2007 MEDITERRANEAN SWORDFISH STOCK ASSESSMENT SESSION

(Madrid, Spain - September 3 to 7, 2007)

SUMMARY

The objective of the meeting was to conduct the stock assessment for Mediterranean swordfish. Several types of assessment models, including production models and VPA, were applied to the available data.

RÉSUMÉ

L'objectif de la réunion était d'évaluer le stock d'espadon de la Méditerranée. Plusieurs types de modèles d'évaluation, y compris des modèles de production et VPA, ont été appliqués aux données disponibles.

RESUMEN

El objetivo de la reunión era realizar la evaluación del stock de pez espada del Mediterráneo. A los datos disponibles se aplicaron varios tipos de modelos de evaluación incluyendo modelos de producción y VPA.

KEY WORDS

Swordfish, VPA, assessment

1. Opening, adoption of Agenda and meeting arrangements

The meeting was held at the ICCAT Secretariat offices in Madrid. Dr. George Tserpes, meeting Chairman, opened the meeting. Mr. Driss Meski, Executive Secretary, welcomed participants ("the Group").

The Agenda (**Appendix 1**) was adopted with some changes. The Group noted the reduced number of participants and regretted the lack of participants from countries traditionally involved in the swordfish fisheries. The List of Participants is attached as **Appendix 2** and the List of Documents presented at the meeting is attached as **Appendix 3**. The following participants served as rapporteurs:

Section	Rapporteurs
1, 9, and 10	P. Pallarés
2	J.M. Ortiz de Urbina
3	A. Di Natale
4	P. Kebe and G. Tserpes
5	P. Peristeraki
6	G. Tserpes
7	G. Tserpes and V Restrepo
8	J. Neilson

2. Description of fisheries

Mediterranean swordfish fisheries are characterized by high catch levels. It should be noted that average annual reported catches (on average about 15,177 t from 1984 to 2005; **Table 1**) are similar to those of the North Atlantic. The Mediterranean is a much smaller body of water compared to the North Atlantic. However, the potential reproductive area in the Mediterranean is probably relatively larger than that in the Atlantic. Further, the productivity of the Mediterranean Sea is thought to be very high.

Swordfish fishing has been carried out in the Mediterranean using harpoons and driftnets (drifting gillnets) at least since Roman times. Currently, swordfish fishing is carried out throughout the Mediterranean Sea. The biggest producers of swordfish in the Mediterranean Sea in the recent years (1997-2005) are Italy (44%), Morocco (23%), Greece (10%), and Spain (9%). Also, Algeria, Cyprus, Malta, Tunisia, and Turkey have fisheries targeting swordfish in the Mediterranean. Incidental catches of swordfish have also been reported by Albania, Croatia, France, Japan, Libya, and Portugal. The Group recognized that there might be additional fleets taking swordfish in the Mediterranean, for example, Israel, Lebanon, Egypt and Monaco, but the data are not reported to ICCAT or FAO. Furthermore, a paper presented at this meeting (SCRS/2007/115, by Orsi Relini *et al.*) provides information about the activity of a French gillnet fishing fleet which operates in the Ligurian Sea, also within the marine "Pelagos" Mammal Sanctuary. According to this report, the total number of driftnetters has grown constantly, from 46 vessels in year 2000 to more than 100 vessels in 2006, in the studied area, and these vessels are reported to actch also swordfish. The SCRS points out that catches from this fleet have never been reported to ICCAT.

Mediterranean total swordfish landings showed an upward trend from 1965-1972, stabilized between 1973-1977, and then resumed an upward trend reaching a peak in 1988 (20,365 t; **Table 1, Figure 1**). The sharp increase between 1983 and 1988 may be partially attributed to improvement in the national systems for collecting catch statistics. Since 1988, the reported landings of swordfish in the Mediterranean Sea have declined, and since 1990, they have fluctuated between about 12,000 to 16,000 t. In 2005 catches were 14,601 t.

In recent years, the main fishing gears used are surface longline (56% of the total catch) and gillnet. Most of the previously mentioned countries operate longline fisheries, and in 2005 driftnet fisheries reported were mostly limited to Morocco. There are also other countries known to be fishing with driftnets that do not report their catches. Swordfish are also caught with harpoons and traps, but traps do not target swordfish. It should be noted that since the beginning of 2002 driftnet fishing has been banned in EU countries and this will influence the catch data beginning in 2002.

There is a high demand for swordfish for fresh consumption in most Mediterranean countries.

A description follows for fisheries of those nations that attended the meeting. See **Figure 2** for reference to particular locations mentioned below). For additional information about fisheries for some nations not attending the meeting see the 2003 Detailed Report.

EC- Greece

The Greek swordfish fleets exclusively use drifting longlines and operate throughout the eastern Mediterranean basin. About 250 vessels were involved in the swordfish fishery in 2006. Most of them entered the fishery occasionally, mainly during the summer months.

The swordfish fishing season lasts from February to the end of September, as there is a closed season in the Greek Seas from October to January, aiming to protect recruits.

Swordfish comprises the main bulk of large pelagic catches in the Greek seas and its production during the 2006 fishing season was estimated at 1,375 t. The Greek swordfish production is rather stable over the last decade.

EC- Italy

The Italian swordfish fishery has a long historical tradition. Recent catches usually account for a total between 6,000 to over 7,000 t per year, with slight variability from year to year, according to various factors. The largest fishery, in terms of number of vessels, is the longline fishery with about 1200 vessels from 7 to over 30 meters in length. The fishery is currently carried out from late February to December, in many Mediterranean areas. The most significant changes in the fishing strategies occurred in the last ten years, due to the increase in tuna longlining in the spring, implying a parallel decrease in swordfish longlining. This is changing again since 2006, when the swordfish fishery became more relevant due to different conditions in the bluefin tuna fishery. In the last two years, some vessels have started fishing trials using very deep longline in the southern Tyrrhenian Sea but information on this activity is not available. The swordfish target longline fishery provides the highest catch, while smaller quantities are provided by the tuna longline fishery as by-catch. The driftnet fishery was formerly the most important fishery for swordfish but, according to the EC Regulation, it has been banned since January

2002. Recent catches now come from unclassified nets. The traditional harpoon fishery in the Strait of Messina catches very small quantities of swordfish, while even smaller catches are reported in tuna traps.

The former EC legislation concerning the minimum size for Mediterranean swordfish (120 cm LJFL) was cancelled in 2000 and since then the previous measure, which already existed in the Italian regulation (140 cm UJFL), came into force again.

EC- Spain

The Spanish swordfish fishery in the Mediterranean dates back to the early 20th century. Its expansion was initiated in the 1960-1970 period, and it has been stable since the 1980s (SCRS/2003/042). Fishing is carried out mainly by surface longline. Swordfish are also caught occasionally by semi-pelagic longline ("piedri-bola") and as by-catch of the longline fishery that targets bluefin tuna and albacore.

The Spanish swordfish fishery in the Mediterranean is characterized by the heterogeneity of the fleet and by the composition of the gears, as well as by the changes in fishing strategy. The fleet, which can be comprised by as many as 145 vessels, has evolved and currently presents the following average characteristics: 16 m in length, 166 hp engines, and 28 GRT. In addition, the traditional longline gear is being substituted by the American style longline, which is being used by about 29% of the vessels. The fishing area extends from the Iberian Peninsula to 06°E and up to the limits of the Moroccan and Algerian territorial waters. The major activity takes place in the summer and autumn months.

In 2006, swordfish catches amounted to 1,592 t (of which 1,190 t were caught by surface longline), similar to the catch level for the period 2000-2002. The American style longlines showed an increase in the mean weight of the catch. As regards fishing effort, it has been stable recently.

Swordfish fishing by surface longline in the Mediterranean is subject to regulation by the Decree of 27 July 2006 (APA/2521/2006) that regulates the technical characteristics of the gears and the minimum size for the catch (90 cm LJFL), among others.

Morocco

The Moroccan swordfish fishery in the Mediterranean Sea has been developed since 1983. About 320 vessels are currently involved in this fishery, using mainly driftnet and surface longline (SCRS/2006/125). The boats are, on average, 13 m in length, 13 GRT, and have 110 hp engines.

The most important fishing grounds are located in the Strait of Gibraltar and the southern Alboran Sea. The first area remains the most important in terms of the size of the fleet targeting swordfish. In the Strait of Gibraltar, swordfish fishing takes place throughout the year, with a highest activity from April to October. In the southern Alboran Sea, fishing occurs almost the entire year. Minor catches of swordfish are also taken occasionally by traps and purse seiners.

After the peak landings of 4,900 t registered in 1997, the swordfish catch dropped to stabilize around 3,000 t. In 2005, the catch decreased by about 22% with respect to the previous year. The remarkable change in this fishery during the five last years is the significant reduction in driftnet catches and the increase in longline catches, due to the implementation of the National Plan for banning the driftnet activity following the ICCAT Resolution related to the ban of driftnets in the Mediterranean Sea .

The by-catches of this fishery include mainly small tunas, sharks, billfishes and bluefin tuna.

The size of the landed fish varies according to the fishing area. In the Strait of Gibraltar, the mean size of swordfish is about 145 cm. In the Alboran Sea, the fish have a smaller mean size (106 cm) (SCRS/2003/053).

In Morocco, the regulation of swordfish fishing concerns the establishment of a minimum commercial size of 120cm (25kg) (Decree No.1154-88 of 3 October 1988); the establishment of 2.5 km maximum length for driftnets; the prohibition of mesh size less than 400 mm (Circular No.1232 of 11 March 1991), and a freeze on fishing effort through the suspension of the investments for vessel construction since 1992(Circular note No. 3887 of 18 August 1992).

3. Biological data

According to the available information (Anon. 1996), in previous years only a few swordfish from the Mediterranean are reported to exceed 200 kg. In recent times, a slightly higher percentage of large swordfish has been reported from several fisheries. The majority of the Mediterranean catch is comprised of individuals less than 3 years old and the average size is much lower than in the Atlantic. The fact that the fishery is still mostly based on 2-3 young year-classes makes it vulnerable to recruitment changes.

Growth studies of swordfish in the Mediterranean, carried out by several teams, using both anal fin spines and length frequency data, all show a similar pattern of growth. It is also well known that Mediterranean swordfish have sexually dimorphic growth, with males having a lower length-at-age, and achieving a smaller asymptotic size than do females. The growth equations adopted by the GFCM/ICCAT Working Group in 1995 are those published by Tserpes and Tsimenides (1995) and still used as follows:

Linf = 238.60 (1 - e - 0.185 (t + 1.404)) for sexes combined Linf = 203.08 (1 - e - 0.241 (t + 1.205)) for males Linf = 226.53 (1 - e - 0.210 (t + 1.165)) for females.

A very recent paper (SCRS/2007/117, by Valeiras *et al.*) found different growth rates in the swordfish present in the western Mediterranean. This paper provided growth equations by sex, based on anal spines reading. It is important to note that the sampling was conducted in an area where mixing between the Atlantic stock and the Mediterranean stock is possible. According to this paper, the growth rate is lower compared to previous studies, particularly at young ages. SCRS considers that the situation on this crucial area of the Mediterranean should be further investigated, due to its relevance for the understanding of the mixing between the two stocks.

Spawning generally occurs in spring and summer, with peaks in June and July, and variations in timing may be due to a variety of environmental and oceanographic influences. The most important spawning areas in the Mediterranean, according to current knowledge, are around the Balearic Islands, the southern and central Tyrrhenian Sea, the Ionian Sea and the Strait of Messina, and there is a strong indication that spawning areas also exist in the eastern Mediterranean. Juveniles are found throughout the Mediterranean but often tend to concentrate close to the coast, mostly in autumn.

According to a review of the biological information available for the Mediterranean swordfish (SCRS/2001/050), major differences with the Atlantic stock have been noticed. Mature females as small as 110 cm LJFL have been observed and the estimated size at which 50% of the female population is mature occurs at 142 cm (SCRS/95/045). According to the growth curves used by SCRS in the past for Mediterranean swordfish, these two sizes correspond to 2 and 3.5 year-old fish, respectively. At 125 cm about 20% of the females in the Mediterranean would be mature. Males reach sexual maturity at smaller sizes.

Table 2 summarized biological information available for the Mediterranean swordfish.

Environmental factors

It is well known that swordfish catches are highly affected by prevailing environmental factors. For example, the catches of swordfish are affected mainly by the presence of a stable thermocline during late spring and summer. In fact, when using driftnets, all catches are done just above the thermocline, where spawning occurs. Swordfish catches are also affected by the moon phase. In the presence of a full moon, higher catches are recorded for traditional longlines, whilst lower catches are recorded for driftnets (SCRS/94/86, SCRS/91/65). Areas characterized by higher turbulence also seem important for swordfish. Higher catches are recorded in the Tyrrhenian and Alboran Seas.

A paper presented at this meeting (SCRS/2007/115 by Orsi Relini *et al.*) provides a study about the correlation between winter North Atlantic Oscilation (NAO) and the longline CPUE series in the Ligurian Sea over the period 1990-2006. According to this study, an inversely related correlation has been detected, even if other environmental factors should be possibly taken into account. This study also reports that swordfish recruitment in the Ligurian Sea does not show any correlation with the winter NAO index. Temporal differences of SST have been also related to the growth rate of 0 group swordfish in the eastern Mediterranean (Peristeraki *et al.*, 2007).

During this meeting, it was discussed that other possible correlations could be explored and studied, including those between the apparent distribution and concentration of swordfish and the eastern Mediterranean Transient

(EMT) index, which seems a very important factor to be taken into account in the Mediterranean, able to induce relevant changes in the pelagic environment, in the spatial and temporal distribution of many pelagic species including swordfish and, then, in the fishery.

It was recommended that more work should be carried out in order to identify better the effects of the environment on swordfish biology, ecology and fishery.

4. Catch data

Two documents related to catch data were presented.

Document SCRS/2007/106 summarized the information on the by-catches and discards data in the Greek swordfish fishery. Landed swordfish represent 84% of the total catch in weight.

SCRS/2007/108 described the discards of undersized swordfish in the Greek longline swordfish fishery. It was noted that between 15 to 17 tons were discarded yearly. After some discussion the Group noted that discards information was not reported in general to the Secretariat in the Mediterranean area, by countries other than Greece.

4.1 Task I

In **Table 1** the Secretariat presented the Mediterranean swordfish catch data reported to ICCAT for the years 1950 to 2006 by flag, fleet and gear. The Group decided to focus only on data up to 2005 as the 2006 reported information is incomplete. During the revisions of the catch table, the lack of the Tunisian catch for 2005 and the Algerian catch for 2003 was noted. The Group was also very concerned about the low level of swordfish reported by Italy for some past years. In order to fill the gaps in the catch time series the Group decided:

- To carry forward the 2004 Tunisian catch (791 t) to 2005.
- To use the 665 t reported in the Algerian Annual Report for 2003 in the assessment and as unofficial data in the Task I database.
- To re-adjust the Italian catches in 1990 (from 5,224 t to 9,104 t), 1991 (from 4,789 t to 8,538 t) and 1995 (from 6,725 t to 7,350 t) following the Italian scientists' advice.

In addition, the ICCAT Task I and FAO FIGIS data were compared and found to be in agreement for the period after 1967, but showed discrepancies for the period from 1950 to1967. The Group decided to adopt the higher catch figures held in the FIGIS database and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 as they already are for later periods and other species.

Accordingly, **Table 1** was updated and presented again by the Secretariat and approved by the Group.

4.2 Size and catch at size

The catalog of all Task I and Task II had been distributed earlier (April 2007) to all potentials participants in order to review the gaps and deficiencies and to submit revisions to the Secretariat. Unfortunately, no feedback was received. During the meeting, the same file was updated and presented again to the Group. At the beginning of the meeting, new Task II size information were available for Moroccan gillnet for the years 1999-2005 and also for Italian gillnet and longline by month. According to the new Italian size sample available by fleets, the Group decided to breakdown the Italian catch reported by area in order to match it with the size samples.

The Secretariat presented the substitution rules used (**Table 3**) to create the catch at size following the rules adopted in 2003 (SCRS/2003/015 and SCRS/2003/050). The catch-at-size file summarized in **Table 4** for the years 1985 to 2005 were converted to catch at age (**Table 5**) by applying the same slicing procedure used in 2003 and the same growth equation (inverse Von-Bertalanffy equation).

5. Relative abundance indices

Five papers concerning catch rate data were presented.

SCRS/2007/118 presented the updated standardized catch rates for swordfish from the Spanish longline fleet in the Mediterranean Sea for the years 1988-2005. Data included 18,630 observations that were analyzed by means of GLM techniques. The effects of year, area and quarter were considered, and all factors (including interactions) were significant. Annual standardized CPUEs declined rapidly from 1988 to 1992, and more gradually until 1999. It has remained stable thereafter.

SCRS/2007/107 presented annual standardized catch rates from the Italian and Greek fleets operating in the central eastern Mediterranean. The analysis included data from the Greek longline fisheries operating in the eastern Mediterranean and the Sicilian longline fisheries operating in the Tyrrhenian Sea and the Straits of Sicily, for the years 1987-2005. Indices were estimated by means of GLM techniques and results did not demonstrate the presence of any particular trend over time.

SCRS/2007/115 presented a time series of nominal catch rates from the Italian swordfish longline fleets operating in the Ligurian Sea, from 1990 to 2006. No significant trend was observed during the studied period of time. An inverse relation of the swordfish CPUE with the NAO index values was also observed. The Group was pleased to receive this contribution dealing with environmental effects on catch rates, an area where the state of knowledge has been considered deficient. However, the Group encourages further investigation about the effects of environmental and oceanographic factors specifically related to the Mediterranean Sea.

SCRS/2007/116 presented an analysis of the standardized catch rates of the Moroccan driftnet fishery from the Mediterranean Sea. Nominal CPUE, by month and boat, from 1998 to 2006 were analyzed by means of GLM techniques. Standardized catch rates did not show any trend throughout the years. It was commented that high CPUE values were observed compared with other Mediterranean driftnet fisheries, which might be attributed to specific characteristics of the exploited area, which extends around the Gibraltar Straits.

SCRS/2007/119 presented a detailed description of the Italian nominal CPUE time series (1985-2006) from the southern Italian gillnet and longline fleets. The gillnet CPUEs showed a slightly increasing trend, while the longline CPUEs showed a moderately decreasing trend. The exploitation pattern of the fleets was considered stable for the last two decades.

6. Stock status results

6.1 Production model evaluations

6.1.1 ASPIC

The non-equilibrium surplus production model (ASPIC, cataloged version 5.16) was applied to catch and effort data for Mediterranean swordfish. The input data used in these analyses are presented in **Table 6** In order to better inform the model, recorded catches from 1950 to 2005 were used. The ICCAT Task I and FAO FIGIS data were compared and found to be in agreement for the period after 1967, but showed discrepancies for the period from 1950 to1967. The Group decided to adopt the higher catch figures held in the FIGIS database and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 (they are already harmonized for later periods and other species). For these analyses, a composite CPUE pattern was developed as the weighted average of the Italian longline (SCRS/2007/107), Greek longline (SCRS/2007/107), Moroccan gillnet (SCRS/2007/116), Italian Gillnet (Anon. 2004), Spanish longline (SCRS/2007/118), and Japanese longline (see Anon, 1996) catch rate time series. It was noted that the Japanese data are related to the swordfish by-catch in the tuna longline fishery. Weighting was used in this case, due to concerns that some of the fleets from which time series were available represented a relatively small area of fishing and/or typically represented small volumes of the total Mediterranean catch of swordfish. In this case, a weight of 4 was assigned to the Italian and Moroccan indices, a weight of 2 to the Greek and Spanish time-series, and a weight of 1 to the Japanese time-series. The resulting CPUE pattern is shown in **Figure 3**.

The production model was first fit to catch and effort for the period 1968-2005 (reflecting the assessment conducted in 2003). In this case, there was insufficient information in the data with which to freely estimate all model parameters. The model convergence could be achieved by fixing the initial biomass ratio, but the Group considered that assuming the biomass was at an unfished level (K) in 1968 was an incorrect one in light of the reported catches since 1950. The Group decided to fix B_{1968} at .75K for this run as a better representation of the situation at that time. In order to inform the model and possibly improve estimates of stock productivity and current status, the data from 1950 through 2005 were then fit. In this case, it was possible to freely estimate all

model parameters, although when doing so the modeled stock dynamics prior to the mid 1980s was unexpected, showing a build-up of biomass from very low levels in the early 1950s. Therefore, the Groupdecided to also conduct a run assuming the stock was at an unfished level in 1950 even though some catches are known to have occurred before that time. Across the models, (see **Figure 4** and **Appendix 4** for details supporting the model fits), the estimates of population status in the most recent year indicated a stock that was at or somewhat below the ICCAT Convention objective while recent fishing mortality was somewhat above the level that would permit the stock to attain the level necessary to attain the Convention objective (MSY levels). While the uncertainty in these results based on bootstrapping is large (**Figure 5**), the weight of the evidence supports these conclusions (**Table 7**). The median results of the model outcomes (**Figures 6a, b**) indicate that the fishery underwent a rapid expansion in the 1980s resulting in F's likely at or above F_{MSY} and a slowly declining stock which has recently likely fallen below the level which can support MSY over the long-run (**Figures 7a, b**).

6.1.2 Tserpes and McAllister Method (TSM)

A non-equilibrium production model was applied based on the approach followed in SCRS/2007/109. The model used total catch data for the 1987-2005 period and a combined CPUE series, the same as used in ASPIC. The XSA estimates of average F were used to estimate the harvest rate at the beginning of the examined period and consequently the initial biomass fraction

Based on the ICCAT XSA assessment the values of F and M for the beginning of the period were fixed to 0.42 and 0.20 respectively. The best fit was provided for r = 0.67 and k=90547mt. Observed and predicted indices are shown in **Figure 8**. Based on the above estimates equilibrium MSY was found to be equal to 15166mt. The corresponding rates for fishing mortality and biomass are: $F_{msy} = \frac{r}{2} = 0.33$ and $B_{msy} = \frac{k}{2} = 45273$ mt.

Annual catches in the latest years are around to *MSY*, while stock biomass levels are stable but about 12% lower than B_{msy} (Figure 9).

