009
Côte d'Ivoire	Gillnet	LJFL	2002-2004, 2006
EU-Spain	Longline	LJFL	1994 - 2006
Japan	Longline	LJFL	1990 - 2008
Japan	Longline	WGT	1970-1973, 1981, 1990-1993, 1995,1996
United States	Longline	LJFL	1999, 2002
United States	Sport	LJFL	1971 - 1991
United States	Sport	WGT	1971 - 1991
United States	Longline	WGT	1986-1988
Venezueala	Longline	LJFL	1994 - 1998, 2004, 2005
Venezueala	Gillnet	LJFL	1991 - 2005

Table 1. Summary of data sources from various countries and gears used in the white marlin size-frequency analysis. Size measurements were recorded as lower jaw fork length (LJFL) and/or weight (WGT).

The following tables and figures summarize the basic statistics calculated for each fishery by year, including minimum, median, mean, standard deviation of the mean, maximum, and the interquartile range.

Table 2. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Japan longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1990	130	147.0	159.5	160.5	18.0	170.0	230	100
1991	86	140.0	146	155.2	27.0	167.2	262	148
1992	130	160.0	163	159.5	12.1	167.2	170	10
1993	121	146.8	158	158.8	16.4	170.0	200	56
1994	122	134.5	146	151.2	20.8	161.5	200	47
1995	126	136.2	141	146.8	15.5	150.8	185	38
1996	121	136.0	142	142.9	9.5	148.0	184	320
1997	107	124.0	140	135.8	15.0	147.0	161	51
1998	97	132.0	139	140.0	14.0	146.0	196	211
1999	114	130.0	136.5	138.0	11.3	145.0	172	100
2000	110	123.0	131.5	133.9	14.6	143.5	172	30
2001	126	130.0	142	144.8	17.5	153.0	182	13
2002	103	133.0	137	143.8	21.3	157.2	193	16
2003	140	146.0	153.5	160.4	20.2	168.8	193	8
2004	120	135.0	142	143.3	11.8	152.2	164	14
2005	100	114.2	118.5	127.3	20.7	145.2	163	14
2006	101	129.0	135	143.6	32.1	150.5	210	11
2007	107	131.2	140.5	144.4	22.0	156.8	198	22
2008	130	139.5	148	147.4	10.8	152.5	165	18

Table 3. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Chinese Taipei longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1981	65	125.0	140	140.7	23.1	155.0	235	2713
1982	80	143.8	155	155.2	16.9	170.0	210	1992
1983	95	135.0	150	152.7	21.6	160.0	230	806
1984	70	120.0	140	138.6	27.8	165.0	205	1135
1985	75	135.0	155	152.6	22.5	170.0	215	886
1986	60	145.0	160	156.2	16.4	170.0	200	2208
1987	85	145.0	165	160.9	24.3	180.0	225	1282
1988	80	135.0	145	142.5	15.6	150.0	190	486
1989	95	130.0	140	140.1	15.7	150.0	195	902
1990	115	135.0	140	146.6	17.6	160.0	195	315
1991	120	135.0	150	147.6	15.5	155.0	200	412
1992	80	140.0	150	149.7	13.6	160.0	190	286
1993	65	140.0	150	148.3	28.0	165.0	200	385
1994	65	130.0	150	149.7	23.4	170.0	205	525
1995	75	125.0	140	140.4	24.3	150.0	200	908
1996	65	130.0	140	145.8	23.4	155.0	225	1534
1997	80	140.0	155	154.0	21.9	170.0	205	585
1998	70	150.0	160	161.7	21.2	175.0	205	202
1999	85	130.0	150	150.9	31.1	180.0	225	451
2000	105	130.0	140	148.3	27.2	170.0	200	129
2001	95	125.0	140	143.1	26.8	155.0	210	291
2002	85	140.0	155	153.5	18.0	165.0	210	860
2003	70	130.0	150	146.2	27.5	165.0	235	720
2004	95	130.0	170	160.1	29.4	180.0	225	360
2005	95	165.0	172.5	173.0	26.2	185.0	275	722
2006	70	140.0	160	154.4	29.9	175.0	215	285
2007	90	130.0	155	152.9	33.4	170.0	220	502
2008	95	115.0	160	149.4	33.6	170.0	235	244
2009	120	155.0	165	169.2	21.4	180.0	225	73