6.2 Age structured models

6.2.1 XSA assessment

The XSA model was implemented using the code developed in R-language (see **Appendix 5**) under the auspices of the FLR-project (Kell *et al.*, 2007; http://www.flr-project.org/). Catch-at-age tables included ages 0 to 10 (plus group) and six tuning data sets were available from the following fleets: Italian longliners–ITLL (SCRS/2007/107), Greek longliners-GLL (SCRS/2007/107), Moroccan gillnetters-MODN (SCRS/2007/116), Italian gillnetters-ITDN (SCRS/2003/040), Spanish longline-SPLL (SCRS/2007/118), and Japanese longliners-JALL (see Anon, 1996). Greek, Italian, and Spanish longline CPUE series were considered as representative of 2-9 age-group abundances, while for the rest, the 3-9 age-group was assumed. Full maturity was assumed from age 4 onwards and 50% at age 3. Zero maturity was assumed for the younger ages.

A series of preliminary runs with different parameterization were performed and based on the fleet catchability diagnostics the final model was based on runs assuming q independent of year-class size for all ages except 0 and 1, constant q after age 6, as well as population and F shrinkage. Natural mortality was considered equal to 0.2. **Figure 10** llustrates the catchability residuals by fleet and age. In general, residuals do not show any specific pattern for the younger more abundant age-classes, while they are positively biased in the older ages.

Tables 8 and 9 present the estimates of fishing mortality and population numbers-at-age, respectively. As in the 2003 assessment, recruitment appears to be consistent without any especially strong or weak year classes. The mean Fs for ages 2-5 are plot against year in **Figure 11**.

Both total and spawning stock biomass estimates remained stable during the last decade (Figure 12).

6.2.2 VPA

The software VPA-2BOX was used to conduct a sequential population analysis using the same input data as in the XSA analyses. The following assumptions were made:

- <u>Indices</u>: A lognormal error structure was assumed for all indices. The index selectivities were estimated using the partial catches (including all ages, from 0 to 10+).
- <u>F ratios</u>: $F_{10+}/F_9 = 1.0$ in all years.

- <u>Terminal year Fs</u>: Estimated for ages 5 and 8. Assumed values: $F_0=0.01*F_5$, $F_1=0.4*F_5$, $F_2=F_5$, $F_3=F5$, $F_4=F_5$, $F_6=F_8$, $F_7=F_8$, $F_9=F_8$.

The fit to the data was poor. The coefficients of variation for the estimates of F5 and F8 in 2005 were 15% and 81% respectively. The fits to the individual indices were rather poor in some cases (see **Figure 13**).

The Group examined the estimated selectivities at age for the various indices (**Figure 14**) and concluded that they seemed reasonable, given the size composition of the catches for the corresponding fleets.

The overall results of the model fit are given in **Table 10** and **Appendix 6**. In terms of stock size, the estimated recruitment (age 0) trend is rather constant at slightly above one million fish per year, and the trend for ages 2 to 8 is a declining one (**Figure 15**). The estimated trend in spawning biomass shows an overall decline of 40% between 1985 and 2005, but the level of exploitable biomass is estimated to have varied without a trend (**Figure 16**).

The estimates of fishing mortality (apical values) are shown in **Figure 17**, suggesting that it has varied without a trend during the last decade. The estimated selectivities at age by 5-year time periods are shown in **Figure 18**, suggesting that selectivity has remained relatively constant since 1990.

6.2.3 Comparison of the age-structured results

XSA and VPA-2BOX are different implementations of sequential population analyses. For this Mediterranean swordfish assessment, they were used with the same data and similar, although not identical, assumptions.

The Group compared the results obtained with both methods in terms of recruitment, fishing mortality, and biomass trends, and found them to be very similar (**Figure 19**). Small discrepancies are evident only for older ages (e.g., F at age 9). But, overall, both methods provide a very similar perception of stock status.

6.2.4 Equilibrium yield-per-recruit analyses

The VPA-2Box and XSA results were used as the basis for yield-per-recruit analyses which are a form of longterm projection. The input age-specific vectors are given in **Table 11**. The resulting equilibrium estimates for several biological reference points are given in **Table 12**. These are per-recruit results, scaled to a recruitment level of 1,059,533 age-0 swordfish (the mean 1985-2002 level estimated in the VPA-2box). **Figure 20** shows the equilibrium yield levels obtained for different fishing mortality multipliers of the current selectivity vector.

Bootstraping (1,000 iterations) was used to characterize the uncertainty in the VPA-2BOX assessment of recent status for Mediterranean swordfish. There is a high degree of variability in the estimates of recent status, but all of the bootstrap outcome indicate this stock is both overfished and undergoing overfishing (**Figure 21**).

6.2.5 Summary of age-structured assessment results.

The two age-structured models used in the assessment give very consistent results. During the past 20 years, fishing mortality has fluctuated at high levels, usually doubling the value of natural mortality. The value of natural mortality is sometimes used as a proxy for F_{MSY} in data-poor situations, which would suggest that overfishing has occurred during this time. Both models estimate that spawning biomass has declined between 1985 and 2005 (a decline between 24% and 38%, depending on the model). On the other hand, recruitment has varied (CV \approx 12%) during this time period without a trend.

Results of equilibrium yield-per-recruit analyses that are based on age-structured assessments also indicate that growth overfishing is taking place. Depending on the model used, current (2005) fishing mortality is 1.7 or 2.1 times higher than the value that would maximize yield per-recruit. In the case of the VPA, assuming a constant level of recruitment, a 69% reduction in fishing mortality to the F_{MAX} level would result in a modest (7%) increase in long-term yield and a substantial (more than double) increase in spawning biomass.

In addition, current F is expected to result in a spawning stock biomass per recruit (SPR) at about 8% of the unfished condition, a level which is considered to result in a non-negligible risk of rapid stock decline. Fishing at F_{MAX} given the current selectivity would be expected to result in an SPR of 20%.

Using F_{MAX} as a proxy for F_{MSY} , the Convention's objective, suggests that the Mediterranean swordfish stock is in an overfished condition and that overfishing is taking place (**Figure 22**). Note, however, that these conclusions are based on deterministic analyses of the available data. The level of uncertainty in these estimates has not been evaluated.

6.3 Stock status summary

Two forms of assessment, both with high degree of uncertainty, gave a consistent view of declining stock abundance, but differed in the extent of the decline, in the sense that some models suggested little changes in the last decade. Estimates of population status from production modeling using a longer time-series of catch and effort for which we have less confidence indicated a stock level that was most likely about 10% below that necessary to achieve the ICCAT Convention objective while recent fishing mortality was about 25% above the level that would permit the stock to attain MSY levels. The results of the production model assessment indicate that the fishery underwent a rapid expansion in the 1980s resulting in Fs likely at or above F_{MSY} and a slowly declining stock biomass which has recently most likely fallen below the level which can support MSY. Estimates of stock status from virtual population analysis using a shorter time series of catch and effort data for which we have more confidence, indicated a relatively stable spawning stock level and stable recruitment over the past 20 years, but that level is less than half that necessary to achieve the ICCAT Convention objective and estimates of recent fishing mortality rates from this form of assessment are about twice that which, if continue into the future, is expected to drive the spawning biomass to a very low level (about 8% SPR) within a generation. Those low levels are considered to give rise to non negligible risks of rapid declines in the stock, although no such a signal has yet been observed in the Mediterranean swordfish fisheries.

7. Projections

7.1 Production model projections

The combined production model bootstrap outcomes were projected forward under several different future constant catch scenarios. Catches in years 2006 and 2007 were assumed to have been at the 2005 level (14,600 t) and catches in subsequent years through 2015 were assumed to equal either 10,000, 12,000, 14,300 (the approximate MSY) or 16,000 t. The projections indicate that catches in excess of 12,000 t starting in 2008 are likely to result in future decline in stock status (**Figure 23**).

7.2 VPA scenarios

The VPA-2BOX model bootstrap outcomes were projected forward under several different future constant catch scenarios. Projected recruitment was taken as a random draw from the 1985-2002 time series and the recruitments (and cohort strengths for the corresponding ages) for 2003-2005 year classes were also assumed to be of the same dimension. Catches in years 2006 and 2007 were assumed to have been at the 2005 level (14,600 t) and catches in subsequent years through 2015 were assumed to equal either 10,000, 12,000, 14,300 (the production model approximate MSY) or 16,000 t. The projections indicate that catches in excess of 14,000 t starting in 2008 are likely to result in future decline in stock status (**Figure 24**).

Using the Fisheries Library in R (FLR) framework that was developed in the frames of the European Fisheries Management System (EFIMAS) project (http://www.flr-project.org/), four exploitation scenarios were applied.

The operational model used in all scenarios was based on the estimated (through XSA) stock population at age at the beginning of the year 2000. This was used as a starting population and each projection scenario was simulated 250 times for a period of 20 years by assuming:

- a) Natural mortality equal to 0.2
- b) An empirically estimated Beverton-Holt S/R model. As VPA results has not allowed estimation of model parameters (due to low contrasts), those were estimated empirically (Hilborn & Walters, 1992) assuming that half of the current stock sized will produce about half of the maximum recruitment.

The initial vector of abundance at age and the predicted recruitment from the S/R model, were modelled by assuming normally distributed errors with CVs equal to 15% and 10%, respectively. Thus, the corresponding values were drawn randomly from the assumed distributions.

All scenarios apart from the first one, attempt to examine the effects of global fishery closures during the recruitment period. Recruitment extends from September to February, with its peak from October-January. Such closures have been extensively discussed in the past (Di Natale *et al.*, 2002) and it has been assumed that they will mainly affect the fishing mortality of age 0 fish (up to 71cm of LJFL in the catch-at-age table).

Scenario 1: The current exploitation pattern

It was assumed that Fs at age will be equal to the average values estimated for the 1995-1999 period for the whole of the projection period. Based on YPR, this F level is about twice that which would permit the stock to attain MSY level and in the long-run, the expected spawning stock biomass would be around 50% of B_{MSY} or around 10% of the unfished biomass, which is considered very low and resulting in non-negligible risk of rapid stock decline although such a signal has not yet been observed in the Mediterranean swordfish fisheries.

Results are summarized in **Figure 24**. The scenario indicates a stable production pattern with annual catches being around to 14,000-15,000 t (probability > 50%) of which juveniles equal 5,800-6,200 t. The number of juvenile fish in the catch will mostly vary from 380,000-420,000 fish corresponding to 72-74% of the total catch number. In general, the reported rates for the period 2000-2004 are in the range of the model predicted values.

Scenario 2: A two-month closure during the peak of the recruitment period

As the Mediterranean swordfish spawns from May-July (Rey 1988, Cavalaro *et al.*, 1991, Tserpes *et al.*, 2001), it was assumed that such a closure would reduce fishing mortality of the 0-age fish (those having LJFL < 71cm) in the catch at age matrix) by 50%. Taking into account that throughout the Mediterranean much more fishing pressure is exerted on the stock from late spring to middle autumn (Anon. 2004), it was considered that this closure will reduce global fishing effort by 10%. Assuming that fishing effort is proportional to fishing mortality infers that a similar reduction in fishing mortality is expected for the rest age classes.

Results are summarized in **Figure 25**. The scenario indicates that application of such a closure would initially result to a small decrease of the current production levels, which however will be after 6-7 years stabilized around to 15,800-16,200 t. Juvenile catches will be stabilized to 5,700-6,100 t and their number will be around 370,000-400,000 fish, representing as much as 67-71% of the total catch. This projected F level is about 1.8 times higher than that which would permit the stock to attain MSY level and the expected spawning stock biomass in the long-term would be around 12% of the unfished biomass and about 60% of B_{MSY} .

Scenario 3: A four-month closure during the peak of the recruitment period

It was assumed that such a closure would reduce fishing mortality of the 0-age fish by 90% and the global fishing effort by 20%.

Results are summarized in **Figure 26**. The closure would initially result in a 10-15% decrease of the current production levels, which however will be after 7-8 years stabilized around to 17,000-17,800 t. Juvenile catches will be stabilized to 5,600-6,000 t and their number will be around 350,000-380,000 fish, representing as much as 65-67% of the total catch. This projected F level is about 1.6 times higher than that which would permit the stock to attain MSY level and the expected spawning stock biomass in the long-term would be around 13% of the unfished biomass and about 70% of B_{MSY} .

Scenario 4: Closure for the whole recruitment period

It was assumed that such a closure would practically eliminate fishing mortality of the 0-age fish and reduce the global fishing effort by 40%.

Results are summarized in **Figure 27**. Initially the closure would result in an important decrease (about 40%) of the current production levels. Production will be stabilized after 8-10 years at about 18,500-20,000 t. Similarly, juvenile catches will be stabilized at around 4,800-5,100 t and their number will be around 310,000-330,000 fish, representing as much as 59-63% of the total catch. This projected F level is the outcomes closest to F_{MAX} , which would permit the stock to attain an MSY-proxy level and the expected spawning stock biomass in the long-term would be around 20% of the unfished biomass and about B_{MSY} .

Conclusions

Results indicate that seasonal closures will be beneficial in increasing the catch levels and reducing the volume of juvenile catches in the medium term. As the Group believes that discards included in the catch-at-age table are underestimated, there is a possibility of fishing mortality underestimations of the 0-group. Hence, in reality, seasonal closures might be more beneficial than currently estimated. In addition to the yield considerations reported here, seasonal closures would also be expected to result in a greater economic return for the fishery, since small fish obtain lower prices for fishermen on a per kilogram basis. However, such economic benefits have not yet been quantified.

Results demonstrated that the longer the closure, the more beneficial it will be in the long-term (**Figure 28**), although production decreases are always expected in the short term. Such decreases are most important in the case of Scenario 4, which is the closest to reducing F to F_{MAX} . The positive effects of Scenario 2 may be smaller than currently estimated especially if the two-month closure is applied in months of low fishing activity (December-January) resulting in lower mortality reductions than currently assumed.

7.3 Summary of projections

The assessment of Mediterranean swordfish indicates the stock is below the level which can support MSY and that current fishing mortality exceeds F_{MSY} . The degree to which biomass is below B_{MSY} and F is above F_{MSY} differs between assessment models. In any case, fishing mortality (and near-term catches) needs to be reduced to move the stock toward the Convention objective of biomass levels which could support MSY and away from levels which are considered to result in a non-negligible risk of rapid stock decline. While one modeling approach indicates the current stock status is only about 12% below B_{MSY} , it also indicates that future catches in excess of 12,000 t will not result in improvement in stock status. In contrast, the modeling approach that provides a more pessimistic view of current status, indicates future catches that allow rebuilding are somewhat higher, up to about 14,000 t, assuming that the current high selectivity for juvenile fish continues and recruitment does not improve.

Seasonal closure projections that assume no compensation in effort, no interaction with other management actions in place and an improvement in recruitment with increasing spawning stock biomass (SSB), are forecast to be beneficial in moving the stock condition closer to the Convention objective, resulting in increased catch levels in the medium term, and reductions in the volume of juvenile catches. Seasonal closures, however, especially the longer ones, would result in significant catch reductions within the first few years after their application. A six-month (September through February) closure of the Mediterranean to swordfish fishing is projected to permit the stock to rebuild to about MSY levels within a generation (about 7 years) and could result in sustainable catches on the order of 18,500 t if recruitment improves with gains in SSB. A four-month closure (October-January) projects some improvement in SSB, to about 65% of B_{MSY} within a generation and could result in sustainable catches on the order of 18,500 t if recruitment improves with gains in SSB. A two-month closure (October-November) projects a much smaller gain in SSB to about 50% of B_{MSY} and a catch level near the average of the past 20 years, if recruitment does not decline. These effects would be diminished, especially if closure is applied in months of low fishing activity (December-January). Results of the seasonal closure projections are summarized in **Figure 29**.

8. Recommendations

8.1 Statistics and research

Data submission. Data must be reported by the ICCAT deadlines, even when no analytical stock assessment is scheduled. Historical catch, effort and CPUE data, if revised or when requested by the Secretariat, should also be provided, if possible. If the catch and size data are provided to the Secretariat by the specified deadlines, then the Secretariat will provide the catch-at-size and the adopted substitution table to the relevant scientists for review in advance of the meeting. This will then allow the stock assessment session to proceed immediately with analyses, without the delay associated with recalculating the catch-at-size during the meeting due the late submission of new data on the first day of the meeting. This continuing problem caused difficulty for the current assessment, requiring the Group to make assumptions such as the carry-forward of catch from one year to the next or substitutions for Task II data for those countries that did not report as required.

- Participation by ICCAT Contracting Parties in the assessment Group. The Group noted that several Contracting Parties, in spite of having significant swordfish fisheries, did not send national scientists to the 2007 assessment. This has obvious negative consequences for the Group's ability to accurately interpret fisheries trends, and provide better advice to the Commission.
- Sampling schemes. The Group noted that the COPEMED Program, which has greatly improved the collection of data on statistics and biology, has ended and new national and international initiatives are needed. There remain several areas for improvement in provision of basic catch and effort data and size samples. The Group noted the improvements in the data obtained in several countries, due to the new EC data collection regulations.
- Catch. All countries catching swordfish (directed or by-catch) should report catch, catch-at-size (by sex) and effort statistics by as small an area as possible (5-degree rectangles for longline, and 1-degree rectangles for other gears), and by month. It is recommended that at least the order of magnitude of unreported catches be estimated. The Group noted that it is important to collect size data together with the catch and effort data to provide meaningful CPUEs. After comparing the ICCAT Task I and FAO FIGIS data, the Group decided to adopt the higher catch figures held in the FIGIS database for years prior to 1968 and recommended that the ICCAT and FAO datasets be harmonized for the period 1950-1967 as they already are for later periods and other species.
- *Discards*. Participating countries improve their estimates of discards of juvenile swordfish, when applicable, and submit such information to the ICCAT Secretariat.
- *CPUE.* CPUE series should be developed to take into account the geographic stratification of the catch by gear and month using standard measures of effort for each gear (*e.g.*, number of hooks for longline, length of nets for gillnet), on as fine a scale as possible (5-degree rectangles for longline, and 1-degree rectangles for other gears). Although CPUE by age is the usual input for the age-structured analyses, the Group recognized that this must be based on an increased level of sampling, not merely substitution of the current data. Therefore, it is recommended that increased sampling take place so that CPUEs can be developed by age. To achieve this goal, the Group noted that it is important to collect size data together with the catch and effort data to provide meaningful CPUEs.
- *Environment.* The Group recommended continued work to better identify the effects of the environment on swordfish biology, ecology and fisheries. Future CPUE analyses should focus on developing additional methods to explicitly incorporate environmental variability into the model, and the influence of environment on the distribution of spawners and juveniles.
- Age determination. The Group noted new research that indicated estimates of age at length from direct
 ageing studies vary within the Mediterranean on a geographic basis. To avoid the possibility that such
 variation results from differences in age determination methods, national scientists were encouraged to
 exchange spine sections and share age determination methodology.
- *Gear selectivity studies.* Further research on gear design and use is encouraged in order to minimize catch of age-0 swordfish and increase yield and spawning biomass per recruit from this fishery.
- *Stock mixing and management boundaries.* As noted in the 2006 Swordfish Stock Structure workshop, further research including tagging investigations in defining the extent of mixing near stock boundaries such as the one between the Mediterranean and Atlantic stocks would be useful, and potentially improve the assessment of both stocks.
- Next Mediterranean swordfish stock assessment. It is recommended that the next swordfish stock assessment be conducted no sooner than 2010 so long as there is no signal from the stock indicating a dramatic decline. This allows time to increase the time series of catch and effort data, and to advance basic research and assessment methods. It should be noted that the data required for that session should be up to and including the year prior to the meeting.

8.2 Management

The Commission should adopt a Mediterranean swordfish fishery management plan with the goal of rebuilding the stock to levels that are consistent with the ICCAT Convention objective. One technical measure the

Committee has thus far evaluated is fishing closures which could initiate rebuilding, depending on their duration and timing. The Committee recommends the Commission consider adoption of such measures which will move the stock condition to the level which will support MSY.

Following the results from recent studies (SCRS/2006/163), technical modifications of the longline fishing gears as well as the way they are operated can be considered as an additional technical measure in order to reduce the catch of juveniles. The Committee recommends this type of measures be considered as part of a Mediterranean swordfish management plan.

It is evident from the stock status evaluation that the current capacity in the Mediterranean swordfish fishery exceeds that needed to efficiently extract MSY. Management measures aimed at reducing this capacity should also be considered part of a Mediterranean swordfish management plan adopted by the Commission.

9. Other matters

The Group drafted the Executive Summary in preparation for the 2007 SCRS Swordfish Species Group.

10. Report adoption and closure

The report was adopted and the meeting was closed. **References**

- ANON, 1996. Report of the Second Meeting of the ad hoc GFCM/ICCAT Working Group on Stocks of Large Pelagic Fishes in the Mediterranean Sea - Mediterranean Swordfish Data Preparatory Meeting (Bari, Italy, September 13 to 19, 1995). Collect. Vol. Sci. Pap. ICCAT, 45(1): 1-97.
- ANON. 2004. 2003 ICCAT Mediterranean Swordfish Stock Assessment Session (Madrid, Spain, 26-29 May 2003) Collect. Vol. Sci. Pap. ICCAT, 56(3): 789-837.
- CAVALLARO, G., A. Potoschi and C. Cefali. 1991. Fertility gonad-somatic index and catches of eggs and larvae of *Xiphias gladius* L. 1758 in the southern Tyrrhenian Sea. Collect. Vol. Sci. Pap. 35(2): 502-507.
- DI NATALE, A., J.M. de La Serna, G. De Metrio, V. Restrepo, A. Srour and G. Tserpes. 2002. On the reduction of juvenile swordfish catches in the Mediterranean. ICCAT Collect. Vol. Sci. Pap. 54(5): 1529-1533.
- HILBORN, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570p.
- KELL, L.T., L. Mosqueira, P. Grosjean, J.-M. Fromentin, D. Garcia, R. Hillary, E. Jardim, S. Mardle, M.A. Pastoors, J.J. Poos, F. Scott, R.D. Scott. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640–646.
- REY, J.C. 1988. Comentarios sobre las areas de reproduccion del pez espada (*Xiphias gladius*) en el Atlantico y Mediterraneo. Collect. Vol. Sci. Pap. 27: 180-192.
- TSERPES, G., P. Peristeraki S. and Somarakis. 2001. On the reproduction of swordfish (*Xiphias gladius* L.) in the eastern Mediterranean. Collect. Vol. Sci. Pap. ICCAT, 52(2): 740-744.

SESSION D'ÉVALUATION DU STOCK D'ESPADON DE LA MÉDITERRANÉE 2007 DE L'ICCAT

(Madrid, Espagne, 3 – 7 septembre 2007)

1. Ouverture, adoption de l'ordre du jour et organisation des sessions

La réunion s'est tenue aux bureaux du Secrétariat de l'ICCAT à Madrid. Le Dr George Tserpes, Président de la réunion, a ouvert la réunion. M. Driss Meski, Secrétaire exécutif, et a souhaité la bienvenue aux participants ("le Groupe").

L'Ordre du jour (**Appendice 1**) a été adopté avec quelques changements. Le Groupe a constaté le faible nombre de participants et a regretté l'absence de participants de pays qui prennent traditionnellement part à la pêche d'espadon. La liste des participants est jointe à l'**Appendice 2** et la liste des documents présentés à la réunion est jointe à l'**Appendice 3**. Les personnes suivantes ont assumé la tâche de rapporteur :

Points de l'ordre du jour	Rapporteurs
1, 9 et 10	P. Pallarés
2	J.M ^a . Ortiz de Urbina
3	A. Di Natale
4	P. Kebe et G. Tserpes
5	P. Peristeraki
6	G. Tserpes
7	G. Tserpes et V. Restrepo
8	J. Neilson

2. Description des pêcheries

La pêche méditerranéenne d'espadon se distingue par son taux élevé de capture. Il convient de noter que la prise annuelle moyenne déclarée (environ 15.177 t en moyenne de 1984 à 2005, **Tableau 1**) est similaire à celle de l'Atlantique Nord. La Méditerranée est un plan d'eau bien moins étendu que l'Atlantique Nord. Il est toutefois probable que la zone de reproduction potentielle dans la Méditerranée soit relativement plus vaste que dans l'Atlantique. On estime, par ailleurs, que la productivité en Méditerranée est très élevée.

La pêche d'espadon est pratiquée en Méditerranée à l'aide de harpons et de filets dérivants (filets maillants dérivants) au moins depuis l'époque romaine. Actuellement, la pêche d'espadon se déroule dans toute la Méditerranée. Les principaux producteurs d'espadon en Méditerranée ces dernières années (1997-2005) ont été CE-Italie (44%), le Maroc (23%), CE-Grèce (10%), et CE-Espagne (9%). En outre, l'Algérie, CE-Chypre, CE-Malte, la Tunisie et la Turquie comptent des pêcheries ciblant l'espadon en Méditerranée. Des prises accessoires d'espadon ont également été déclarées par l'Albanie, la Croatie, CE-France, le Japon, la Libye et CE-Portugal. Le Groupe a admis qu'il est possible que d'autres flottilles pêchent également l'espadon en Méditerranée (Israël, le Liban, l'Egypte et Monaco, par exemple) mais les données ne sont pas déclarées à l'ICCAT ni à la FAO. En outre, un document présenté à la réunion (SCRS/2007/115, par Orsi Relini *et al.*) fournit des informations sur l'activité d'une flottille française opérant au filet maillant dans la mer de Ligure, ainsi qu'à l'intérieur du sanctuaire de mammifères marins « Pelagos ». Selon ce rapport, le nombre total d'embarcations opérant au filet dérivant n'a cessé de croître, passant de 46 navires en 2000 à plus de 100 embarcations en 2006, dans la zone étudiée et l'on signale que ces navires capturent également de l'espadon. Le SCRS a souligné que les prises de cette flottille n'ont jamais été déclarées à l'ICCAT.

Les débarquements totaux méditerranéens d'espadon ont montré une tendance croissante entre 1965 et 1972, se sont stabilisés en 1973-1977, puis ont repris leur marche ascendante vers un maximum en 1988 (20.365 t ; **Tableau 1, Figure 1**). La brusque hausse qui s'est produite entre 1983 et 1988 peut être attribuée en partie à l'amélioration des systèmes nationaux de collecte des statistiques de capture. Depuis 1988, les débarquements déclarés d'espadon en Méditerranée ont diminué, et depuis 1990, ils ont oscillé entre environ 12.000 et 16.000 t. En 2005, les prises totalisaient 14.601 t.

Dernièrement, les principaux engins de pêche utilisés sont la palangre de surface (56% de la prise totale) et le filet maillant. La plupart des pays susmentionnés opèrent des pêcheries palangrières, et, en 2005, les pêcheries de filet dérivant déclarées se limitaient surtout au Maroc. On pense que d'autres pays pêchent également à l'aide de filets dérivants mais ne déclarent pas leurs captures. L'espadon est également capturé au harpon et à la

madrague, mais les madragues ne servent pas à cibler l'espadon. Il convient de noter que depuis le début de l'année 2002, la pêche au filet dérivant est interdite dans les pays de l'Union européenne, ce qui influencera les données de capture à partir de 2002.

La demande du marché en espadon frais est élevée dans la plupart des pays méditerranéens.

Une description des pêcheries des pays ayant assisté à la réunion (voir la **Figure 2** pour toute référence à des endroits précis mentionnés ci-dessous) est présentée ci-dessous. Le Rapport détaillé de 2003 fournit des informations supplémentaires sur les pêcheries des pays qui n'ont pas assisté à la réunion.

CE- Grèce

Les flottilles grecques pêchant l'espadon utilisent exclusivement les palangres dérivantes et opèrent dans l'ensemble du bassin méditerranéen oriental. Environ 250 navires prenaient part à la pêche de l'espadon en 2006. La plupart d'entre eux s'adonnaient à la pêche de manière occasionnelle, principalement pendant les mois d'été.

La saison de pêche de l'espadon s'étend de février à la fin septembre, étant donné qu'une fermeture saisonnière est en place dans les mers grecques d'octobre à janvier en vue de la protection des juvéniles.

L'espadon est la principale espèce des prises de grands pélagiques dans les mers grecques et sa production au cours de la saison de pêche 2006 a été estimée à hauteur de 1.375 t. La production grecque d'espadon est plutôt stable ces dix dernières années.

CE-Italie

La pêcherie italienne d'espadon a une longue tradition historique. Les prises récentes totalisent généralement 6.000-7.000 t par an, avec une légère variabilité d'une année sur l'autre, en fonction de divers facteurs. La pêcherie palangrière est la plus importante, en termes de navires, car elle compte environ 1.200 bateaux de 7 à 30 mètres de long ; elle est actuellement exploitée de la fin février à décembre, dans de nombreuses zones de la Méditerranée. Les principaux changements dans les stratégies de pêche sont apparus ces dix dernières années : en effet, l'intensification de la pêche palangrière de thonidés au printemps a impliqué une diminution parallèle de la pêche palangrière ciblant l'espadon. Ce phénomène a changé à nouveau à partir de 2006, la pêche d'espadon prenant plus d'ampleur en raison des différentes conditions affectant la pêcherie de thon rouge. Au cours de ces deux dernières années, quelques navires ont commencé à réaliser des essais de pêche au moyen de la palangre de très grande profondeur au sud de la mer Tyrrhénienne, mais on ne dispose pas encore d'informations sur cette activité. Les prises les plus élevées sont le fait de la pêche palangrière ciblant l'espadon mais de petites quantités sont aussi enregistrées par la pêche palangrière de thonidés capturant l'espadon en tant que prise accessoire. La pêche au filet dérivant était, auparavant, la principale pêcherie d'espadon. Cependant, conformément à la réglementation de la CE, elle est interdite depuis janvier 2002. Les récentes captures proviennent désormais de filets non classifiés. La pêche traditionnelle au harpon qui se déroule dans le Détroit de Messine enregistre de très faibles quantités d'espadon, et des captures encore plus faibles sont déclarées pour les madragues.

L'ancienne législation de la CE relative à la taille minimale pour l'espadon de la Méditerranée (120 cm LJFL) a été annulée en 2000 et l'ancienne mesure déjà existante dans la réglementation italienne (140 cm UJFL) est de nouveau entrée en vigueur.

CE-Espagne

La pêcherie espagnole d'espadon en Méditerranée remonte au début du $XX^{\text{ème}}$ siècle. Elle a commencé son expansion dans les années 1960-1970 et s'est ensuite stabilisée à partir des années 80 (SCRS/2003/042). La palangre de surface est le principal mode de pêche. L'espadon est capturé parfois à la palangre semi-pélagique (*piedri-bola*) et en tant que prise accessoire par la pêche palangrière ciblant le thon rouge et le germon.

La pêcherie espagnole d'espadon en Méditerranée se distingue par l'hétérogénéité de sa flottille, de la composition des engins et des changements de stratégie de pêche. La flottille, qui peut compter jusqu'à 145 unités, a évolué et présente actuellement les caractéristiques moyennes suivantes : 16 m de longueur hors-tout, 166 CV de puissance motrice et 28 TJB. En outre, l'engin de palangre traditionnel est remplacé par la palangre de style américain, qui est utilisée par environ 29% des navires. La zone de pêche s'étend de la Péninsule Ibérique jusqu'à 06° E et la limite des eaux territoriales du Maroc et de l'Algérie. La principale activité a lieu durant les mois d'été et d'automne.

En 2006, les prises d'espadon ont atteint 1.592 t, dont 1.190 t ont été capturées à la palangre de surface, ce qui est similaire au niveau de capture correspondant à la période 2000-2002. Les palangres de style américain ont entraîné une hausse du poids moyen des captures. L'effort de pêche a été stable ces dernières années.

La pêche d'espadon à la palangre de surface en Méditerranée est soumise à la Réglementation du 27 juillet 2006 (APA/2521/2006), laquelle réglemente les caractéristiques techniques des engins et la taille minimum pour la capture (90 cm LJFL), entre autres.

Maroc

La pêcherie marocaine d'espadon opère en Méditerranée depuis 1983. Environ 320 navires prennent actuellement part à cette pêcherie, et utilisent essentiellement le filet dérivant et la palangre de surface (SCRS/2006/125). Les navires ont, en moyenne, une longueur hors-tout de 13 m, 13 TJB et une puissance motrice de 110 CV.

Les principales zones de pêche sont situées dans le Détroit de Gibraltar et le sud de la mer d'Alboran. La première zone demeure la plus importante en termes de taille de la flottille ciblant l'espadon. Dans le Détroit de Gibraltar, la pêche de l'espadon a lieu pendant toute l'année, la plus forte activité se produisant entre avril et octobre. Au sud de la mer d'Alboran, la pêche a lieu pratiquement pendant toute l'année. Des prises plus faibles d'espadon sont également effectuées occasionnellement par les madragues et les senneurs.

Après les débarquements record de 4.900 t enregistrés en 1997, les prises d'espadon ont chuté pour se stabiliser autour de 3.000 t. En 2005, les prises ont diminué d'environ 22% par rapport à l'année antérieure. Les principaux changements survenus dans cette pêcherie au cours des cinq dernières années sont la réduction considérable des prises au filet dérivant et l'augmentation des captures palangrières dues à la mise en œuvre du Plan national aux fins de l'interdiction des activités de pêche au filet dérivant, faisant suite à la résolution de l'ICCAT relative à l'interdiction du filet dérivant en mer Méditerranée.

Les prises accessoires de cette pêcherie comprennent essentiellement des thonidés mineurs, des requins, des istiophoridés et du thon rouge.

La taille des espadons débarqués varie selon la zone de pêche. Dans le détroit de Gibraltar, la taille moyenne de l'espadon est d'environ 145 cm. En mer d'Alboran, les poissons ont une taille moyenne plus réduite (106 cm) (SCRS/2003/053).

Au Maroc, la réglementation de la pêche à l'espadon concerne : la fixation d'une taille commerciale minimale de 120 cm (25 kg) (Arrêté n°1154-88 du 3 octobre 1988) ; la fixation de la longueur maximale des filets dérivants à 2,5 km ; l'interdiction du maillage inférieur à 400 mm (Circulaire n°1232 du 11 mars 1991) ; le gel de l'effort de pêche par la suspension des investissements en matière de construction navale depuis 1992 (Note circulaire 3887 du 18 août 1992).

3. Données biologiques

Selon l'information disponible (Anon. 1996), seuls quelques espadons en Méditerranée ont dépassé 200 kg ces dernières années. Plusieurs pêcheries ont récemment déclaré un pourcentage légèrement plus élevé de grands espadons. La prise méditerranéenne se compose, pour la plupart, de poissons de moins de 3 ans et la taille moyenne est bien inférieure à celle de l'Atlantique. La pêcherie est vulnérable aux changements du recrutement car elle se base essentiellement sur des classes annuelles de 2-3 ans.

Des études de croissance portant sur l'espadon de la Méditerranée, réalisées par plusieurs équipes, et utilisant des épines de la nageoire anale et des données de fréquence de taille, montrent toutes un mode de croissance similaire. On sait également que l'espadon de la Méditerranée a un dimorphisme sexuel de la croissance : les mâles ont une taille par âge inférieure et ils atteignent une longueur asymptote inférieure à celle des femelles. Les équations de croissance adoptées par le Groupe de travail CGPM/ICCAT en 1995, publiées par Tserpes et Tsimenides (1995), sont toujours utilisées comme suit :

$$\begin{split} L_{inf} &= 238,60 \; (1-e^{-0.185\;(t\,+\,1.404)}\;) \; \text{pour les deux sexes combinés} \\ L_{inf} &= 203,08\; (1-e^{-0.241\;(t\,+\,1.205)}\;) \; \text{pour les mâles} \\ L_{inf} &= 226,53\; (1-e^{-0.210\;(t\,+\,1.165)}\;) \; \text{pour les femelles}. \end{split}$$

Un document très récent (SCRS/2007/117, de Valeiras *et al.*) fait état de différents taux de croissance de l'espadon présent à l'ouest de la Méditerranée. Ce document fournissait des équations de croissance par sexe, basées sur la lecture des épines anales. Il est important de noter que l'échantillonnage a été réalisé dans une zone où les échanges entre le stock Atlantique et le stock Méditerranéen sont possibles. Selon ce document, le taux de croissance est plus faible que lors d'études antérieures, notamment pour les jeunes âges. Le SCRS estime qu'il conviendrait d'étudier plus avant la situation sur cette zone cruciale de la Méditerranée, étant donné qu'elle est importante pour comprendre les échanges entre les deux stocks.

La ponte a généralement lieu au printemps et en été, avec des pics en juin et en juillet mais les variations temporelles peuvent être dues à diverses influences environnementales et océanographiques. Les principales zones de ponte de la Méditerranée se trouvent, selon les connaissances actuelles, autour des îles Baléares, dans le centre et au sud de la mer Tyrrhénienne, la Mer Ionienne et le Détroit de Messine. Tout porte à croire que des zones de frai existent aussi à l'est de la Méditerranée. Les juvéniles sont présents dans toute la Méditerranée mais ont souvent tendance à se concentrer près de la côte, surtout en automne.

Une étude portant sur les informations biologiques disponibles pour l'espadon de la Méditerranée (SCRS/2001/050) signale d'importantes différences avec le stock de l'Atlantique. On a observé des femelles matures de 110 cm LJFL et la taille à laquelle 50% de la population femelle devient mature est estimée à 142 cm (SCRS/95/045). Selon les courbes de croissance utilisées, par le passé, par le SCRS pour l'espadon de la Méditerranée, ces deux tailles correspondent à des poissons de 2 et 3,5 ans, respectivement. A 125 cm, environ 20% des femelles de la Méditerranée deviendraient matures. Les mâles atteignent la maturité sexuelle à des tailles inférieures.

Le Tableau 2 récapitule les informations biologiques disponibles pour l'espadon de la Méditerranée.

Facteurs environnementaux

Il est bien connu que les prises d'espadon sont fortement affectées par des facteurs environnementaux courants : elles sont ainsi surtout affectées par la présence d'une thermocline stable à la fin du printemps et en été. En fait, toutes les prises au filet dérivant sont réalisées juste au-dessus de la thermocline, là où le frai se produit. Les prises d'espadon sont également affectées par les phases lunaires. Lors de la pleine lune, la palangre traditionnelle enregistre les captures les plus importantes, alors que les captures les moins élevées sont obtenues par la pêche au filet dérivant (SCRS/94/86, SCRS/91/65). Les zones se caractérisant par de fortes turbulences semblent aussi importantes pour l'espadon : la mer Tyrrhénienne et la mer d'Alboran enregistrent les captures les plus élevées.

Un document présenté à cette réunion (SCRS/2007/115 par Orsi Relini *et al.*) fournit une étude sur la corrélation entre l'Oscillation de l'Atlantique Nord d'hiver (NAO) et la série de CPUE palangrière dans la mer de Ligure au cours de la période 1990-2006. Selon cette étude, une corrélation inversement liée a été détectée, même si d'autres facteurs environnementaux pourraient probablement être pris en compte. Cette étude fait également état que le recrutement de l'espadon dans la mer de Ligure ne montre aucune corrélation avec l'indice NAO d'hiver. Les différences temporelles de SST ont également été rattachées au taux de croissance de l'espadon du groupe 0 à l'est de la Méditerranée (Peristeraki, *et al.*, 2007).

Lors de cette réunion, on a signalé que d'autres éventuelles corrélations pourraient être explorées et étudiées, y compris celles entre la distribution et concentration apparentes de l'espadon et l'indice « Eastern Mediterranean Transient (EMT) », qui semble être un facteur très important à prendre en compte en Méditerranée, capable d'entraîner des changements considérables dans l'environnement pélagique, dans la distribution spatio-temporelle de très nombreuses espèces pélagiques, y compris l'espadon, et, donc, dans la pêcherie.

Il a été recommandé de réaliser davantage de travaux afin de mieux identifier les effets de l'environnement sur la biologie, l'écologie et la pêcherie d'espadon.

4. Données de capture

Deux documents portant sur les données de capture ont été présentés.

Le document SCRS/2007/106 récapitulait les informations sur les données des prises accessoires et des rejets de la pêcherie grecque d'espadon. L'espadon débarqué représente 84% de la prise totale en poids.

Le SCRS/2007/108 décrivait les rejets d'espadon sous-taille dans la pêcherie palangrière grecque d'espadon. Il a été noté qu'entre 15 et 17 t étaient rejetées tous les ans. Après quelques discussions, le Groupe a signalé qu'en général, les pays de la zone méditerranéenne, à l'exception de la Grèce, ne déclaraient pas au Secrétariat les informations sur les rejets.

4.1 Tâche I

Le Secrétariat a présenté, au **Tableau 1**, les données de capture d'espadon méditerranéen déclarées à l'ICCAT au titre des années 1950 à 2006, par pavillon, flottille et engin. Le Groupe a décidé de se concentrer uniquement sur les données allant jusqu'en 2005, étant donné que les informations déclarées en 2006 sont incomplètes. Lors des révisions du tableau des captures, on a constaté l'absence des captures tunisiennes au titre de 2005 et l'absence des captures algériennes au titre de 2003. En outre, le faible niveau d'espadon déclaré par l'Italie au cours de ces dernières années a fortement préoccupé le Groupe. Afin de combler les lacunes dans les séries temporelles des captures, le Groupe a décidé de :

- Reporter la prise tunisienne de 2004 (791 t) à 2005.
- Utiliser les 665 t déclarées dans le Rapport annuel de l'Algérie pour 2003 dans l'évaluation et comme données officieuses dans la base de données de la Tâche I.
- Réajuster les prises italiennes de 1990 (de 5.224 t à 9.104 t), de 1991 (de 4.789 t à 8.538 t) et de 1995 (de 6.725 t à 7.350 t) en suivant l'avis des scientifiques italiens.

En outre, on a comparé les données de la Tâche I de l'ICCAT et les données FIGIS de la FAO qui se sont avérées cohérentes pour la période postérieure à 1967, mais qui ont montré des divergences pour la période courant de 1950 à 1967. Le Groupe a décidé d'adopter les chiffres de capture les plus élevés maintenus dans la base de données FIGIS et a recommandé que les jeux de données de l'ICCAT et de la FAO soient harmonisés pour la période1950-1967, comme ils le sont déjà pour des périodes postérieures et d'autres espèces.

En conséquence, le Secrétariat a actualisé et présenté une nouvelle fois le **Tableau 1** qui a été approuvé par le Groupe.

4.2 Taille et prise par taille

Le catalogue de toutes les données de la Tâche I et de la Tâche II avait été distribué auparavant (avril 2007) à tous les participants potentiels afin d'examiner les lacunes et les insuffisances et soumettre des révisions au Secrétariat. Malheureusement, aucune réponse n'a été reçue. Au cours de la réunion, le même fichier a été actualisé et présenté une nouvelle fois au Groupe. Au début de la réunion, de nouvelles informations de taille de la Tâche II étaient disponibles, par mois, pour la pêcherie marocaine opérant au filet maillant au titre des années 1999-2005 ainsi que pour la pêcherie italienne opérant au filet maillant et à la palangre. Conformément au nouvel échantillon de taille italien disponible par flottille, le Groupe a décidé de ventiler les prises italiennes déclarées par zone afin de les faire coïncider avec les échantillons de taille.

Le Secrétariat a présenté les règles de substitution utilisées (**Tableau 3**) afin de créer la prise par taille en suivant les règles adoptées en 2003 (SCRS/2003/015 et SCRS/2003/050). Les fichiers de prise par taille récapitulés au **Tableau 4** pour les années 1985 à 2005 ont été convertis en prise par âge (**Tableau 5**) en appliquant la même procédure de découpage utilisée en 2003 et la même équation de croissance (équation Von-Bertalanffy inversée).

5. Indices d'abondance relative

Cinq documents concernant les données de taux de capture ont été présentés.

Le SCRS/2007/118 présentait les taux de capture standardisés actualisés pour l'espadon de la flottille palangrière espagnole en Méditerranée pour les années 1988-2005. Les données incluaient 18.630 observations qui ont été analysées au moyen des techniques GLM. Les effets d'année, zone et trimestre ont été examinés, et tous les facteurs (y compris les interactions) étaient considérables. Les CPUE annuelles standardisées ont chuté rapidement de 1988 à 1992 et plus progressivement jusqu'en 1999. Elle est demeurée stable par la suite.