Table 4. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Venezuela longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1994	146	156.0	161	161.4	7.2	165.0	195	530
1995	130	155.0	160	160.4	7.9	164.0	197	465
1996	149	163.0	169	169.0	12.1	178.0	193	29
1997	115	148.0	156	155.4	12.1	164.0	206	380
1998	68	150.0	156.5	155.7	13.9	166.0	190	248
2004	130	153.0	161	161.4	10.7	171.0	182	207
2005	115	150.0	160	163.1	20.3	173.0	300	301

Table 5. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Venezuela gillnet fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1991	138	151.0	156	158.5	12.4	164.0	206	113
1992	135	159.0	164	165.3	10.0	171.5	200	127
1993	132	159.0	163	163.5	9.1	169.0	214	195
1994	139	157.0	163	164.0	10.7	168.0	255	566
1995	144	157.0	163	164.4	9.7	170.0	218	189
1996	120	157.0	162	163.1	9.6	168.0	201	147
1997	141	159.0	164	165.0	9.2	170.0	202	161
1998	114	159.0	164	165.1	9.4	171.0	198	718
1999	115	157.0	163	163.9	9.6	169.0	196	934
2000	127	158.0	164	164.5	9.7	171.0	193	636
2001	130	159.0	166	166.0	11.1	173.0	199	277
2002	128	157.0	164	164.6	10.7	172.0	203	605
2003	123	158.0	164	164.4	9.5	171.0	196	464
2004	115	156.0	161	161.8	9.7	168.0	196	1547

Table 6. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Côte d'Ivoire gillnet fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
2002	150	170.0	180	180.0	12.4	190.0	200	108
2003	135	172.5	180	180.4	16.2	190.0	280	167
2004	155	165.0	170	172.3	10.7	177.5	200	15
2006	165	180.2	185	186.6	13.5	188.8	213	18

Table 7. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the U.S. sport fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1971	142	157.2	165	165.4	9.7	172.0	201	214
1972	137	160.0	166	166.5	11.4	172.0	222	251
1973	140	159.5	165	166.1	11.7	173.0	203	179
1974	137	157.0	163	165.4	12.0	172.0	206	329
1975	142	157.0	162	163.2	9.5	168.0	206	408
1976	109	156.0	162	162.8	10.5	168.0	200	359
1977	137	157.0	163	164.0	10.6	171.0	195	381
1978	127	155.0	162	162.8	12.8	170.0	261	461
1979	58	154.0	159	160.7	14.0	167.0	213	441
1980	110	156.0	162	163.0	12.4	169.0	355	1345
1981	125	156.0	162	163.3	11.3	170.0	230	836
1982	127	155.0	162	162.1	11.0	168.0	228	473
1983	89	154.0	160	160.6	11.2	166.0	223	880
1984	135	156.0	162	162.9	10.2	169.0	225	642
1985	97	156.0	162	162.8	12.6	168.5	208	327
1986	137	158.0	163	163.1	9.2	169.0	210	210
1987	98	157.0	162	161.9	10.0	167.0	208	201
1988	140	159.0	162	164.2	9.8	168.0	203	140
1989	148	157.0	162	163.1	8.2	166.0	199	99
1990	151	160.0	166	166.7	8.6	171.2	193	52
1991	138	160.0	163	165.0	9.4	169.0	210	99

Table 8. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the U.S. longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1999	80	149.2	154	154.3	19.9	162.0	211	98
2002	90	150.0	150	151.3	13.7	160.0	180	1607