Le SCRS/2007/107 présentait les taux de capture standardisés annuels des flottilles italiennes et grecques qui opéraient dans le centre-est de la Méditerranée. L'analyse incluait les données des pêcheries palangrières grecques opérant à l'est de la Méditerranée et des pêcheries palangrières siciliennes opérant en mer Tyrrhénienne

et dans le Détroit de Sicile, pour les années 1987-2005. Les indices ont été estimés au moyen des techniques GLM et les résultats n'ont fait état de la présence d'aucune tendance particulière dans le temps.

Le SCRS/2007/115 a présenté une série temporelle de taux de capture nominaux des flottilles palangrières italiennes ciblant l'espadon qui opéraient dans la mer de Ligure, de 1990 à 2006. Aucune tendance significative n'a été observée pendant la période étudiée. Une relation inverse de la CPUE de l'espadon avec les valeurs de l'indice NAO a également été observée. Le Groupe s'est félicité de recevoir cette contribution portant sur les effets environnementaux sur les taux de capture, domaine où l'état des connaissances a été considéré déficient. Toutefois, le Groupe encourage de nouvelles recherches sur les effets des facteurs environnementaux et océanographiques spécialement rattachés à la mer Méditerranée.

Le SCRS/2007/116 présentait une analyse des taux de capture standardisés de la pêcherie marocaine de filets dérivants opérant en Méditerranée. La CPUE nominale, par mois et navire, de 1998 à 2006, a été analysée à l'aide des techniques GLM. Les taux de capture standardisés n'ont dégagé aucune tendance au cours des années. On a signalé que des valeurs élevées de CPUE avaient été observées par rapport aux autres pêcheries méditerranéennes opérant au filet dérivant, ce qui pourrait être attribué aux caractéristiques spécifiques de la zone exploitée, qui s'étend tout autour du Détroit de Gibraltar.

Le SCRS/2007/119 présentait une description détaillée de la série temporelle de la CPUE nominale italienne (1985-2006) des flottilles du sud de l'Italie opérant au filet maillant et à la palangre. Les CPUE de filets maillants ont dégagé une tendance légèrement à la hausse, tandis que les CPUE palangrières ont dégagé une tendance en baisse modérée. On a estimé que le schéma d'exploitation des flottilles était stable pour les deux dernières décennies.

6. Résultats de l'état des stocks

6.1 Evaluations des modèles de production

6.1.1 ASPIC

Le modèle de production excédentaire en conditions de non-équilibre (ASPIC, version cataloguée 5.16) a été appliqué aux données de prise et d'effort pour l'espadon de la Méditerranée. Les données d'entrée utilisées dans ces analyses ont été présentées au Tableau 6. Afin de mieux informer le modèle, les prises déclarées de 1950 à 2005 ont été utilisées. Les données de la Tâche I de l'ICCAT et les donnés FIGIS de la FAO ont été comparées et se sont avérées cohérentes pour la période postérieure à 1967, mais elles ont montré des divergences pour la période courant de 1950 à 1967. Le Groupe a décidé d'adopter les chiffres de capture les plus élevés maintenus dans la base de données FIGIS et il a recommandé que les jeux de données de l'ICCAT et de FIGIS soient harmonisés pour la période 1950-1967 (ils sont déjà harmonisés pour des périodes postérieures et d'autres espèces). Pour ces analyses, un schéma de CPUE composite a été élaboré comme étant la moyenne pondérée des séries temporelles des taux de capture palangrière italienne (SCRS/2007/107), palangrière grecque (SCRS/2007/107), de filet maillant marocain (SCRS/2007/116), de filet maillant italien (Anon., 2004), palangre espagnole (SCRS/2007/118) et palangre japonaise (Anon., 1996). Il a été noté que les données japonaises se rapportent aux prises accessoires d'espadon réalisées dans la pêcherie palangrière thonière. La pondération a été utilisée dans ce cas, car on craignait que les séries temporelles de certaines flottilles représentent une zone de pêche relativement réduite et/ou de faibles volumes de la prise totale méditerranéenne d'espadon. Dans ce cas, une pondération de 4 a été assignée aux indices italiens et marocains, une pondération de 2 aux séries temporelles grecques et espagnoles, et une pondération de 1 aux séries temporelles japonaises. Le schéma de CPUE résultant est illustré à la **Figure 3**.

Le modèle de production a d'abord été ajusté à la prise et à l'effort pour la période 1968-2005 (reflétant l'évaluation de 2003). Dans ce cas, les données ne contenaient pas assez d'informations pour permettre d'estimer librement tous les paramètres du modèle. La convergence du modèle a pu être réalisée en fixant le ratio de la biomasse initiale, mais le Groupe a estimé qu'il n'était pas correct de postuler que la biomasse se trouvait à un niveau de non-exploitation (K) en 1968, compte tenu des prises déclarées depuis 1950. Le Groupe a décidé de fixer B₁₉₆₈ à 75K pour ce passage comme meilleure représentation de la situation à cette époque. Afin d'informer le modèle et éventuellement d'améliorer les estimations de la productivité du stock et de l'état actuel, les données de 1950 à 2005 ont alors été ajustées. Dans ce cas, il a été possible d'estimer librement tous les paramètres du modèle, bien que, ce faisant, la dynamique du stock modélisé avant le milieu des années 1980 était inattendue, dégageant une accumulation de la biomasse à partir de niveaux très faibles au début des années

1950. Par conséquent, le Groupe a décidé de réaliser également un passage postulant que le stock se trouvait à un niveau de non-exploitation en 1950 même si on sait que des captures ont été effectuées avant cette date. D'un modèle à l'autre (*cf.* **Figure 4** et **Appendice 4** pour obtenir des informations détaillées à l'appui des ajustements du modèle), les estimations de l'état de la population au cours de l'année la plus récente ont indiqué que le stock se trouvait au niveau ou légèrement en deçà du niveau de l'objectif de la Convention ICCAT, tandis que la récente mortalité par pêche était quelque peu en-dessus du niveau qui permettrait au stock d'atteindre le niveau qui lui permettrait de parvenir à l'objectif de la Convention (niveaux de la PME). Même si ces résultats, fondés sur le système itératif de type « bootstrap », sont entourés d'une grande incertitude (**Figure 5**), le poids des preuves appuie ces conclusions (**Tableau 7**). Les résultats médians des sorties du modèle (**Figures 6a, b**) indiquent que la pêcherie a connu une expansion rapide dans les années 1980, ce qui a conduit F à se trouver vraisemblablement à F_{PME} ou en-dessus, et que le stock qui est en lente diminution a probablement récemment chuté en-deçà du niveau qui peut permettre la PME à long terme (**Figures 7a, b**).

6.1.2 Méthode de Tserpes et Mc Allister (TSM)

Un modèle de production en conditions de non-équilibre a été appliqué en se basant sur l'approche suivie dans le document SCRS/2007/109. Le modèle utilisait les données de la prise totales de la période 1987-2005 et une série de CPUE combinée, les mêmes données que celles utilisées dans ASPIC. Les estimations XSA de la F moyenne ont été utilisées pour estimer le taux de capture au début de la période étudiée et, par conséquent, la fraction de biomasse initiale

Sur la base de l'évaluation XSA de l'ICCAT, les valeurs de F et M du début de la période ont été établies à 0,42 et 0,20 respectivement. Le meilleur ajustement a été fourni pour r = 0,67 et k=90547 t. Les indices observés et prévus sont présentés à la **Figure 8**. En se fondant sur les estimations ci-dessus, la PME en conditions d'équilibre s'est avérée être 15.166 t. Les taux correspondants de mortalité par pêche et de biomasse sont : $F_{msy} = \frac{r}{2} = 0.33$ et $B_{msy} = \frac{k}{2} = 45273$ t. Les prises annuelles des dernières années se situent autour de la PME, alors que les niveaux de biomasse du stock sont stables mais inférieurs de près de 12% à B_{PME} (**Figure 9**).

6.2 Modèles structurés par âge

6.2.1 Evaluation XSA

Le modèle XSA a été appliqué à l'aide du code développé en langage R (*cf.* **Appendice 5**) sous les auspices du projet FLR (Kell *et al.*, 2007 ; http://www.flr-project.org/). Les tableaux de prise par âge incluaient les âges 0 à 10 (groupe plus) et six jeux de données de calibrage étaient disponibles des flottilles suivantes : palangriers italiens–ITLL (SCRS/2007/107), palangriers grecs-GLL (SCRS/2007/107), filets maillants marocains-MODN (SCRS/2007/116), filets maillants italiens-ITDN (SCRS/2003/040), palangriers espagnols-SPLL (SCRS/2007/118) et palangriers japonais-JALL (*cf.* Anon. 1996). Les séries de CPUE de la palangre grecque, italienne et espagnole ont été considérées comme représentatives des abondances du groupe d'âge 2-9, alors que le groupe d'âge 3-9 a été postulé pour les autres. Une maturité totale a été postulée à partir de l'âge 4 et de 50% à l'âge 3. Une maturité nulle a été postulée pour les âges plus jeunes.

Plusieurs passages préliminaires ont été réalisés avec un paramétrage différent et, sur la base des diagnostics de la capturabilité des flottilles, le modèle final a été basé sur des passages postulant q indépendant de la taille de classe annuelle pour tous les âges, sauf pour les âges 0 et 1, q constant après l'âge 6, ainsi qu'une diminution de la population et de F. La mortalité naturelle a été considérée s'élever à 0,2. La **Figure 10** illustre les valeurs résiduelles de capturabilité par flottille et âge. En règle générale, les valeurs résiduelles ne présentent pas de schéma spécifique pour les classes annuelles plus jeunes et plus abondantes, alors qu'elles sont biaisées positivement dans les âges les plus avancés.

Les **Tableaux 8** et **9** présentent les estimations de la mortalité par pêche et du nombre à l'âge de la population, respectivement. Comme dans l'évaluation de 2003, le recrutement semble être cohérent, sans classe annuelle spécialement forte ou faible. Les F moyennes pour les âges 2-5 sont représentées par rapport à l'année à la **Figure 11**.

Les estimations de la biomasse du stock total et de la biomasse du stock reproducteur sont toutes les deux restées stables au cours de ces dix dernières années (Figure 12).

6.2.2 VPA

Le logiciel VPA-2BOX a été utilisé pour réaliser une analyse séquentielle de la population en utilisant les mêmes données d'entrée que celles utilisées dans les analyses XSA. Les postulats suivants ont été réalisés :

- Indices : Une structure d'erreur lognormale a été postulée pour tous les indices. Les sélectivités des indices ont été estimées en utilisant les prises partielles (incluant tous les âges, de 0 à 10+).
- Ratios de F: $F_{10+}/F_9 = 1,0$ dans toutes les années.
- F de la dernière année: Estimées pour les âges 5 et 8. Valeurs postulées : $F_0=0,01*F_5$, $F_1=0,4*F_5$, $F_2=F_5$, $F_3=F5$, $F_4=F_5$, $F_6=F_8$, $F_7=F_8$, $F_9=F_8$.

L'ajustement aux données était médiocre. Les coefficients de variation pour les estimations de F5 et F8 en 2005 étaient 15% et 81% respectivement. Les ajustements aux indices individuels se sont avérés parfois assez médiocres (*cf.* Figure 13).

Le Groupe a examiné les sélectivités par âge estimées pour les divers indices (**Figure 14**) et a conclu qu'elles semblaient raisonnables, compte tenu de la composition par taille des prises des flottilles correspondantes.

Les résultats généraux de l'ajustement au modèle figurent au **Tableau 10** et à l'**Appendice 6**. En termes de taille du stock, la tendance estimée du recrutement (âge 0) est assez constante, se situant légèrement au dessus d'un million de poissons par an, et les âges 2 à 8 dégagent une tendance à la baisse (**Figure 15**). La tendance estimée de la biomasse reproductrice présente un déclin global de 40% entre 1985 et 2005, mais le niveau de biomasse exploitable est estimé avoir varié sans tendance (**Figure 16**).

La **Figure 17** présente les estimations de la mortalité par pêche (valeurs apicales), suggérant qu'elle a varié sans dégager de tendance au cours de ces dix dernières années. Les sélectivités par âge, estimées par période temporelle de 5 ans, sont présentées à la **Figure 18**, suggérant que la sélectivité est restée relativement constante depuis 1990.

6.2.3 Comparaison des résultats structurés par âge

XSA et VPA-2BOX sont différentes applications des analyses séquentielles de la population. Pour cette évaluation de l'espadon de la Méditerranée, elles ont été utilisées avec les mêmes données et avec des postulats similaires mais non identiques.

Le Groupe a comparé les résultats obtenus avec les deux méthodes en termes de recrutement, de mortalité par pêche et de tendances de la biomasse et il a conclu qu'ils étaient très similaires (**Figure 19**). De légères divergences sont évidentes mais uniquement pour les âges les plus avancés (par ex. F à l'âge 9). Dans l'ensemble, toutefois, les deux méthodes fournissent une perception très similaire de l'état du stock.

6.2.4 Analyses de la production par recrue en conditions d'équilibre

Les résultats de VPA-2BOX et XSA ont servi de base pour les analyses de production par recrue qui sont une sorte de projection à long terme. Les vecteurs d'entrée spécifiques de l'âge figurent au **Tableau 11**. Les estimations d'équilibre en résultant pour divers points de référence sont fournies au **Tableau 12**. Il s'agit de résultats par recrue, mis à l'échelle à un niveau de recrutement de 1.059.533 espadons d'âge 0 (le niveau moyen de 1985-2002 estimé dans VPA-2BOX). La **Figure 20** présente les niveaux de production en conditions d'équilibre obtenus pour différents multiplicateurs de mortalité par pêche du vecteur de sélectivité actuel.

Un bootstrap (1.000 itérations) a été utilisé pour caractériser l'incertitude dans l'évaluation de VPA-2BOX de l'état récent du stock d'espadon de la Méditerranée. Il existe un fort degré de variabilité dans l'estimation de cet état récent du stock, mais tous les résultats par bootstrap indiquent que ce stock est à la fois surpêché et fait l'objet de surpêche (**Figure 21**).

6.2.5 Résumé des résultats de l'évaluation structurée par âge

Les deux modèles structurés par âge utilisés dans l'évaluation donnent des résultats très cohérents. Pendant ces 20 dernières années, la mortalité par pêche a fluctué à des niveaux élevés, doublant généralement la valeur de la mortalité naturelle. La valeur de la mortalité naturelle est parfois utilisée comme un indice approchant de F_{PME} dans les situations pauvres en données, ce qui donnerait à penser que de la surpêche a eu lieu à ce moment-là.

Ces deux modèles estiment que la biomasse reproductrice a diminué de 1985 à 2005 (une diminution de 24% à 38%, selon le modèle). Par ailleurs, le recrutement a varié (CV \approx 12%) pendant cette période sans dégager de tendance particulière.

Les résultats des analyses de production par recrue en conditions d'équilibre, qui se basent sur les évaluations structurées par âge, indiquent aussi qu'il y a une augmentation de la surpêche. En fonction du modèle utilisé, la mortalité par pêche actuelle (2005) est de 1,7 ou 2,1 fois plus élevée que la valeur qui optimiserait la production par recrue. Dans le cas de la VPA, en postulant un niveau constant de recrutement, une réduction de 69% de la mortalité par pêche au niveau de F_{MAX} donnerait lieu à une augmentation modeste (7%) de la production à long-terme et à un accroissement substantiel (plus du double) de la biomasse reproductrice.

Il est, en outre, prévu que la F actuelle donne lieu à une biomasse du stock reproducteur par recrue (SPR) de près de 8% de la condition de non-exploitation, niveau considéré comme comportant un risque non négligeable de rapide déclin du stock. Compte tenu de la sélectivité actuelle, il est prévu que la pêche à F_{MAX} engendre une SPR de 20%.

L'utilisation de F_{MAX} en tant qu'indice approchant de F_{PME} , qui est l'objectif de la Convention, suggère que le stock d'espadon de la Méditerranée est surpêché et qu'il existe de la surpêche (**Figure 22**). Il convient de noter, cependant, que ces conclusions se basent sur des analyses déterministes des données disponibles. Le niveau d'incertitude dans les estimations n'a pas été évalué.

6.3 Récapitulatif de l'état du stock

Deux sortes d'évaluation, comportant toutes deux un fort degré d'incertitude, ont donné une vision cohérente du déclin de l'abondance du stock ; elles différaient toutefois quant à l'ampleur de ce déclin, dans la mesure où certains modèles suggéraient peu de changements au cours de ces dix dernières années. Les estimations de l'état de la population, réalisées d'après la modélisation de la production avec une série temporelle de prise et d'effort plus longue et pour laquelle il existe moins de confiance, indiquaient un niveau du stock qui se situait certainement à près de 10% en-dessous du niveau nécessaire pour atteindre l'objectif de la Convention ICCAT alors que la mortalité par pêche récente se situait à près de 25% au-dessus du niveau qui permettrait au stock d'atteindre les niveaux correspondant à la PME. Les résultats de l'évaluation du modèle de production indiquent que la pêcherie a fait l'objet d'une rapide expansion dans les années 1980, avec pour corollaire une F se situant probablement au niveau de F_{PME} , ou au-delà, et un lent déclin de la biomasse du stock qui a certainement chuté récemment en-dessous du niveau correspondant à la PME. Les estimations de l'état du stock, réalisées d'après l'analyse virtuelle de la population avec une série de prise et d'effort plus courte et pour laquelle il existe plus de confiance, ont indiqué un niveau du stock reproducteur relativement stable ainsi qu'un recrutement stable pendant ces 20 dernières années. Ce niveau est toutefois moins de la moitié du niveau nécessaire pour atteindre l'objectif de la Convention ICCAT et les estimations des récents taux de mortalité par pêche d'après ce type d'évaluation sont à peu près le double de ce qui est prévu conduire la biomasse reproductrice à un niveau très faible (environ 8% SPR) dans une génération, si la situation actuelle se poursuit à l'avenir. Ces faibles niveaux sont considérés comme comportant des risques non négligeables de rapide déclin du stock, bien qu'un signe de ce type n'ait pas encore été observé dans les pêcheries d'espadon de la Méditerranée.

7. Projections

7.1 Projections du modèle de production

Les résultats combinés par bootstrap des modèles de production ont été projetés dans le cadre de différents scénarios de prises constantes futures. On a postulé que les prises réalisées en 2006 et 2007 se situaient au niveau de 2005 (14.600 t) et que les prises des années suivantes, jusqu'en 2015, totalisaient 10.000 t, 12.000 t, 14.300 t (la PME approximative) ou 16.000 t. Les projections indiquent qu'il y a des chances que les prises dépassant 12.000 t, à partir de 2008, donnent lieu à un futur déclin de l'état du stock (**Figure 23**).

7.2 Scénarios de VPA

Les résultats par bootstrap du modèle VPA-2BOX ont été projetés dans le cadre de différents scénarios de prises constantes futures. Le recrutement projeté résultait d'un calcul aléatoire de la série temporelle 1985-2002 et on a également postulé que les recrutements (et la force des cohortes pour les âges correspondants) pour les classes annuelles de 2003-2005 étaient de la même ampleur. On a postulé que les prises réalisées en 2006 et 2007 se

situaient au niveau de 2005 (14.600 t) et que les prises des années suivantes, jusqu'en 2015, totalisaient 10.000 t, 12.000 t, 14.300 t (la PME approximative du modèle de production) ou 16.000 t. Les projections indiquent qu'il y a des chances que les prises dépassant 14.000 t, à partir de 2008, donnent lieu à un futur déclin de l'état du stock (**Figure 24**).

Quatre scénarios d'exploitation ont été appliqués à l'aide du logiciel *Fisheries Library in R* (FLR) développé dans le cadre du projet de Système européen de gestion des pêches (EFIMAS) (<u>http://www.flr-project.org/</u>).

Le modèle d'opération utilisé dans tous les scénarios se basait sur la population par âge estimée du stock (par XSA) au début de l'année 2000. Elle a été estimée comme population initiale et chaque scénario de projection a été simulé 250 fois pour une période de 20 ans en postulant:

- a. Une mortalité naturelle égale à 0,2
- b. Un modèle S/R de Beverton-Holt empiriquement estimé. Les résultats de la VPA n'ayant pas permis d'estimer de paramètres du modèle (en raison de faibles contrastes), ils ont été estimés empiriquement (Hilborn & Walters, 1992), en postulant que la moitié de la taille actuelle du stock produira près de la moitié du recrutement maximum.

Le vecteur initial d'abondance par âge et le recrutement prévu d'après le modèle S/R ont été modélisés en postulant des erreurs distribuées normalement avec un CV de 15% et 10% respectivement. Par conséquent, les valeurs correspondantes ont été calculées aléatoirement d'après les distributions postulées.

Tous les scénarios, à l'exception du premier, tentent d'examiner les effets de fermetures de la pêche pendant la période de recrutement. Le recrutement s'étend de septembre à février, atteignant son apogée en octobre-janvier. Ces fermetures ont été amplement discutées par le passé (Di Natale *et al.*, 2002) et on a postulé qu'elles affecteraient surtout la mortalité par pêche des poissons d'âge 0 (jusqu'à 71cm de LJFL dans le tableau de la prise par âge).

Scénario 1: Schéma d'exploitation actuel

On a postulé que les F par âge seront égales aux valeurs moyennes estimées pour la période 1995-1999 pour l'ensemble de la période de projection. Sur la base de YPR, ce niveau de F est environ le double de celui qui permettrait au stock d'atteindre le niveau correspondant à la PME et, à long-terme, la biomasse du stock reproducteur prévue se situerait à environ 50% de B_{PME} ou à environ de 10% de la biomasse non-exploitée, niveau considéré comme très faible et comportant un risque non négligeable de rapide déclin du stock, même si un signe de ce type n'a pas encore été observé dans les pêcheries d'espadon de la Méditerranée.

Les résultats sont récapitulés à la **Figure 24**. Ce scénario indique un schéma de production stable avec des prises annuelles totalisant près de 14.000-15.000 t (probabilité > 50%) avec des prises de juvéniles s'élevant à 5.800-6.200 t. Le nombre de poissons juvéniles dans les prises oscillera entre 380.000 et 420.000 poissons, soit 72-74% du nombre de prises totales. Les taux déclarés pour la période 2000-2004 se situent généralement dans la gamme des valeurs prévues du modèle.