Table 9. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Brazil longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1971	109	152.0	162	163.5	15.2	173.0	216	327
1972	140	161.0	161	165.5	10.5	167.0	225	844
1973	151	162.5	172	172.3	12.7	177.0	215	110
1974	124	167.0	172	170.8	11.9	177.0	204	321
1975	124	161.0	167	168.5	10.3	172.0	204	381
1976	140	167.0	172	173.7	11.9	183.0	225	434
1977	130	155.0	160	160.9	11.7	167.0	225	2290
1978	129	161.0	167	170.8	13.7	177.0	236	785
1979	140	161.0	167	170.1	13.5	177.0	220	521
1980	124	161.0	167	167.3	15.2	177.0	220	934
1981	129	156.0	161	165.4	15.0	172.0	220	727
1982	135	161.0	170	170.8	12.9	177.0	220	716
1983	135	161.0	167	168.1	13.0	177.0	220	1245
1984	124	145.0	151	158.8	16.1	167.0	220	1748

Table 10. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin lower jaw fork lengths (cm) reported by the Canada longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1987	133	148.0	159.5	153.5	10.6	160.0	164	10
2003	81	96.0	102	102.0	8.7	106.5	122	51
2004	130	150.2	159	158.2	14.9	166.5	194	54
2006	146	157.0	163	168.4	20.8	174.0	302	110
2008	127	159.0	164	169.3	27.3	172.0	286	39

Table 11. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin weights (kg) reported by the Spain longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1994	160	160.0	160	160.0	NA	160.0	160	1
1995	144	165.0	172	173.6	12.9	180.0	206	87
1996	147	160.0	170	169.8	14.1	182.0	200	41
1997	139	152.5	157	158.7	10.9	163.5	186	43
1998	162	162.0	162	162.0	NA	162.0	162	1
1999	130	155.8	163.5	167.7	21.5	175.0	275	120
2000	138	155.0	160	161.8	11.1	168.0	200	189
2001	95	155.0	163	166.7	30.1	170.0	285	103
2002	135	146.0	157	153.3	16.8	162.5	168	3
2003	140	155.0	160	161.5	18.0	164.8	280	62
2004	128	157.8	165	165.5	11.9	170.2	205	212
2005	120	157.0	166	166.1	14.6	175.0	250	203
2006	140	170.0	170	171.4	12.2	180.0	190	50

Table 12. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin weights (kg) reported by the Japan longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	n
1970	6	18.0	24	29.1	14.5	38.0	66	139
1971	2	18.0	22	27.4	14.5	34.0	170	1054
1972	10	18.0	20	24.5	12.4	26.0	74	208
1973	10	16.0	18	18.9	5.6	20.0	56	303
1981	46	46.0	46	46.0	NA	46.0	46	1
1990	10	18.0	22	22.4	6.5	25.0	48	63
1991	12	16.0	20	21.0	7.5	23.0	50	53
1992	24	34.3	44.5	44.5	29.0	54.8	65	2
1993	18	29.5	41	41.0	32.5	52.5	64	2
1995	15	20.8	25	26.1	7.4	30.0	39	10
1996	17	19.0	19.5	20.5	2.7	22.5	25	10

Table 13. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin weights (kg) reported by the U.S. sport fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1971	19	22.0	26	25.5	4.3	29.0	32	13
1972	18	20.8	22.5	24.4	6.0	26.3	40	24
1973	25	25.3	25.5	25.5	0.7	25.8	26	2
1974	20	22.0	24	26.6	7.1	28.0	44	13
1975	18	22.0	25	25.1	4.2	29.0	33	47
1976	15	20.8	24	25.9	7.2	29.0	51	56
1977	18	20.0	23	24.0	4.4	28.0	35	45
1978	11	20.0	23	23.3	5.3	26.0	39	95
1979	2	19.0	22	22.8	4.9	25.0	40	210
1980	9	20.0	23	23.7	6.1	25.8	61	194
1981	9	20.0	24	24.4	5.9	27.0	43	191
1982	11	19.0	21	22.2	4.9	24.0	47	224
1983	11	19.0	22	22.6	5.6	25.0	48	174
1984	14	20.0	22.5	23.6	5.6	27.0	51	180
1985	14	19.0	23	23.3	4.6	26.5	34	43
1986	13	20.0	24	23.4	4.3	26.0	37	64
1987	16	21.0	23	24.7	6.3	26.0	52	109
1988	14	20.0	24	24.3	5.6	28.5	36	83
1989	14	19.0	20	21.0	3.8	23.0	36	160
1990	21	24.8	28.5	27.6	3.4	30.0	34	24
1991	13	20.0	22	23.0	5.6	24.0	37	67