Scénario 2: Fermeture de deux mois pendant l'apogée de la période de recrutement

Etant donné que l'espadon de la Méditerranée fraye de mai à juillet (Rey 1988, Cavalaro *et al* 1991, Tserpes *et al* 2001), on a postulé qu'une fermeture de ce type réduirait de 50% la mortalité par pêche des poissons d'âge 0 (ceux ayant une LJFL < 71cm dans la matrice de prise par âge). Une plus forte pression de pêche étant exercée sur le stock de la fin du printemps jusqu'au milieu de l'automne dans toute la Méditerranée (Anon. 2004), on a estimé que cette fermeture réduira l'effort de pêche global de 10%. Si on postule que l'effort de pêche est proportionnel à la mortalité par pêche, on peut en déduire qu'une réduction similaire de la mortalité par pêche est prévue pour le reste des classes annuelles.

Les résultats sont récapitulés à la **Figure 25**. Ce scénario indique que l'application d'une fermeture de ce type donnerait lieu, dans un premier temps, à une légère diminution des niveaux de production actuels, qui se stabiliseraient toutefois après 6-7 ans aux alentours de 15.800-16.200 t. Les prises de juvéniles se stabiliseraient à 5.700-6.100 t et leur nombre totaliserait près de 370.000-400.000 poissons, soit 67-71% de la prise totale. Ce niveau de F projeté est près de 1,8 fois supérieur à celui qui permettrait au stock d'atteindre le niveau

correspondant à la PME et, à long-terme, la biomasse du stock reproducteur prévue se situerait à environ 12% de la biomasse non-exploitée et à environ 60% de B_{PME} .

Scénario 3: Fermeture de quatre mois pendant l'apogée de la période de recrutement

On a postulé qu'une fermeture de ce type réduirait de 90% la mortalité par pêche des poissons d'âge 0 et réduirait de 20% l'effort de pêche global.

Les résultats sont récapitulés à la **Figure 26**. Cette fermeture donnerait lieu, dans un premier temps, à une réduction de 10-15% des niveaux de production actuels, qui se stabiliseraient toutefois après 7-8 ans aux alentours de 17.000-17.800 t. Les prises de juvéniles se stabiliseraient à 5.600-6.000 t et leur nombre totaliserait près de 350.000-380.000 poissons, soit 65-67% de la prise totale. Ce niveau de F projeté est près de 1,6 fois supérieur à celui qui permettrait au stock d'atteindre le niveau correspondant à la PME et, à long-terme, la biomasse du stock reproducteur prévue se situerait à environ 13% de la biomasse non-exploitée et à environ 70% de B_{PME}.

Scénario 4: Fermeture pendant la totalité de la période de recrutement

On a postulé qu'une fermeture de ce type éliminerait pratiquement la mortalité par pêche des poissons d'âge 0 et réduirait l'effort de pêche global de 40%.

Les résultats sont récapitulés à la **Figure 27**. Cette fermeture donnerait lieu, dans un premier temps, à une réduction importante (de l'ordre de 40%) des niveaux de production actuels. La production se stabiliserait après 8-10 ans aux alentours de 18.500-20.000 t. De la même manière, les prises de juvéniles se stabiliseraient à près de 4.800-5.100 t et leur nombre et leur nombre totaliserait près de 310.000-330.000 poissons, soit 59-63% de la prise totale. Ce niveau de F projeté est le résultat le plus proche de F_{MAX} , ce qui permettrait au stock d'atteindre le niveau de l'indice approchant de la PME et, à long-terme, la biomasse du stock reproducteur prévue se situerait à environ 20% de la biomasse non-exploitée et de B_{PME} .

Conclusions

Les résultats indiquent que des fermetures saisonnières seront bénéfiques pour l'accroissement des niveaux de capture et la réduction du volume des prises de juvéniles à moyen terme. Le Groupe estime que les rejets inclus dans le tableau de prise par âge sont sous-estimés, il donc est possible que la mortalité par pêche soit sous-estimée pour le groupe 0 et que les fermetures saisonnières soient, en fait, plus bénéfiques que ce qui est actuellement estimé. En plus des considérations de production communiquées dans ce rapport, les fermetures saisonnières devraient, selon toutes probabilités, avoir des retombées économiques majeures pour la pêcherie, vu que le prix des petits poissons par kilo est moins élevé pour les pêcheurs. Toutefois, ces bénéfices économiques n'ont pas encore été quantifiés.

Les résultats ont démontré que plus la fermeture durait, plus elle était bénéfique à long-terme (**Figure 28**), même si des réductions de la production sont toujours prévues à court-terme. Ces diminutions sont les plus importantes dans le cadre du Scénario 4, qui est celui qui rapproche le plus F de F_{MAX} . Les effets positifs du Scénario 2 pourraient être moins importants que ce qui est estimé actuellement, notamment si la fermeture de deux mois est appliquée pendant des mois de faible activité halieutique (décembre-janvier), entraînant des réductions de la mortalité inférieures à ce qui est actuellement postulé.

7.3 Résumé des projections

L'évaluation de l'espadon de la Méditerranée indique que le stock se situe en dessous du niveau qui pourrait permettre la PME et que la mortalité par pêche actuelle dépasse F_{PME} . La mesure dans laquelle la biomasse se situe en dessous de B_{PME} et F dépasse F_{PME} diffère entre les modèles d'évaluation. En tout état de cause, la mortalité par pêche (et les prises à court terme) doit être réduite afin de rapprocher le stock de l'objectif de la Convention, visant à des niveaux de biomasse qui pourraient permettre la PME, et l'éloigner des niveaux considérés comme comportant un risque non négligeable de rapide déclin du stock. Alors qu'une approche de modélisation indique que l'état du stock actuel n'est que de 12% environ en dessous de B_{PME} , elle indique aussi que de futures prises, de plus de 12.000 t, n'amélioreront pas l'état du stock. En revanche, l'approche de modélisation qui donne une vision plus pessimiste de l'état actuel indique que les prises futures permettant un rétablissement sont un peu plus élevées, de l'ordre de 14.000 t, en postulant que la forte sélectivité actuelle des poissons juvéniles se poursuive et que le recrutement ne s'améliore pas. Selon les prévisions, les projections de fermeture saisonnière qui postulent qu'il n'y aura pas de compensation de l'effort, qu'il n'y aura pas d'interaction avec d'autres mesures de gestion en vigueur et qu'il se produira une amélioration du recrutement avec une augmentation de la biomasse du stock reproducteur (SSB) seront bénéfiques afin de rapprocher l'état du stock de l'objectif de la Convention, donnant lieu à des niveaux de capture accrus à moyen terme et à des réductions du volume des prises de juvéniles. Néanmoins, les fermetures saisonnières, notamment les plus longues, entraîneraient de considérables réductions des captures au cours des premières années suivant leur application. Il est prévu qu'une fermeture de six mois (de septembre à février) de la pêche d'espadon en Méditerranée permette au stock de se rétablir aux niveaux correspondant à la PME, environ, dans une génération (7 ans environ) et engendre des prises soutenables de l'ordre de 18.500 t, si le recrutement s'améliore avec des gains de SSB. Il est prévu qu'une fermeture de quatre mois (d'octobre à janvier) améliore la SSB, de l'ordre de 65% de B_{PME} environ, dans une génération et engendre des prises soutenables de l'ordre de 18.500 t, si le recrutement s'améliore avec des gains de SSB. Il est prévu qu'une fermeture de deux mois (d'octobre à novembre) produise un gain de SSB plus faible, de l'ordre de 50% de B_{PME}, et un niveau de capture proche de la moyenne de ces 20 dernières années, si le recrutement ne diminue pas. Ces effets seraient réduits, notamment si la fermeture est appliquée pendant les mois de faible activité halieutique (de décembre à janvier). La Figure 29 récapitule les résultats des projections de fermeture saisonnière.

8. Recommandations

8.1 Statistiques et recherche

- Soumission de données. Les données doivent être déclarées dans les délais impartis par l'ICCAT, même lorsqu'aucune évaluation analytique du stock n'est prévue. Les données historiques de prise, d'effort et de CPUE doivent, dans la mesure du possible, être également soumises si celles-ci sont révisées ou requises par le Secrétariat. Si les données de prise et de taille sont remises au Secrétariat dans les délais fixés, le Secrétariat fournira aux scientifiques concernés la prise par taille et le tableau de substitution adopté, aux fins d'examen avant la réunion. Cela permettra donc à la session d'évaluation du stock de procéder immédiatement aux analyses, sans le retard associé au nouveau calcul de la prise par taille lors de la réunion, dû à la soumission tardive de données nouvelles le premier jour de la réunion. Ce problème persistant a posé des difficultés pour l'évaluation actuelle, le Groupe ayant été dans l'obligation de formuler des postulats, tels que le report de prises d'une année à l'autre ou des substitutions des données de la Tâche II pour les pays n'ayant pas soumis ces données comme cela était requis.
- Participation des Parties contractantes de l'ICCAT au Groupe de travail d'évaluation. Le Groupe a constaté que plusieurs Parties contractantes, qui disposaient d'importantes pêcheries d'espadon, n'avaient pas envoyé de scientifiques nationaux à l'évaluation de 2007, ce qui a eu d'évidentes répercussions négatives sur la capacité du Groupe à interpréter exactement les tendances des pêcheries et à fournir un meilleur avis à la Commission.
- *Programmes d'échantillonnage.* Le Groupe a fait observer que le Programme COPEMED, programme qui a considérablement amélioré la collecte des données sur les statistiques et la biologie, s'était achevé et que de nouvelles initiatives nationales et internationales sont nécessaires. Plusieurs domaines doivent être améliorés en ce qui concerne les données de base de prise et d'effort et les échantillons de taille. Le Groupe a noté les améliorations des données obtenues dans plusieurs pays en raison des nouvelles réglementations de collecte des données de la CE.
- *Prise.* Tous les pays pêchant l'espadon (pêche dirigée ou prise accessoire) devraient déclarer des statistiques de prise, de prise par taille (par sexe) et d'effort par la plus petite zone possible (rectangles de 5 degrés pour la palangre et rectangles de 1 degré pour les autres engins), ainsi que par mois. Il est recommandé d'estimer, au moins, l'ampleur des prises non déclarées. Le Groupe a indiqué qu'il est important de collecter les données de taille conjointement avec les données de prise et d'effort en vue de fournir des CPUE rationnelles. Après avoir comparé les données de la Tâche I de l'ICCAT et les données de FAO-FIGIS, le Groupe a décidé d'adopter les chiffres de capture les plus élevés inclus dans la base de données fIGIS pour les années antérieures à 1968. Il a aussi recommandé d'harmoniser les jeux de données de l'ICCAT et de la FAO pour la période 1950-1967, comme cela a déjà été réalisé pour des périodes ultérieures et d'autres espèces.

- *Rejets*. Les pays participant devraient améliorer leurs estimations des rejets de juvéniles d'espadon, le cas échéant, et soumettre cette information au Secrétariat de l'ICCAT.
- *CPUE*. Les séries de CPUE devraient être développées afin de tenir compte de la stratification géographique de la prise par engin et par mois à l'aide de mesures standard d'effort pour chaque engin (nombre d'hameçons pour la palangre, longueur des filets pour le filet maillant, par exemple), à une échelle aussi fine que possible (rectangles de 5 degrés pour la palangre et rectangles de 1 degré pour les autres engins). Bien que la CPUE par âge soit la valeur d'entrée habituelle pour les analyses structurées par âge, le Groupe a reconnu qu'elle devait se baser sur un niveau d'échantillonnage plus étendu, et non sur de simples substitutions des données actuelles. Il est donc recommandé de mener un échantillonnage plus exhaustif afin que les CPUE puissent être développées par âge. Le Groupe a indiqué qu'afin d'atteindre cet objectif il était important de collecter des données de taille conjointement avec les données de prise et d'effort à l'effet de fournir des CPUE rationnelles
- Environnement. Le Groupe a recommandé de poursuivre les travaux visant à mieux identifier les effets de l'environnement sur la biologie, l'écologie et les pêcheries d'espadon. Les prochaines analyses de la CPUE devront se centrer sur le développement de nouvelles méthodes tendant à inclure explicitement la variabilité environnementale au modèle et l'influence de l'environnement sur la répartition des géniteurs et des juvéniles.
- Détermination de l'âge. Le Groupe a signalé que de nouveaux programmes de recherche indiquaient que les estimations de prise par âge, réalisées d'après les études de détermination directe de l'âge, variaient en Méditerranée selon la localisation géographique. Pour éviter que cette variation ne résulte de différences dans les méthodes de détermination de l'âge, les scientifiques nationaux ont été encouragés à échanger des sections de rayons épineux et à partager la méthodologie de détermination de l'âge.
- *Etudes de la sélectivité des engins.* De nouvelles recherches portant sur la conception et l'utilisation des engins sont encouragées afin de réduire la prise d'espadon d'âge 0 et d'accroître la production et la biomasse reproductrice par recrue de cette pêcherie.
- *Mélange des stocks et limites de gestion.* Comme cela a été noté au cours de l'Atelier sur la structure du stock d'espadon de 2006, de nouvelles recherches, notamment des prospections de marquage, visant à définir l'ampleur des échanges près des lignes de délimitation des stocks, telles que celle séparant le stock de la Méditerranée et de l'Atlantique, seraient bénéfiques et amélioreraient potentiellement l'évaluation des deux stocks.
- Prochaine évaluation du stock d'espadon de la Méditerranée. Il est recommandé de ne pas réaliser la prochaine évaluation du stock d'espadon avant 2010, dans la mesure où ce stock ne montre pas de signe indiquant un déclin spectaculaire. Cela permettra de disposer du temps nécessaire pour élargir les séries temporelles de prise et d'effort et d'effectuer des progrès dans la recherche de base et les méthodes d'évaluation. Il est à noter que les données requises pour cette session devraient remonter jusqu'à l'année précédant la réunion et l'inclure également.

8.2 Gestion

La Commission devrait adopter un plan de gestion pour la pêcherie d'espadon de la Méditerranée dans le but de rétablir le stock aux niveaux compatibles avec l'objectif fixé dans la Convention de l'ICCAT. Une mesure technique que le Comité a jusqu'à présent envisagée consiste en des fermetures de la pêche, susceptibles d'amorcer le rétablissement, en fonction de leur durée et de l'époque de leur application. Le Comité recommande à la Commission d'envisager l'adoption de ces mesures qui rapprocheront l'état du stock du niveau permettant la PME.

A la suite des résultats de récentes études (SCRS/2006/163), les modifications techniques des engins de pêche à la palangre ainsi que de leur mode d'opération peuvent être considérées comme une mesure technique supplémentaire visant à réduire la prise de juvéniles. Le Comité recommande que le plan de gestion pour l'espadon de la Méditerranée incorpore ce type de mesures.

Il ressort clairement de l'évaluation de l'état du stock que la capacité actuelle de la pêcherie d'espadon de la Méditerranée dépasse la capacité nécessaire pour obtenir efficacement la PME. Le plan de gestion pour l'espadon de la Méditerranée adopté par la Commission devrait également prévoir des mesures de gestion destinées à réduire cette capacité.

9. Autres questions

Le Groupe a rédigé le Résumé exécutif en vue de la Réunion du Groupe d'espèce du SCRS de 2007.

10. Adoption du rapport et clôture

Le rapport a été adopté et la réunion a été levée.

Références

- ANON, 1996. Report of the Second Meeting of the ad hoc GFCM/ICCAT Working Group on Stocks of Large Pelagic Fishes in the Mediterranean Sea - Mediterranean Swordfish Data Preparatory Meeting (Bari, Italy, September 13 to 19, 1995). Collect. Vol. Sci. Pap. ICCAT, 45(1): 1-97.
- ANON. 2004. 2003 ICCAT Mediterranean Swordfish Stock Assessment Session (Madrid, Spain, 26-29 May 2003) Collect. Vol. Sci. Pap. ICCAT, 56(3): 789-837.
- CAVALLARO, G., A. Potoschi and C. Cefali. 1991. Fertility gonad-somatic index and catches of eggs and larvae of *Xiphias gladius* L. 1758 in the southern Tyrrhenian Sea. Collect. Vol. Sci. Pap. 35(2): 502-507.
- DI NATALE, A., J.M. de La Serna, G. De Metrio, V. Restrepo, A. Srour and G. Tserpes. 2002. On the reduction of juvenile swordfish catches in the Mediterranean. ICCAT Collect. Vol. Sci. Pap. 54(5): 1529-1533.
- HILBORN, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570p.
- KELL, L.T., L. Mosqueira, P. Grosjean, J.-M. Fromentin, D. Garcia, R. Hillary, E. Jardim, S. Mardle, M.A. Pastoors, J.J. Poos, F. Scott, R.D. Scott. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640–646.
- REY, J.C. 1988. Comentarios sobre las areas de reproducción del pez espada (*Xiphias gladius*) en el Atlántico y Mediterráneo. Collect. Vol. Sci. Pap. 27: 180-192.
- TSERPES, G., P. Peristeraki S. and Somarakis. 2001. On the reproduction of swordfish (*Xiphias gladius* L.) in the eastern Mediterranean. Collect. Vol. Sci. Pap. ICCAT, 52(2): 740-744.

SESIÓN DE EVALUACIÓN ICCAT DE 2007 DEL STOCK DE PEZ ESPADA DEL MEDITERRÁNEO

(Madrid, España, 3 al 7 de septiembre de 2007)

1. Apertura, adopción del orden del día y disposiciones para la reunión

La reunión se celebró en las oficinas de la Secretaría en Madrid. El Dr. George Tserpes, Presidente de la reunión, inauguró la reunión y el Sr. Driss Meski, Secretario Ejecutivo de ICCAT, dio la bienvenida a los participantes ("el Grupo").

El orden del día (**Apéndice 1**) fue adoptado con algunos cambios. El Grupo comentó el reducido número de participantes y lamentó la falta de participantes de los países que tradicionalmente están involucrados en las pesquerías de pez espada. La lista de participantes se adjunta como **Apéndice 2** y la lista de los documentos presentados a la reunión se adjunta como **Apéndice 3**. Actuaron como relatores los siguientes participantes:

Punto orden del día	Relator
1, 9, 10	P. Pallarés
2	J. M. Ortiz de Urbina
3	A. Di Natale
4	P. Kebe & G. Tserpes
5	P. Peristeraki
6	G. Tserpes
7	G. Tserpes & V. Restrepo
8	J. Neilson

2. Descripción de las pesquerías

Las pesquerías de pez espada del Mediterráneo se caracterizan por sus altos niveles de captura. Cabe señalar que las capturas anuales medias declaradas (una media de 15.177 t desde 1984 a 2005; **Tabla 1**) son similares a las del Atlántico norte. El Mediterráneo es una masa de agua mucho más pequeña que el Atlántico norte. Sin embargo, la zona reproductiva potencial del Mediterráneo es probablemente mayor relativamente que la del Atlántico. Además, se cree que la productividad del Mediterráneo es muy elevada.

La pesca de pez espada en el Mediterráneo se ha realizado con arpones y redes de deriva (redes de enmalle a la deriva) al menos desde la época de los romanos. En la actualidad, el pez espada se pesca en todo el Mediterráneo. Los mayores productores de pez espada del Mediterráneo en los últimos años (1997-2005) son Italia (44%), Marruecos (23%), Grecia (10%) y España (9%). También Argelia, Chipre, Malta, Túnez y Turquía tienen pesquerías que se dirigen al pez espada en el Mediterráneo. Además, se han comunicado capturas incidentales de pez espada de Albania, Croacia, Francia, Japón, Libia y Portugal. El Grupo reconoció que podría haber flotas adicionales capturando pez espada en el Mediterráneo, como por ejemplo las de Israel, Líbano, Egipto y Mónaco, pero estos datos no han sido comunicados a ICCAT o a la FAO. Además, un documento presentado a la reunión (SCRS/2007/115, de Orsi Relini *et al.*) proporciona información sobre la actividad de una flota pesquera francesa de redes de enmalle que opera en el Mar de Liguria, también dentro del santuario de mamíferos marinos "Pelagos". De acuerdo con este informe, el número total de buques que pescan con redes de enmalle a la deriva ha crecido de forma constante en el área estudiada, desde 46 buques en 2000 hasta más de 100 buques en 2006, y se ha comunicado que estos buques pescan también pez espada. El SCRS señala que las capturas de esta flota nunca han sido declaradas a ICCAT.

Los desembarques totales de pez espada del Mediterráneo han mostrado una tendencia al alza desde 1965-1972, estabilizándose entre 1973-1977, y luego han vuelto a mostrar esta tendencia al alza alcanzando un pico en 1988 (20.365 t; **Tabla 1, Figura 1**). El brusco incremento entre 1983 y 1988 puede atribuirse en parte a la mejora de los sistemas nacionales de recopilación de estadísticas de captura. Desde 1988, los desembarques comunicados de pez espada en el Mediterráneo han descendido, y desde 1990 han oscilado entre 12.000 t y 16.000 t. En 2005, las capturas fueron de 14.601 t.

En años recientes, los principales artes de pesca utilizados son el palangre de superficie (56% de la captura total), y las redes de enmalle. La mayoría de los países anteriormente mencionados desarrollan pesquerías de palangre, y en 2005, las pesquerías de redes de deriva declaradas estaban limitadas principalmente a Marruecos.

Asimismo, se sabe que otros países pescan con redes de deriva y no declaran las capturas. Los peces espada se capturan también con arpones y almadrabas, pero las almadrabas no se dirigen al pez espada. Cabe señalar que desde principios de 2002, la pesca con redes de deriva ha sido prohibida en los países de la CE, lo que influirá en los datos de captura que empiecen en 2002.

En la mayoría de los países Mediterráneos existe una gran demanda de pez espada para el consumo fresco.

A continuación, se describen las pesquerías de aquellos países que asistieron a la reunión (véase la **Figura 2** para referencias a las localizaciones particulares mencionadas más adelante). Para información adicional sobre las pesquerías de algunos países que no han asistido a la reunión, consultar el Informe detallado de 2003.

CE-Grecia

La flota griega de pez espada utiliza exclusivamente palangres de deriva y opera en toda la cuenca del Mediterráneo oriental. Cerca de 250 buques participaron en la pesquería dirigida al pez espada en 2006. La mayoría de ellos entran en la pesquería de forma ocasional, principalmente durante los meses de verano.

La temporada de pesca del pez espada dura desde febrero hasta finales de septiembre, ya que existe una veda en los mares griegos desde octubre hasta enero para proteger a los reclutas.

El pez espada supone la mayoría de las capturas de grandes pelágicos en los mares griegos y su producción durante la temporada de pesca de 2006 se estimó en 1.375 t. La producción griega de pez espada ha sido bastante estable durante la última década.

CE-Italia

La pesquería italiana de pez espada tiene una larga tradición histórica. Las recientes capturas suponen generalmente un total de entre 6.000 y 7.000 t por año, con una ligera variabilidad de año en año, dependiendo de diversos factores. La pesquería más importante, en términos de número de buques, es el palangre, con unos 1.200 barcos de 7 a más de 30 m de eslora. Esta pesquería se desarrolla actualmente desde finales de febrero hasta diciembre y en muchas zonas mediterráneas. Los cambios más importantes en las estrategias pesqueras han tenido lugar en los últimos diez años, y se han debido a un incremento del palangre dirigido a los túnidos en primavera, lo que implica un descenso paralelo en el palangre dirigido al pez espada. Esto está cambiando de nuevo desde 2006, ya que la pesquería de pez espada se ha vuelto más importante debido a diferentes condiciones en la pesquería de atún rojo. En los dos últimos años, algunos buques han iniciado ensayos de pesca utilizando palangres muy profundos en el Mar Tirreno meridional, pero la información sobre estas actividades no está disponible. La pesquería de palangre que se dirige al pez espada proporciona la mayor captura, mientras que algunas pequeñas cantidades se deben a la pesquería de palangre dirigida a los túnidos que captura el pez espada como captura fortuita. La pesquería de redes de deriva era antes la pesquería dirigida al pez espada más importante pero, de acuerdo con la regulación de la CE, ha sido prohibida desde enero de 2002. Las capturas recientes provienen ahora de redes sin clasificar. La pesquería tradicional de arpón en el Estrecho de Mesina captura cantidades muy pequeñas de pez espada, mientras que las almadrabas dirigidas a los túnidos capturan cantidades aún menores.

La anterior regulación de la CE sobre la talla mínima para el pez espada del Mediterráneo (120 cm LJFL) fue cancelada en 2000 y volvió a entrar en vigor la medida previa, que ya existía en la regulación italiana (140 cm UJFL).

CE-España

La pesquería española de pez espada en el Mediterráneo se remonta a principios del siglo XX, iniciándose su expansión en los años 1960-1970 y estabilizándose a partir de los años 80 (SCRS/2003/042). La pesca se realiza principalmente con palangre de superficie. También se captura pez espada ocasionalmente con palangre semipelágico (piedri-bola) y como captura fortuita del palangre dirigido al atún rojo y al atún blanco.

La pesquería española de pez espada en el Mediterráneo se caracteriza por la heterogeneidad de la flota y la composición de los artes así como por los cambios en la estrategia de pesca. La flota, que puede llegar a estar compuesta por 145 buques, ha evolucionado y actualmente presenta las siguientes características medias: 16 m de eslora, 166 HP de potencia y 28 TRB. Además, el arte del palangre tradicional está siendo sustituido por el palangre estilo americano, que utilizan aproximadamente el 29% de los buques. El área de pesca se extiende

desde la Península Ibérica hasta el 06º por el Este y hasta el límite de las aguas territoriales de Marruecos y Argelia. La actividad principal se produce en los meses de verano y otoño.

En 2006, las capturas de pez espada ascendieron a 1.592 t (de las cuales 1.190 t fueron capturadas con palangre de superficie), cifra similar al nivel de captura para el periodo 2000-2002. Los palangres estilo americano han mostrado un aumento en el peso medio de la captura. En lo que respecta al esfuerzo pesquero, recientemente ha sido estable.

La pesca de pez espada con palangre de superficie en el Mediterráneo está sujeta a regulación mediante el Decreto del 27 de julio de 2006 (APA/2521/2006) que regula las características técnicas de los artes y la talla mínima de la captura (90 cm LJFL), entre otras cosas.

Marruecos

La pesquería marroquí de pez espada en el Mediterráneo se viene desarrollando desde 1983. Aproximadamente 320 buques participan actualmente en esta pesquería, utilizando principalmente las redes de deriva y el palangre de superficie (SCRS/2006/125). Los barcos son, de media, de 13 m de eslora, 13 TRB y tienen motores de 110 HP.

Los caladeros más importantes se encuentran en el Estrecho de Gibraltar y en el Mar de Alborán meridional. La primera zona sigue siendo la más importante en términos del tamaño de la flota que se dirige al pez espada. En el Estrecho de Gibraltar, la pesca del pez espada se realiza durante todo el año, con mayor actividad desde abril hasta octubre. En el Mar de Alborán meridional, la pesca se realiza durante casi todo el año. Las almadrabas y los cerqueros realizan también ocasionalmente capturas pequeñas de pez espada.

Tras el pico en los desembarques de 4.900 t registrado en 1997, la captura de pez espada descendió hasta estabilizarse en aproximadamente 3.000 t. En 2005 la captura descendió en cerca del 22% respecto al año anterior. El cambio más notable en esta pesquería durante los cinco últimos años es la significativa reducción de las capturas de las redes de deriva y el aumento de las capturas del palangre debido a la implementación del Plan Nacional para prohibir las actividades de las redes de deriva de conformidad con la resolución de ICCAT relacionada con la prohibición de las redes de deriva en el Mediterráneo.

Las capturas fortuitas de esta pesquería incluyen principalmente pequeños túnidos, tiburones, istiofóridos y atún rojo.

La talla de los peces desembarcados varía según la zona de pesca. En el Estrecho de Gibraltar, la talla media del pez espada es de unos 145 cm. En el Mar de Alborán, los peces tienen una talla media menor (106 cm) (SCRS/2003/053).

En Marruecos, la regulación de la pesca del pez espada comprende: la fijación de una talla mínima comercial de 120 cm (25 kg) (Decreto nº 1154-88 de 3 de octubre de 1988); fijación de una longitud máxima de las redes de enmalle a la deriva en 2,5 km; prohibición de mallas inferiores a 400 mm. (Circular nº 1232 del 11 de marzo de 1991); y congelación del esfuerzo pesquero mediante la suspensión de inversiones en materia de construcción naval desde 1992 (nota circular nº 3887 del 18 de agosto de 1992).

3. Datos biológicos

De acuerdo con la información disponible, (Anón. 1996), en años anteriores se ha comunicado que sólo unos pocos peces espada del Mediterráneo superan los 200 kg. En años recientes, en varias pesquerías se ha comunicado un porcentaje ligeramente superior de peces espada grandes. La mayoría de la captura del Mediterráneo se compone de individuos de menos de 3 años y la talla media es muy inferior a la del Atlántico. El hecho de que la pesquería se base todavía en clases de 2-3 años la hace vulnerable a cambios en el reclutamiento.

Los estudios de crecimiento del pez espada en el Mediterráneo, llevados a cabo por diversos equipos utilizando tanto espinas de la aleta anal como datos de frecuencia de tallas, muestran todos un patrón de crecimiento similar. Es bien sabido, también, que el pez espada del Mediterráneo tiene un crecimiento sexualmente dimórfico; los machos tienen menor longitud por edad y alcanzan una talla asintótica menor que las hembras.

Las ecuaciones de crecimiento adoptadas por el Grupo de trabajo CGPM/ICCAT en 1995 son las publicadas por Tserpes y Tsimenides (1995) y se siguen utilizando de la siguiente manera:

$$\begin{split} L_{inf} &= 238.60 \; (1-e^{-0.185 \; (t+1.404)}) \text{ para sexos combinados} \\ L_{inf} &= 203.08 \; (1-e^{-0.241 \; (t+1.205)}) \text{ para machos} \\ L_{inf} &= 226.53 \; (1-e^{-0.210 \; (t+1.165)}) \text{ para hembras.} \end{split}$$

Un documento muy reciente (SCRS/2007/117, de Valeiras *et al.*) descubrió diferentes tasas de crecimiento en el pez espada presente en el Mediterráneo occidental. Este documento proporcionaba ecuaciones de crecimiento por sexo, basadas en la lectura de espinas anales. Es importante señalar que el muestreo se llevó a cabo en una zona en la que es posible la mezcla entre el stock del Atlántico y el stock del Mediterráneo. De acuerdo con este documento, la tasa de crecimiento es menor en comparación con estudios previos, especialmente en las edades jóvenes. El SCRS considera que la situación en esta zona crucial del Mediterráneo debería investigarse más debido a su importancia para entender la mezcla entre los dos stocks.

Por lo general, el desove tiene lugar en primavera y verano, con picos en junio y julio, y las variaciones temporales pueden deberse a diversas influencias medioambientales y oceanográficas. Las zonas de desove más importantes del Mediterráneo, de acuerdo con la información actual, están alrededor de las Baleares, en el centro y sur del Mar Tirreno, el Mar Jónico y en el Estrecho de Mesina y existen fuertes indicios de que existen también zonas de puesta en el Mediterráneo oriental. Los juveniles se encuentran en todo el Mediterráneo, pero a menudo tienden a concentrarse cerca de la costa, principalmente en otoño.

De acuerdo con una revisión de la información biológica disponible sobre el pez espada del Mediterráneo (SCRS/2001/050), se han advertido grandes diferencias con el stock del Atlántico. Se han observado hembras maduras de 110 cm LJFL y la talla estimada en la que el 50% de la población de hembras alcanza la madurez es 142 cm (SCRS/1995/045). Según las curvas de crecimiento utilizadas por el SCRS en el pasado para el pez espada del Mediterráneo, estas dos tallas corresponden a peces de 2 y 3,5 años, respectivamente. A los 125 cm, cerca del 20% de las hembras del Mediterráneo serían maduras. Los machos alcanzan la madurez sexual con tallas menores.

La Tabla 2 resume la información biológica disponible para el pez espada del Mediterráneo.

Factores medioambientales

Es bien sabido que las capturas de pez espada se ven muy afectadas por factores medioambientales corrientes. Por ejemplo, las capturas de pez espada se ven afectadas fundamentalmente por la presencia de una termoclina estable a finales de la primavera y el verano. De hecho, cuando se utilizan redes de deriva, todas las capturas se hacen justo por encima de la termoclina, donde tiene lugar la puesta. Las capturas de pez espada también se ven afectadas por las fases lunares. Cuando hay luna llena, se registran mayores capturas de los palangres tradicionales, y menos capturas en las redes de deriva (SCRS/1994/86, SCRS/1991/65). Las zonas caracterizadas por elevadas turbulencias parecen también importantes para los peces espada. En el Tirreno y el Mar de Alborán se producen mayores capturas.

Un documento presentado en esta reunión (SCRS/2007/115 de Orsi Relini *et al.*) facilita un estudio de la correlación entre la oscilación invernal del Atlántico norte (NAO) y las series de CPUE de palangre en el mar de Liguria durante el periodo 1990-2006. De acuerdo con este estudio, se ha detectado una correlación inversamente relacionada, incluso aunque debieran tenerse en cuenta posiblemente otros factores medioambientales. Este estudio informa también de que el reclutamiento del pez espada en el Mar de Liguria no muestra ninguna correlación con el índice invernal de la NAO. Las diferencias temporales de la SST han estado también relacionadas con la tasa de crecimiento del pez espada del grupo 0 en el Mediterráneo oriental (Peristeraki *et al.*, 2007).

Durante esta reunión, se discutió qué otras posibles correlaciones podrían explorarse y estudiarse, incluyendo las existentes entre la distribución y concentración aparente de pez espada y el índice transitorio del Mediterráneo oriental (EMT), que parece un factor muy importante a tener en cuenta en el Mediterráneo, capaz de inducir cambios relevantes en el entorno pelágico, en la distribución espacial y temporal de muchas especies pelágicas incluyendo al pez espada y, además, en la pesquería.

Se recomendó llevar a cabo más trabajos para identificar mejor los efectos del medio ambiente en la biología, ecología y pesquería del pez espada.

4. Datos de captura

Se presentaron dos documentos relacionados con los datos de captura.

El documento SCRS/2007/106 resume la información sobre los datos de las capturas fortuitas y los descartes en la pesquería griega de pez espada. El pez espada desembarcado representa el 84% de la captura total en peso.

El documento SCRS/2007/108 describe los descartes de los peces espada de talla inferior a la regulada en la pesquería griega de pez espada con palangre. Se indicó que anualmente se descartan entre 15 y 17 toneladas. Tras algunas discusiones, el grupo indicó que, en general, la información sobre descartes en la zona del Mediterráneo no la comunica a la Secretaría ningún país aparte de Grecia.

4.1 Tarea I

La Secretaría presentó en la **Tabla 1** los datos de captura del pez espada del Mediterráneo comunicados a ICCAT para los años 1950-2006 por pabellón, flota y arte. El grupo decidió centrarse únicamente en los datos hasta 2005 ya que la información declarada en 2006 es incompleta. Durante las revisiones de la tabla de captura se señaló la falta de la captura tunecina para 2005 y la falta de la captura argelina en 2003. El Grupo se mostró también muy preocupado por el bajo nivel de pez espada declarado por Italia en algunos años anteriores. Para llenar estas lagunas en la serie temporal de captura el Grupo decidió:

- 1. Traspasar la captura tunecina de 2004 (791 t) a 2005.
- 2. Utilizar en la evaluación y como datos no oficiales en la base de datos de Tarea I las 665 t declaradas en el Informe anual de Argelia para 2003.
- 3. Reajustar las capturas italianas en 1990 (de 5.224 t a 9.104 t), 1991 (de 4.789 t a 8.538 t) y 1995 (de 6.725 t a 7.350 t) siguiendo el asesoramiento de los científicos italianos.

Además, se compararon los datos de la Tarea I de ICCAT y de FAO FIGIS y se descubrió que eran iguales para el periodo posterior a 1967, pero que mostraban discrepancias para el periodo 1950-1967. El Grupo de trabajo decidió adoptar las cifras de capturas más elevadas que se mantienen en la base de datos de FIGIS y recomendó que los conjuntos de datos de ICCAT y la FAO fueran armonizados para el periodo 1950-1967, como ya se ha hecho para periodos posteriores y para otras especies.

Por consiguiente, la Secretaría actualizó y presentó de nuevo la Tabla 1 que fue aprobada por el Grupo.

4.2 Talla y captura por talla

El catálogo de toda la Tarea I y Tarea II había sido distribuido con anterioridad (abril de 2007) entre todos los participantes potenciales con el fin de revisar las lagunas y las deficiencias y presentar revisiones a la Secretaría. Lamentablemente no se recibió ninguna. Durante la reunión, se actualizó y presentó de nuevo al Grupo el mismo archivo. Al principio de la reunión, se dispuso de nueva información de talla de Tarea II de las redes de enmalle marroquíes para los años 1999-2005 y también de las redes de enmalle y el palangre italianos por mes. De acuerdo con la nueva muestra de tallas italiana disponible por flotas, el Grupo decidió separar la captura italiana declarada por área con el fin de compararla con las muestras de talla.

La Secretaría presentó las normas de sustitución utilizadas (**Tabla 3**) para crear la captura por talla siguiendo las normas adoptadas en 2003 (SCRS/2003/015 y SCRS/2003/050). El archivo de captura por talla resumido en la **Tabla 4** para los años 1985 a 2005 fue convertido a captura por edad (**Tabla 5**) aplicando el mismo procedimiento de filo de cuchillo utilizado en 2003 y la misma ecuación de crecimiento (ecuación inversa de von Bertalanffy).

5. Índices de abundancia relativa

Se presentaron cinco documentos relacionados con los datos de tasas de captura.

El SCRS/2007/118 presentaba las tasas de captura estandarizadas actualizadas para el pez espada procedentes de la flota de palangre española en el Mediterráneo para los años 1988-2005. Los datos incluían 18.630 observaciones que fueron analizadas mediante técnicas de GLM. Se consideraron los efectos del año, área y trimestre, y todos los factores (incluyendo las interacciones) fueron significativos. Las CPUE estandarizadas

anuales descendían rápidamente desde 1988 hasta 1992, y más gradualmente hasta 1999. A partir de entonces permanecían estables.

El documento SCRS/2007/107 presentaba las tasas de captura estandarizadas anuales de las flotas griega e italiana que operan en el Mediterráneo oriental central. El análisis incluía datos de las pesquerías de palangre griego que operan en el Mediterráneo oriental y de las pesquerías de palangre sicilianas que operan en el Mar Tirreno y en el Estrecho de Sicilia para los años 1987-2005. Los índices se estimaron mediante técnicas de GLM y los resultados no demostraron la presencia de ninguna tendencia particular en el tiempo.

El documento SCRS/2007/115 presentaba una serie temporal de las tasas de captura nominal de las flotas italianas de palangre dirigidas al pez espada que operan en el Mar de Liguria, desde 1990 a 2006. No se observó ninguna tendencia significativa durante el periodo estudiado. Se observó también una relación inversa de la CPUE del pez espada con los valores del índice de NAO. El Grupo se mostró satisfecho de recibir esta contribución sobre los efectos medioambientales en las tasas de captura, un campo en el que los conocimientos se consideran insuficientes. No obstante, el Grupo insta a realizar más investigaciones sobre los efectos de los factores medioambientales y oceanográficos específicamente relacionados con el Mar Mediterráneo.

El SCRS/2007/116 presentaba un análisis de las tasas de captura estandarizadas de la pesquería marroquí de redes de deriva en el Mediterráneo. La CPUE nominal, por mes y barco desde 1998 a 2006, fue analizada por medio de técnicas de GLM. Las tasas de captura estandarizadas no mostraron ninguna tendencia a lo largo de los años. Se comentó que se habían observado valores elevados de CPUE en comparación con otras pesquerías de redes de deriva del Mediterráneo, que podrían atribuirse a características específicas del área explotada, que se extiende alrededor del Estrecho de Gibraltar.

El SCRS/2007/119 presentaba una descripción detallada de la serie temporal de CPUE nominal italiana (1985-2006) de las flotas de palangre y redes de enmalle italianas del Sur. Las CPUE de las redes de enmalle muestran una ligera tendencia ascendente, mientras que las CPUE de palangre muestran una tendencia moderadamente descendente. El patrón de explotación de las flotas se consideró estable para las dos últimas décadas.

6. Resultados de la situación del stock

6.1 Evaluaciones del modelo de producción

6.1.1 ASPIC

El modelo de producción excedente de no equilibrio (ASPIC, versión catalogada 5.16) se aplicó a los datos de captura y esfuerzo para el pez espada del Mediterráneo. Los datos de entrada utilizados en estos análisis se presentan en la Tabla 6. Para aportar mejor información al modelo, se utilizaron las capturas registradas desde 1950 hasta 2005. Se compararon los datos de Tarea I de ICCAT y de FAO FIGIS y se descubrió que eran iguales para el periodo posterior a 1967, pero que mostraban discrepancias para el periodo 1950-1967. El Grupo de trabajo decidió adoptar las cifras de captura más elevadas que se mantienen en la base de datos de FIGIS y recomendó que los conjuntos de datos de ICCAT y la FAO fueran armonizados para el periodo 1950-1967 (ya lo están para periodos posteriores y para otras especies). Para estos análisis, se desarrolló un patrón de CPUE compuesta como la media ponderada de las series temporales de tasas de captura del palangre italiano (SCRS/2007/107), el palangre griego (SCRS/2007/107), las redes de enmalle de Marruecos (SCRS/2007/116), las redes de enmalle italianas (Anón. 2004), el palangre español (SCRS/2007/118) y el palangre japonés (Anón. 1996). Se indicó que los datos japoneses están relacionados con la captura fortuita de pez espada en la pesquería de palangre de túnidos. En este caso se utilizó la ponderación debido a la inquietud existente por el hecho de que algunas de las flotas para las que hay series temporales disponibles representan un área relativamente pequeña de pesca y/o representan típicamente volúmenes pequeños de la captura total de pez espada del Mediterráneo. En este caso, se asignó una ponderación de 4 a los índices marroquí e italiano, una ponderación de 2 a las series temporales griegas y españolas y una ponderación de 1 a la serie temporal japonesa. El patrón de CPUE resultante se muestra en la Figura 3.

El modelo de producción se ajustó primero a la captura y esfuerzo para el periodo 1968-2005 (reflejando la evaluación llevada a cabo en 2003). En este caso, había poca información en los datos con la que estimar libremente todos los parámetros del modelo. La convergencia del modelo pudo lograrse fijando la ratio de biomasa inicial, pero el Grupo de trabajo consideró que asumir que la biomasa se encontraba en un nivel sin pesca (K) en 1968 era incorrecto teniendo en cuenta las capturas declaradas desde 1950. El Grupo de trabajo

decidió fijar B1968 en 0,75K para este ensayo como mejor representación de la situación en aquel momento. Con el fin de aportar información al modelo y posiblemente mejorar las estimaciones de la productividad del stock y la situación actual, se ajustaron entonces los datos desde 1950 hasta 2005. En este caso, fue posible estimar libremente todos los parámetros del modelo, aunque al hacerlo, la dinámica modelada del stock anterior a mediados de 1980 era inesperada, y mostraba un aumento de la biomasa desde niveles muy bajos a comienzos de los 50. Por lo tanto, el Grupo de trabajo decidió también llevar a cabo un ensayo asumiendo que el stock se encontraba 1950 en nivel de sin pesca, aunque se sabe que se produjeron algunas capturas antes de ese momento. En todos los modelos (ver Figura 4 y Apéndice 4 para los detalles que respaldan los ajustes del modelo), las estimaciones de la situación de la población en el año más reciente indicaban un stock que se encontraba en el objetivo del Convenio ICCAT o ligeramente por debajo del mismo mientras que la reciente mortalidad por pesca se encontraba un poco por encima del nivel que permitiría al stock obtener el nivel necesario para llegar al objetivo del Convenio (niveles de RMS). Aunque la incertidumbre en estos resultados basados en bootstrap es grande (Figura 5), el peso de la evidencia respalda estas conclusiones (Tabla 7). La mediana de los resultados del modelo (Figuras 6a, b) indica que la pesquería sufrió una rápida expansión en los 80 que provocó que F se encontrará probablemente en o por encima de F_{RMS} y un stock lentamente descendente que recientemente es probable que haya caído por debajo del nivel que soportaría RMS a largo plazo (Figuras 7a, b).