Table 14. Summary statistics including minimum (min), first quartile (First.qt), median, mean, standard deviation of the mean (StdDev), third quartile (Third.qt), maximum (Max), and sample size (n) for white marlin weights (kg) reported by the U.S. longline fishery.

Year	Min	First.qt	Median	Mean	StdDev	Third.qt	Max	п
1986	3	13.0	15	17.7	9.0	19.0	65	350
1987	6	13.0	16	17.4	7.6	19.0	68	262
1988	8	15.0	17	18.4	6.4	20.0	45	107

Figure 1. Time series of white marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Japan (JPN-LL) and Chinese Taipei (TAI-LL). The numbers plotted represent sample size for each year.

Figure 2. Time series of white marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Venezuela (VEN-LL) and Brazil (BR-LL). The numbers plotted represent sample size for each year.

Figure 3. Boxplot of white marlin lower jaw fork length for the longline fishery from the U.S. (US-LL). The bar represents the annual median with the box encompassing the interquartile range.

Figure 4. Time series of white marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Canada (CAN-LL) and Spain (ESP-LL). The numbers plotted represent sample size for each year.

Figure 5. Time series of white marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the gillnet fisheries from Venezuela (VEN-GN) and Côte d'Ivoire (CIV-GN). The numbers plotted represent sample size for each year.

Figure 6. Time series of white marlin lower jaw fork length expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the U.S. sport fishery (US-SP). The numbers plotted represent sample size for each year.

Figure 7. Time series of white marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the longline fisheries from Japan (JPN-LL) and Chinese Taipei (TAI-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 8. Time series of white marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the longline fisheries from Venezuela (VEN-LL) and Brazil (BR-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 9. Time series of white marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the longline fisheries from Canada (CAN-LL) and Spain (ESP-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 10. Time series of white marlin lower jaw fork length expressed as a yearly mean with minimum (Min) and maximum (Max) values for the gillnet fisheries from Venezuela (VEN-GN) and Côte d'Ivoire (CIV-GN). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 11. Time series of white marlin weight expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the U.S. sport fishery (US-SP). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 12. Time series of white marlin weight expressed as a yearly median with the interquartile range (First.qt-Third.qt) for the longline fisheries from Japan (JPN-LL) and the U.S. (US-LL). The numbers plotted represent sample size for each year.

Figure 13. Time series of white marlin weight expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the sport fishery from the U.S. (US-SP). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 14. Times series of white marlin weight expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the longline fisheries from Japan (JPN-LL) and the U.S. (US-LL). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 15. Times series of white marlin weight expressed as a yearly mean with the minimum (Min) and maximum values (Max) for the sport fishery from the U.S. (US-SP). The numbers plotted represent sample size for each year, and the error bars reflect one standard deviation of the mean.

Figure 16. Annual cumulative probability of white marlin lower jaw fork length measurements reported by the U.S. sport fishery (US-SP), and the longline fisheries from Japan (JPN-LL), Chinese Taipei (CTP-LL), Venezuela (VEN-LL), the U.S. (US-LL), Brazil (BR-LL), Canada (CAN-LL), and Spain (ESP-LL).

Figure 17. Annual cumulative probability of white marlin lower jaw fork length measurements reported by the gillnet fisheries from Venezuela (VEN-GN), and Côte d'Ivoire (IVC-GN).

Figure 18. Annual cumulative probability of white marlin total weight reported by the U.S. sport fishery (US-SP), and the longline fisheries from Japan (JPN-LL) and the U.S. (US-LL).