6.1.2 Método de Tserpes y McAllister (TSM)

Se aplicó un modelo de producción de no equilibrio basándose en el enfoque seguido en el SCRS/2007/109. El modelo utilizaba los datos de captura total para el periodo 1987-2005 y una serie de CPUE combinada, la misma utilizada en ASPIC. Las estimaciones XSA (Análisis extendido de supervivientes) de la F media se utilizaron para estimar la tasa de captura al principio del periodo examinado y por consiguiente la fracción de la biomasa inicial.

Basándose en la evaluación XSA de ICCAT, los valores de *F* y *M* para el principio del periodo se fijaron en 0,42 y 0,20 respectivamente. El mejor ajuste fue proporcionado para r = 0,67 y k = 90547 t. Los índices observados y predichos se muestran en la **Figura 8**. Basándose en las estimaciones anteriores, se descubrió que el *RMS* en equilibro era igual a 15.166 t. Las tasas correspondientes para la mortalidad por pesca y la biomasa son:

$$F_{msy} = \frac{r}{2} = 0.33 \text{ y} \ B_{msy} = \frac{k}{2} = 45273 \text{ t}$$

Las capturas anuales en los últimos años se encuentran cercanas al RMS, mientras que los niveles de biomasa del stock están estables pero aproximadamente un 12% inferiores a B_{rms} (Figura 9).

6.2 Modelos estructurados por edad

6.2.1 Evaluación XSA

El modelo XSA se implementó utilizando el código desarrollado en lenguaje R (ver **Apéndice 5**) bajo los auspicios del proyecto FLR (Kell *et al.*, 2007; <u>http://www.flr-project.org/</u>). Las tablas de captura por edad incluían edades de 0 a 10 (grupo plus) y estaban disponibles seis conjuntos de datos de calibrado de las siguientes flotas: palangreros italianos–ITLL (SCRS/2007/107), palangreros griegos-GLL (SCRS/2007/107), barcos con redes de enmalle de Marruecos-MODN (SCRS/2007/116), barcos con redes de enmalle de Italia-ITDN (SCRS/2003/040), palangreros españoles-SPLL (SCRS/2007/118), y palangreros japoneses-JALL (Anon, 1996). Las series de CPUE del palangre griego, italiano y español se consideraron representativas de la abundancia del grupo de edad 2-9, mientras que para el resto se asumió el grupo de edad 3-9. La madurez plena se asumió a partir de la edad 4 en adelante y el 50% en la edad 3. Para las edades más jóvenes se asumió madurez cero.

Se llevó a cabo una serie de ensayos preliminares con diferente parametrización y, basándose en los diagnósticos de capturabilidad de la flota, el modelo final se basó en ensayos que asumían una q independiente del tamaño de la clase anual para todas las edades excepto 0 y 1, una q constante después de la edad 6, así como una limitación de la población y de F. La mortalidad natural se consideró igual a 0,2. La **Figura 10** ilustra los residuos de capturabilidad por flota y edad. En general, los residuos no muestran ningún patrón específico para las clases de edad más jóvenes y más abundantes, mientras que están positivamente sesgados en las edades más mayores.

Las **Tablas 8** y 9 presentan las estimaciones de mortalidad por pesca y los números por edad de la población respectivamente. Al igual que en la evaluación de 2003, el reclutamiento parece ser coherente sin ninguna clase anual especialmente fuerte o débil. La Fs media para las edades 2-5 se ha dibujado por año en la **Figura 11.**

Ambas estimaciones, la biomasa total del stock y la biomasa del stock reproductor, permanecieron estables durante la última década (Figura 12).

6.2.2 VPA

Se utilizó el software VPA-2BOX para llevar a cabo un análisis secuencial de la población utilizando los mismos datos de entrada que en los análisis de XSA. Se hicieron los siguientes supuestos:

- <u>Índices</u>: Se asumió una estructura de error lognormal para todos los índices. Las selectividades del índice se estimaron utilizando las capturas parciales (incluyendo todas las edades, desde 0 a 10+).
- <u>F ratios</u>: $F_{10+}/F_9 = 1,0$ en todos los años.
- <u>Fs del año terminal</u>: Estimada para las edades 5 y 8. Valores asumidos: $F_0 = 0,01*F_5$, $F_1 = 0,4*F_5$, $F_2 = F_5$, $F_3 = F_5$, $F_4 = F_5$, $F_6 = F_8$, $F_7 = F_8$, $F_9 = F_8$.

El ajuste a los datos fue pobre. Los coeficientes de variación para las estimaciones de F5 y F8 en 2005 fueron del 15% y el 81% respectivamente. Los ajustes a los índices individuales fueron bastante pobres en algunos casos (ver **Figura 13**).

El Grupo examinó las selectividades por edad estimadas para los diversos índices (**Figura 14**) y concluyó que parecían razonables, dada la composición por tallas de las capturas para las flotas correspondientes.

Los resultados globales del ajuste del modelo se presentan en la **Tabla 10** y en el **Apéndice 6**. En términos de tamaño del stock, la tendencia del reclutamiento estimado (edad 0) es bastante constante en ligeramente por encima de un millón de peces por año, y la tendencia para las edades 2 a 8 es descendente (**Figura 15**). La tendencia estimada en la biomasa reproductora muestra un descenso general del 40% entre 1985 y 2005, pero se estima que el nivel de biomasa explotable ha variado sin tendencia (**Figura 16**).

Las estimaciones de la mortalidad por pesca (valores apicales) se muestran en la **Figura 17**, sugiriendo que ha variado sin una tendencia durante la última década. Las selectividades estimadas por edad por periodos de 5 años se muestran en la **Figura 18**, sugiriendo que la selectividad ha permanecido relativamente constante desde 1990.

6.2.3 Comparación de los resultados estructurados por edad

El XSA y el VPA-2BOX son implementaciones diferentes de análisis secuenciales de población. Para esta evaluación de pez espada del Mediterráneo, se utilizaron con los mismos datos y con supuestos similares aunque no idénticos.

El Grupo comparó los resultados obtenidos con ambos métodos en términos de reclutamiento, mortalidad por pesca y tendencias de biomasa, y descubrió que eran muy similares (**Figura 19**). Son evidentes pequeñas discrepancias sólo para las edades mayores (por ejemplo, F en la edad 9). Pero, en conjunto, ambos métodos facilitan una percepción muy similar de la situación del stock.

6.2.4 Análisis de rendimiento por recluta en equilibrio

Los resultados del VPA-2BOX y el XSA se utilizaron como base para los análisis de rendimiento por recluta que son una forma de proyección a largo plazo. Los vectores de entrada específicos de la edad se presentan en la **Tabla 11** Las estimaciones de equilibrio resultantes para varios puntos de referencia biológicos se presentan en la **Tabla 12**. Estos son resultados por recluta, escalados a un nivel de reclutamiento de 1.059.533 peces espada de edad 0 (el nivel medio de 1985-2002 estimado en el VPA-2BOX). La **Figura 20** muestra los niveles de rendimiento en equilibrio obtenidos para diferentes multiplicadores de mortalidad por pesca del actual vector de selectividad.

El bootstrap (1.000 iteraciones) se utilizó para describir la incertidumbre en la evaluación del VPA-2BOX de la situación reciente del pez espada del Mediterráneo. Hay un elevado nivel de variabilidad en las estimaciones de la situación reciente, pero todos los resultados del bootstrap indican que este stock está tanto sobrepescado como sufriendo sobrepesca (**Figura 21**).

6.2.5 Resumen de los resultados de la evaluación estructurada por edad

Los dos modelos estructurados por edad utilizados en la evaluación produjeron resultados muy coherentes. Durante los últimos 20 años, la mortalidad por pesca ha fluctuado en niveles altos, doblando por lo general el valor de la mortalidad natural. El valor de la mortalidad natural se utiliza a veces como una aproximación de F_{RMS} en situaciones de escasez de datos, lo que sugeriría que se ha producido sobrepesca durante este tiempo. Ambos modelos estiman que la biomasa reproductora ha descendido entre 1985 y 2005 (un descenso de entre el 24% y el 38%, dependiendo del modelo). Por otra parte, el reclutamiento ha variado (CV $\approx 12\%$) durante este periodo sin una tendencia.

Los resultados de los análisis de rendimiento por recluta en equilibrio que se basan en evaluaciones estructuradas por edad indican también que se está produciendo una sobrepesca creciente. Dependiendo del modelo utilizado, la mortalidad por pesca actual (2005) es 1,7 ó 2,1 veces mayor que el valor que maximizaría el rendimiento por recluta. En el caso del VPA, asumiendo un nivel constante de reclutamiento, una reducción del 69% en la mortalidad por pesca hasta el nivel de Fmax resultaría en un modesto incremento (7%) en el rendimiento a largo plazo y un incremento sustancial (más del doble) en la biomasa reproductora.

Además, se espera que la F actual produzca una biomasa por recluta (SPR) del stock reproductor de aproximadamente el 8% de la condición de sin pesca, un nivel que se considera que produce un riesgo no despreciables de un rápido descenso del stock. Se esperaría que la pesca en F_{MAX} , dada la selectividad actual, produjera una SPR del 20%.

Utilizar F_{MAX} como aproximación para F_{RMS} , el objetivo del Convenio, sugiere que el stock de pez espada del Mediterráneo se encuentra en situación de sobrepescado y que está teniendo lugar una sobrepesca (**Figura 22**). Cabe señalar, no obstante, que estas conclusiones se basan en análisis deterministas de los datos disponibles. El nivel de incertidumbre en estas estimaciones no ha sido evaluado.

6.3 Resumen de la situación del stock

Dos formas de evaluación, ambas con un elevado nivel de incertidumbre, produjeron una perspectiva coherente de una abundancia descendente del stock, pero diferían en el alcance del descenso en el sentido de que algunos modelos sugerían pocos cambios en la última década. Las estimaciones de la situación de la población a partir del modelo de producción utilizando una serie temporal de captura y esfuerzo más larga, en la que se tiene menos confianza, indicaban un nivel del stock que probablemente se encontraba aproximadamente un 10% por debajo del nivel necesario para lograr el objetivo del Convenio mientras que la reciente mortalidad por pesca se encontraba aproximadamente un 25% por encima del nivel que permitiría al stock lograr los niveles de RMS. Los resultados de la evaluación del modelo de producción indican que la pesquería sufrió una rápida expansión en los 80 que provocó que F se encuentre probablemente en F_{RMS} o por encima, así como un lento descenso en la biomasa del stock que recientemente es probable que haya caído por debajo del nivel que podría soportar el RMS. Las estimaciones de la situación del stock a partir del análisis de población virtual utilizando una serie temporal más corta de datos de captura y esfuerzo en la que se tiene más confianza, indicaban un nivel del stock reproductor relativamente estable y un reclutamiento estable a lo largo de los últimos 20 años, pero este nivel es menos de la mitad del nivel necesario para lograr el objetivo del Convenio y las estimaciones de las recientes tasas de mortalidad por pesca a partir de este tipo de evaluación son aproximadamente el doble, y si esto continúa en el futuro, se espera que conduzca a la biomasa reproductora a un nivel muy bajo (cerca del 8% SPR) en una generación. Se considera que estos niveles bajos provocan riesgos no despreciables de rápidos descensos en el stock, aunque todavía no se han observado estas señales en las pesquerías de pez espada del Mediterráneo.

7. Proyecciones

7.1 Proyecciones del modelo de producción

Los resultados combinados del *bootstrap* del modelo de producción se proyectaron con varios escenarios diferentes de captura futura constante. Se asumió que las capturas de 2006 y 2007 se habían mantenido en el nivel de 2005 (14.600 t) y que las capturas en los años subsiguientes hasta 2015 eran igual a 10.000 t, 12.000 t, 14.300 t (el RMS aproximado) o 16.000 t. Las proyecciones indican que es probable que unas capturas por encima de 12.000 t a partir de 2008 tengan como resultado un descenso futuro del stock (**Figura 23**).
7.2 Escenarios VPA

Los resultados del *bootstrap* del modelo VPA-2BOX se proyectaron con varios escenarios diferentes de captura futura constante. El reclutamiento proyectado se consideró como una selección aleatoria de la serie temporal 1985-2002 y se asumió también que los reclutamientos (y fuerzas de cohorte para las edades correspondientes) para las clases anuales 2003-2005 tenían la misma dimensión. Se asumió que las capturas de 2006 y 2007 se habían mantenido en el nivel de 2005 (14.600 t) y que las capturas en los años subsiguientes hasta 2015 eran igual a 10.000 t, 12.000 t, 14.300 t (el RMS aproximado del modelo de producción) o 16.000 t. Las proyecciones indican que es probable que unas capturas por encima de 14.000 t a partir de 2008 tengan como resultado un descenso futuro del stock (**Figura 24**).

Se aplicaron cuatro escenarios de explotación utilizando el programa Fisheries Library in R (FLR) que se desarrolló en el marco del proyecto del Sistema Europeo de Ordenación de Pesquerías (EFIMAS) (http://www.flr-project.org/):

El modelo operativo utilizado en todos los escenarios se basó en la población de stock estimada (mediante XSA) por edad al comienzo del año 2000. Ésta se utilizó como población de partida y cada escenario de proyección fue simulado 250 veces para un periodo de 20 años, asumiendo:

- a) una mortalidad natural igual a 0,2, y
- b) un modelo Beverton-Holt S/R estimado empíricamente. Dado que los resultados del VPA no permitieron la estimación de los parámetros del modelo (debido a los bajos contrastes), dichos parámetros se estimaron empíricamente (Hilborn & Walters, 1992), asumiendo que la mitad del tamaño del stock actual produciría aproximadamente la mitad del reclutamiento máximo.

El vector inicial de abundancia por edad y el reclutamiento previsto a partir del modelo S/R fueron modelados asumiendo errores distribuidos normalmente con coeficientes de varianza iguales a 15 y 10%, respectivamente. De este modo, los valores correspondientes se extrajeron aleatoriamente de las distribuciones asumidas.

En todos los escenarios, con la excepción del primero, se intentó examinar los efectos de los cierres de la pesquería global durante el periodo de reclutamiento. El reclutamiento se produce desde septiembre hasta febrero, con un punto máximo de octubre a enero. Dichos cierres han sido discutidos ampliamente en el pasado (Di Natale *et al.*, 2002) y se ha asumido que afectarán sobre todo a la mortalidad por pesca de los ejemplares de edad 0 (hasta 71cm de LJFL en la tabla de captura por edad).

Escenario 1: Patrón de explotación actual

Se asumió que las F por edad serán iguales a los valores medios estimados para el periodo 1995-1999 para todo el periodo de proyección. Basándose en YPR, este nivel de F es aproximadamente el doble del que permitiría que el stock alcanzase el nivel de RMS y, a largo plazo, la biomasa del stock reproductor prevista sería aproximadamente un 50% de B_{RMS} o aproximadamente el 10% de la biomasa sin explotar, lo que se considera un nivel uy bajo que genera un riesgo no despreciable de rápido descenso del stock, aunque este tipo de indicios no se ha observado todavía en las pesquerías de pez espada del Mediterráneo.

Los resultados se resumen en la **Figura 24**. El escenario indica un patrón de producción estable con capturas anuales de aproximadamente 14.000-15.000 t (probabilidad > 50%), en las cuales 5.800-6.200 t son juveniles. El número de juveniles en la captura oscilaría entre 380.000-420.000 ejemplares, lo que supone un 72-74% de la captura total en número. En general, las tasas comunicadas para el periodo 2000-2004 están en la gama de los valores predichos por el modelo.

Escenario 2: Una veda de dos meses durante el punto álgido del periodo de reclutamiento

Dado que el pez espada del Mediterráneo desova de mayo a julio (Rey 1988, Cavalaro et al 1991, Tserpes et al 2001), se asumió que dicha veda podría reducir en un 50% la mortalidad por pesca de los ejemplares de edad 0 (aquellos con LJFL < 71cm en la matriz de captura por edad). Teniendo en cuenta que en toda la extensión del Mediterráneo se ejerce una presión pesquera mucho mayor en el stock desde finales de primavera hasta mediados de otoño (Anón. 2004), se consideró que esta veda reduciría el esfuerzo pesquero global en un 10%. Asumiendo que el esfuerzo pesquero es proporcional a la mortalidad por pesca, se infiere que cabría esperar una reducción similar en la mortalidad por pesca para el resto de las clases de edad.

Los resultados se resumen en la **Figura 25.** El escenario indica que la aplicación de dicha veda se traduciría inicialmente en un pequeño descenso de los niveles de producción actuales que, sin embargo, se estabilizarán tras seis o siete años en torno a las 15.800-16.000 t. Las capturas de juveniles se estabilizarán en 5.700-6.100 t, y su número se situará en torno a 370.000-400.000 ejemplares, lo que supone hasta el 67-71% de la captura total. Este nivel proyectado de F es aproximadamente 1,8 veces superior al que permitiría que el stock alcanzase el nivel correspondiente al RMS y, a largo plazo, la biomasa prevista del stock reproductor se situaría en torno al 12% de la biomasa sin explotar y en aproximadamente el 60% de la B_{RMS}.

Escenario 3: Una veda de cuatro meses durante el punto álgido del periodo de reclutamiento

Se asumió que con este tipo de veda la mortalidad por pesca de los ejemplares de edad 0 se reduciría en un 90% y el esfuerzo de pesca global en un 20%.

Los resultados se resumen en la **Figura 26**. El cierre se traduciría inicialmente en un descenso del 10-15% de los niveles de producción actuales, que sin embargo, tras siete u ocho años se estabilizarían en torno a 17.000-17.800 t. Las capturas de juveniles se estabilizarían en 5.600-6.000 t y su número se situaría en torno a 350.000-380.000 ejemplares, lo que supone hasta el 65-67% de la captura total. Este nivel proyectado de F es aproximadamente 1,6 veces superior al que permitiría que el stock alcanzase el nivel correspondiente al RMS y, a largo plazo, la biomasa prevista del stock reproductor se situaría en torno al 13% de la biomasa sin explotar y en aproximadamente el 70% de la B_{RMS} .

Escenario 4: Veda durante todo el periodo de reclutamiento

Se asumió que una veda de este tipo eliminaría prácticamente la mortalidad por pesca de los ejemplares de edad 0 y reduciría el esfuerzo pesquero global en un 40%.

Los resultados se resumen en la **Figura 27**. La veda se traduciría inicialmente en un importante descenso (aproximadamente 40%) de los niveles de producción actuales. Tras siete u ocho años la producción se estabilizaría en torno a 18.500-20.000 t. Asimismo, las capturas de juvelines se estabilizarían en torno a 4.800-5.100 t y su número se situaría en torno a 310.000-330.000 ejemplares, lo que supone hasta el 59-63% de la captura total. Este nivel proyectado de F es el resultado más cercano a F_{MAX} , que permitiría que el stock alcanzase un nivel cercano al del RMS y la biomasa prevista del stock reproductor a largo plazo se situaría en torno al 20% de la biomasa sin explotar y en aproximadamente la B_{RMS} .

Conclusiones

Los resultados indican que las vedas estacionales serán beneficiosas en el sentido de que incrementarán los niveles de captura y reducirán el volumen de capturas de juveniles a medio plazo. Dado que el Grupo cree que los descartes incluidos en la tabla de captura por edad están subestimados, hay posibilidades de que existan subestimaciones de la mortalidad por pesca del grupo 0. Por ello, en realidad, las vedas estacionales podrían ser más beneficiosas de lo que se estima actualmente. Además, de las consideraciones relacionadas con el rendimiento que se han expuesto en este informe, también cabría esperar que las vedas estacionales tengan como resultado unos mayores ingresos económicos para la pesquería, ya que los pescadores obtienen unos precios más bajos por los ejemplares pequeños que se venden por kilos. Sin embargo, todavía no se han cuantificado estos beneficios económicos.

Los resultados demuestran que cuanto más larga es la veda, más beneficiosa será a largo plazo (**Figura 28**), aunque siempre se esperan descensos en la producción a corto plazo. Dichos descensos son más importantes en el caso del escenario 4, que es el que más se acerca a reducir F hasta F_{MAX} . Los efectos positivos del escenario 2 pueden ser inferiores a los estimados actualmente, sobre todo si la veda de dos meses se aplica a los meses de escasa actividad pesquera (diciembre-enero), lo que daría lugar a una reducción de mortalidad inferior a la asumida actualmente.

7.3 Resumen de las proyecciones

La evaluación del pez espada del Mediterráneo indica que el stock está por debajo del nivel que permite el RMS y que la mortalidad por pesca actual supera la F_{RMS} . La medida en que la biomasa se sitúa por debajo de B_{RMS} y F por encima de F_{RMS} difiere en los diferentes modelos. En cualquier caso, la mortalidad por pesca (y las capturas a corto plazo) tiene que reducirse para acercar al stock al objetivo del Convenio de niveles de biomasa que permitan el RMS y alejarlo de los niveles que se considera que puedan generar un riesgo no despreciable de

rápido descenso del stock. Mientras que un enfoque de modelo indica que la situación actual del stock se sitúa sólo un 12% por debajo de la B_{RMS} , también indica que capturas futuras superiores a 12.000 t no producirán una mejora en el estado del stock. Por el contrario, el enfoque de modelación que proporciona una visión más pesimista del estatus actual indica que las capturas futuras que permitirían la recuperación se situarían algo por encima de 14.000 t, asumiendo que continúe la alta selectividad actual de juveniles y que el reclutamiento no mejore.

En las proyecciones de vedas estacionales que asumen que no se produciría compensación en el esfuerzo ni interacción con otras medidas de ordenación en vigor y que sí se produciría una mejora en el reclutamiento con un incremento de la biomasa del stock reproductor (SSB) se pronostica que dichas vedas serán beneficiosas a la hora de acercar la condición del stock al objetivo del Convenio, dando lugar a niveles de captura mayores a medio plazo y a reducciones en el volumen de la captura de juveniles. Sin embargo, las vedas estacionales, especialmente las más largas, tendrían como resultado una reducción significativa de las capturas en los primeros años posteriores a su aplicación. Según las proyecciones, una veda de seis meses (septiembre a febrero) del Mediterráneo a la pesca de pez espada permitiría que el stock se recupere hasta aproximadamente los niveles de RMS en el plazo de una generación (aproximadamente siete años) y tendría como resultado capturas sostenibles del orden de 18.500 t si mejora el reclutamiento con un incremento en la SSB. Según las proyecciones, una veda de cuatro meses (octubre-enero) podría producir alguna mejora en SSB, hasta aproximadamente el 65% de la B_{RMS} en una generación y podría tener como resultado capturas sostenibles del orden de 18.500 t, si el reclutamiento mejora con un incremento en la SSB. Una veda de dos meses (octubre-noviembre) daría lugar a una ganancia mucho menor en la SSB hasta aproximadamente el 50% de la B_{RMS} y un nivel de captura cercano al promedio de los últimos veinte años, si el reclutamiento no desciende. Estos efectos disminuirían especialmente si la veda se aplica en meses de baja actividad pesquera (diciembre-enero). Los resultados de las proyecciones de las vedas estacionales se resumen en la Figura 29.

8. Recomendaciones

8.1 Estadísticas e investigación

- Envío de datos. Los datos deben comunicarse cumpliendo los plazos de ICCAT, incluso aunque no se programe una evaluación analítica del stock. Los datos históricos de captura, esfuerzo y CPUE, si se revisan o cuando lo solicite la Secretaría, deberían también proporcionarse de ser posible. Si los datos de captura y talla se facilitan a la Secretaría en los plazos especificados, entonces la Secretaría facilitará la captura por talla y la tabla de sustitución adoptada a los científicos pertinentes para su revisión antes de la reunión. Esto permitirá que la sesión de evaluación inicie inmediatamente los análisis sin los retrasos asociados con el recálculo de la captura por talla durante la reunión debido a la presentación de datos tardía durante el primer día de la reunión. Este problema continuo dificultó la evaluación actual, requiriendo que el Grupo tuviera que realizar supuestos como traspasos de captura de un año al siguiente o sustituciones de la Tarea II para los países que no comunicaron los datos como se requería.
- Participación de las Partes contratantes de ICCAT en el Grupo de trabajo de evaluación. El Grupo constató que varias Partes contratantes, a pesar de tener importantes pesquerías de pez espada, no habían enviado científicos nacionales a las evaluaciones de 2007. Esto tuvo consecuencias negativas obvias mermando la capacidad del Grupo de interpretar con precisión las tendencias de las pesquerías y de proporcionar un mejor asesoramiento a la Comisión.
- Programas de muestreo. El Grupo constató que había finalizado el Programa COPEMED, programa que había generado una considerable mejora en la recopilación de datos sobre biología y estadísticas, y que era necesario poner en marcha nuevas iniciativas nacionales e internacionales. Siguen existiendo muchos campos en los que se requiere una mejora en el suministro de datos básicos de captura y esfuerzo y de muestras de tallas. El Grupo constató las mejoras en los datos realizadas en varios países debidas a las reglamentaciones sobre recopilación de datos de la CE.
- Captura. Todos los países que capturan pez espada (directamente o de forma fortuita) deberían comunicar estadísticas de captura, captura por talla (por sexo) y esfuerzo por zonas lo más pequeñas posible (cuadrículas de 5 grados para el palangre y de un grado para otros artes), y por mes. Se recomienda que al menos se estime el orden de la magnitud de las capturas no comunicadas. El grupo constató que es importante recopilar datos de talla junto con los datos de captura y esfuerzo para proporcionar CPUE coherentes. Tras comparar la Tarea I de ICCAT y los datos de FIGIS FAO, el

Grupo decidió adoptar las cifras de captura más elevadas de la base de datos FIGIS para los años anteriores a 1968 y recomendó que se armonicen los conjuntos de datos de ICCAT y FAO para el periodo 1950-1967, como ya se ha hecho para periodos posteriores y para otras especies.

- Descartes. Los países participantes deberían mejorar sus estimaciones de descartes de pez espada juvenil, cuando proceda, y presentar dicha información a la Secretaría de ICCAT.
- CPUE. Deberían desarrollarse series de CPUE para tener en cuenta la estratificación geográfica de la captura por arte y mes utilizando mediciones estándar del esfuerzo para cada arte (por ejemplo, número de anzuelos para el palangre, longitud de la red para las redes de enmalle), en la escala más fina posible (cuadrículas de 5 grados para el palangre y cuadrículas de 1 grado para otros artes). Aunque la CPUE por edad es el valor de entrada habitual para los análisis estructurados por edad, el Grupo reconoció que dicha CPUE debe basarse en un nivel incrementado de muestreo y no únicamente en la sustitución de los datos actuales. Por tanto, se recomienda que se realice un incremento del muestreo de tal modo que las CPUE puedan desarrollarse por edad. Para conseguir este objetivo, el Grupo constató que es importante que los datos de talla se recopilen junto con los datos de captura y esfuerzo para proporcionar CPUE coherentes.
- Medio ambiente. El Grupo recomendó que se continuase trabajando para identificar mejor los efectos del medio ambiente en la biología, la ecología y las pesquerías de pez espada. Los análisis futuros de CPUE deberían centrarse en el desarrollo de métodos adicionales para incorporar de forma explícita la variabilidad medioambiental en el modelo y la influencia del medio ambiente en la distribución de reproductores y juveniles.
- Determinación de la edad. El Grupo constató que nuevos trabajos de investigación apuntaban a que las estimaciones de edad por talla obtenidas de estudios de determinación directa de la edad presentaban variaciones dentro del Mediterráneo en función de su localización geográfica. Para evitar la posibilidad de que dicha variación sea el resultado de diferencias en los métodos de determinación de la edad, se instó a los científicos nacionales a intercambiar secciones de espinas y a compartir la metodología de determinación de la edad.
- Estudios de selectividad de los artes. Se instó a que continuasen las investigaciones sobre diseño de los artes para minimizar la captura de pez espada de edad 0 e incrementar el rendimiento y la biomasa por reproductora por recluta de la pesquería.
- Mezcla de stocks y líneas divisorias de ordenación. Tal y como se indicó en las Jornadas de trabajo sobre la estructura del stock de pez espada de 2006, sería útil continuar con las investigación, lo que incluye investigaciones de marcado, para definir el grado de mezcla cerca de las líneas divisorias del stock, como la existente entre los stocks del Mediterráneo y el Atlántico, mejorándose así potencialmente la evaluación de ambos stocks.
- Próxima evaluación del stock de pez espada del Mediterráneo. Se recomienda que la próxima evaluación del stock de pez espada del Mediterráneo se realice después del año 2010, siempre y cuando no haya indicios en el stock que indiquen un drástico descenso. De este modo se dispondrá de tiempo para incrementar la serie temporal de datos de captura y esfuerzo y para avanzar en la investigación básica y en los métodos de evaluación. Cabe indicar que los datos requeridos para dicha sesión deberían incluir los datos hasta el año anterior a la reunión, inclusive.

8.2 Ordenación

La Comisión debería adoptar un plan de ordenación de pesquerías de pez espada del Mediterráneo con el objetivo de la recuperación del stock hasta niveles que sean compatibles con el objetivo del Convenio de ICCAT. Una de las medidas técnicas evaluadas por el Comité hasta la fecha son las vedas a la pesca que podrían iniciar la recuperación, dependiendo de la duración y del momento en que se implementen. El Comité recomienda que la Comisión considere la adopción de dichas medidas que acercarían la condición del stock al nivel que permite el RMS.

Siguiendo los resultados de estudios recientes (SCRS/2006/163) las modificaciones técnicas en los artes de pesca de palangre, así como el modo en que se operan éstos, podría considerarse una medida técnica adicional para

reducir la captura de juveniles. El Comité recomienda que se integren este tipo de medidas en el plan de ordenación del pez espada del Mediterráneo.

En la evaluación del estado del stock se evidencia que la capacidad actual en la pesquería de pez espada del Mediterráneo supera la necesaria para obtener de forma eficaz el RMS. La Comisión debería considerar también medidas técnicas encaminadas a reducir esta capacidad como parte del plan de ordenación del pez espada del Mediterráneo.

9. Otros asuntos

El Grupo redactó el Resumen ejecutivo con vistas a la reunión del Grupo de especies del SCRS de 2007.

10. Adopción del informe y clausura

El informe fue adoptado y la reunión fue clausurada.

Referencias

- ANON, 1996. Report of the Second Meeting of the ad hoc GFCM/ICCAT Working Group on Stocks of Large Pelagic Fishes in the Mediterranean Sea - Mediterranean Swordfish Data Preparatory Meeting (Bari, Italy, September 13 to 19, 1995). Collect. Vol. Sci. Pap. ICCAT, 45(1): 1-97.
- ANON. 2004. 2003 ICCAT Mediterranean Swordfish Stock Assessment Session (Madrid, Spain, 26-29 May 2003) Collect. Vol. Sci. Pap. ICCAT, 56(3): 789-837.
- CAVALLARO, G., A. Potoschi and C. Cefali. 1991. Fertility gonad-somatic index and catches of eggs and larvae of *Xiphias gladius* L. 1758 in the southern Tyrrhenian Sea. Collect. Vol. Sci. Pap. 35(2): 502-507.
- DI NATALE, A., J.M. de La Serna, G. De Metrio, V. Restrepo, A. Srour and G. Tserpes. 2002. On the reduction of juvenile swordfish catches in the Mediterranean. ICCAT Collect. Vol. Sci. Pap. 54(5): 1529-1533.
- HILBORN, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570p.
- KELL, L.T., L. Mosqueira, P. Grosjean, J.-M. Fromentin, D. Garcia, R. Hillary, E. Jardim, S. Mardle, M.A. Pastoors, J.J. Poos, F. Scott, R.D. Scott. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640–646.
- REY, J.C. 1988. Comentarios sobre las áreas de reproducción del pez espada (*Xiphias gladius*) en el Atlántico y Mediterráneo. Collect. Vol. Sci. Pap. 27: 180-192.
- TSERPES, G., P. Peristeraki S. and Somarakis. 2001. On the reproduction of swordfish (*Xiphias gladius* L.) in the eastern Mediterranean. Collect. Vol. Sci. Pap. ICCAT, 52(2): 740-744.

TABLEAUX

Tableau 1. Prises estimées (t) d'espadon (*Xiphias gladius*) de la Méditerranée, par zone, engin et pavillon principaux.

Tableau 2. Paramètres biologiques et coefficients de conversion pour l'espadon de la Méditerranée.

Tableau 3. Tableau de substitution pour l'espadon de la Méditerranée.

Tableau 4. Prise par taille, en nombre de poissons, d'espadon de la Méditerranée.

Tableau 5. Prise par âge, en nombre de poissons, d'espadon de la Méditerranée.

Tableau 6. Valeurs d'entrée utilisées pour la modélisation de la production du stock d'espadon de la Méditerranée. Il est à noter que les valeurs négatives de la CPUE indiquent des données manquantes qui n'ont pas été utilisées dans l'ajustement du modèle. (*) Les valeurs négatives représentent des valeurs manquantes.

Tableau 7. Résumé des estimations du modèle de production de l'état actuel du stock, sur la base de résultats par bootstrap (999) d'après les résultats de trois modèles de production (*cf.* **Appendice 4** pour des informations détaillées).

Tableau 8. Estimations de la mortalité par pêche par âge, obtenues d'après le modèle XSA.

Tableau 9. Estimations de l'abondance du stock (nombres) au début de l'année, obtenues d'après le modèle XSA.

Tableau 10. Résultats obtenus avec VPA-2BOX pour l'espadon de la Méditerranée.

Tableau 11. Valeurs d'entrée pour les analyses par recrue en conditions d'équilibre.

Tableau 12. Prise (nombres), production (t) et biomasse du stock reproducteur (t) en conditions d'équilibre, correspondent au niveau de 2005 de la mortalité par pêche et d'autres points de référence biologiques. Les quantités absolues reflètent un niveau postulé de recrutement de 1.059.533 poissons.

TABLAS

Tabla 1. Captura estimadas (t) de pez espada (*Xiphias gladius*) en el mar Mediterráneo, por zonas, artes y pabellones principales.

Tabla 2. Parámetros biológicos y factores de conversión para el pez espada del Mediterráneo.

Tabla 3. Tabla de sustitución para el pez espada del Mediterráneo.

Tabla 4. Captura por talla, en número de ejemplares, de pez espada del Mediterráneo.

Tabla 5. Captura por edad, en número de ejemplares, de pez espada del Mediterráneo.

Tabla 6. Valores de entrada utilizados para la modelación de la producción del stock de pez espada del Mediterráneo. Constátese que los valores negativos de CPUE indican que los datos que faltan no se utilizaron en el ajuste del modelo. (*) los valores negativos representan valores que faltan.

Tabla. 7. Resumen de las estimaciones del modelo de producción del estado actual del stock basado en los resultados del *bootstrap* (999) de tres resultados del modelo de producción (véase el Apéndice para más información).

Tabla 8. Estimaciones de mortalidad por pesca por edad obtenidas del modelo del análisis extendido de supervivientes (XSA).

Tabla 9. Estimaciones de abundancia del stock (en número) a comienzos del año, obtenidas del modelo del análisis extendido de supervivientes (XSA).

Tabla 10. Resultados obtenidos con WPA-2 Box para el pez espada del Mediterráneo.

Tabla 11. Valores de entrada para los análisis por recluta en equilibrio.

Tabla 12. Captura (en número), rendimiento (en t) y biomasa del stock reproductor (en t) en equilibrio correspondientes al nivel de mortalidad por pesca de 2005 y otros puntos de referencia biológicos. Las cantidades absolutas reflejan un nivel asumido de reclutamiento de 1.059.533 ejemplares.

FIGURES

Figure 1. Estimations cumulées des prises d'espadon (t) en Méditerranée par type d'engins principaux, 1950-2005.

Figure 2. Carte de la Méditerranée incluant les endroits cités dans le Rapport. La ligne de délimitation Méditerranée/Atlantique utilisée par l'ICCAT se trouve à 5°W de longitude. La limite administrative provinciale approximative pour la Méditerranée utilisée par le Maroc est également indiquée.

Figure 3. Séries temporelles de CPUE relatives utilisées dans la modélisation de la production, résultant de l'information combinée des séries temporelles de la palangre italienne, de la palangre grecque, de la palangre espagnole, de la palangre japonaise, du filet maillant marocain et du filet maillant italien.

Figure 4. Ajustements des trois modèles de production (ASPIC) avec différentes structures du modèle aux données de CPUE observées.

Figure 5. Nuage de points des résultats de l'état du stock pour 2005 d'après 1500 résultats par bootstrap en utilisant trois formulations de modèle (ASPIC, *cf.* **Appendice 4**) pour l'espadon de la Méditerranée. La médiane des résultats est indiquée comme le grand cercle fermé au centre de la distribution de points.

Figure 6.a. Trajectoire de la médiane estimée des ratios de B et de F exprimée par rapport à la PME pour la période 1968-2005. Les résultats sont regroupés d'après les scénarios de trois modélisations décrites à l'**Appendice 4**.

Figure 6.b. Trajectoire temporelle de la médiane estimée de la biomasse relative moyenne et de F relative à partir de 1968, basée sur les résultats combinés par bootstrap du modèle de production ASPIC.

Figure 7. Estimations de B/B_{PME} (en haut) et de F/F_{PME} (en bas) avec les limites de confiance par bootstrap associées de 80% (lignes pointillées), basées sur les résultats combinés par bootstrap du modèle de production ASPIC.

Figure 8. Indices d'abondance observés et ligne ajustée au modèle, sur la base des indices prévus, pour le modèle de production TSM.

Figure 9. Estimations de la biomasse relative et des taux de capture d'après le modèle de production TSM.

Figure 10. Valeurs résiduelles de la capturabilité estimées par flottille d'après le modèle XSA.

Figure 11. Estimations des F moyennes par an (âges 2-5) obtenues avec le modèle XSA.

Figure 12. Estimations de la biomasse totale (TB) et de la biomasse du stock reproducteur (SSB) obtenues avec le modèle XSA.

Figure 13. Ajustements aux indices de CPUE disponibles obtenus avec VPA-2BOX, à l'échelle logarithmique. Les losanges sont les données observées et les carrés reliés avec une ligne sont les données prévues.

Figure 14. Sélectivités par âge estimées pour chaque indice utilisé dans les analyses VPA-2BOX.

Figure 15. Tailles par âge des populations, estimées pour l'espadon de la Méditerranée et obtenues avec les analyses de VPA-2BOX.

Figure 16. Biomasse reproductrice et biomasse exploitable estimées pour l'espadon de la Méditerranée obtenues avec les analyses de VPA-2BOX.

Figure 17. Taux de mortalité par pêche estimés pour l'espadon de la Méditerranée obtenus avec les analyses de VPA-2BOX.

Figure 18. Schémas de sélectivité estimés pour l'espadon de la Méditerranée obtenus avec les analyses de VPA-2BOX par groupes de 5 ans.

Figure 19. Comparaison de certains résultats obtenus avec deux méthodes d'évaluations structurées par âge différentes, appliquées à l'espadon de la Méditerranée. En haut: Recrutement ; Milieu : Mortalité par pêche âge ; en bas : Biomasse reproductrice (t) et biomasse totale (kg).

Figure 20a. Rapport Production– F en conditions d'équilibre pour l'espadon de la Méditerranée, basé sur VPA-2BOX (mis à l'échelle en postulant un niveau de recrutement de 1.059.533 poissons).

Figure 20b. Rapport Production– F en conditions d'équilibre pour l'espadon de la Méditerranée, basé sur XSA (mis à l'échelle en postulant un niveau de recrutement de 1.059.533 poissons).

Figure 21. Tendances des ratios estimés de la mortalité par pêche par rapport à la F qui optimise la production par recrue (F_{MAX}) par opposition aux ratios estimés de la biomasse reproductrice par rapport au niveau qui résulterait de la pêche à F_{MAX} . En haut: Résultats de VPA-2BOX. En bas: résultats de XSA. Les grands cercles ouverts indiquent la position du point de données de 2005.

Figure 22. Gamme des résultats par bootstrap d'après les évaluations de l'état du stock de VPA-2BOX. Le grand cercle fermé représente le résultat déterministe. Bien que l'incertitude dans les résultats soit élevée, toutes les estimations indiquent que le stock est surpêché et fait l'objet de surpêche.

Figure 23a. Prévisions de B/B_{PME} pour les différents scénarios de prise constante indiquées sur la base des résultats combinés par bootstrap du modèle de production ASPIC. Les lignes avec les symboles représentent la médiane des résultats. La prise constante postulée pour le scénario de la PME s'élevait à 14.300 t. L'intervalle de confiance reflète la limite supérieure de 80% pour le scénario de 10.000 t et la limite inférieure est celle du scénario de 16.000 t.

Figure 23b. Prévisions de B/B_{MAX} (B_{MAX} est un indice approchant de B_{PME}) pour les différents scénarios de prise constante indiquées sur la base des résultats combinés par bootstrap du modèle VPA-2BOX. Les lignes avec les symboles représentent la médiane des résultats. L'intervalle de confiance reflète la limite supérieure de 80% pour le scénario de 10.000 t et la limite inférieure est celle du scénario de 16.000 t.

Figure 24. De gauche à droite et du haut en bas: diagrammes en boîte à moustaches par année, pour les estimations de la prise totale (poids), de la prise de juvéniles (poids), de la prise de juvéniles (nombre) et du ratio de prises de juvéniles (nombre), obtenues d'après les simulations du scénario 1 de la VPA. Les cercles pleins indiquent les taux déclarés correspondants pour les années 2000-2005.

Figure 25. De gauche à droite et du haut en bas: diagrammes en boîte à moustaches par année, pour les estimations de la prise totale (poids), de la prise de juvéniles (poids), de la prise de juvéniles (nombre) et du ratio de prises de juvéniles (nombre), obtenues d'après les simulations du scénario 2 de la VPA. Les cercles pleins indiquent les taux déclarés correspondants pour les années 2000-2005.

Figure 26. De gauche à droite et du haut en bas: diagrammes en boîte à moustaches par année, pour les estimations de la prise totale (poids), de la prise de juvéniles (poids), de la prise de juvéniles (nombre) et du ratio de prises de juvéniles (nombre), obtenues d'après les simulations du scénario 3 de la VPA. Les cercles pleins indiquent les taux déclarés correspondants pour les années 2000-2005.

Figure 27. De gauche à droite et du haut en bas: diagrammes en boîte à moustaches par année, pour les estimations de la prise totale (poids), de la prise de juvéniles (poids), de la prise de juvéniles (nombre) et du ratio de prises de juvéniles (nombre), obtenues d'après les simulations du scénario 4 de la VPA. Les cercles pleins indiquent les taux déclarés correspondants pour les années 2000-2005.

Figure 28. Résultats des projections en termes de mortalité par pêche et de biomasse par rapport à F_{MAX} et B_{MAX} pour les quatre scénarios de la VPA étudiés.

Figure 29. Médiane de la SSB et niveaux de capture annuels avec les limites de confiance de 80% associées, tel que cela est prévu par les scénarios de fermeture saisonnière. Les estimations se référent aux dix dernières années de la période de projection c'est-à-dire après la stabilisation.

FIGURAS

Figura 1. Estimaciones acumuladas de capturas de pez espada (t) en el Mediterráneo por principal tipo de arte, 1950-2005.

Figura 2. Mapa del Mediterráneo con las localizaciones mencionadas en el Informe. El límite del Mediterráneo/Atlántico utilizado por ICCAT se encuentra a 5°W longitud. Se muestra también el límite administrativo provincial aproximado para el Mediterráneo utilizado por Marruecos.

Figura 3. La serie temporal de CPUE relativa utilizada en el modelo de producción, que resulta de la información combinada de las series temporales del palangre italiano, el palangre griego, el palangre español, el palangre japonés, las redes de enmalle de Marruecos y las redes de enmalle de Italia.

Figura 4. Ajustes de los tres modelos de producción (ASPIC) con diferentes estructuras de modelo a los datos de la CPUE observada.

Figura 5. Diagrama de dispersión de los resultados de la situación del stock para 2005 a partir de 1500 resultados de bootstrap utilizando tres formulaciones del modelo (ASPIC, ver Apéndice 4) para el pez espada

del Mediterráneo. La mediana de los resultados se indica como el círculo cerrado grande en el centro de la distribución de los puntos.

Figura 6.a. Trayectoria estimada de la mediana de las ratios de B y F expresada en relación con el RMS para el periodo 1968-2005. Los resultados son una mezcla de los escenarios de los tres modelos de producción descritos en el **Apéndice 4**.

Figura 6.b. Trayectoria temporal de la mediana estimada de la biomasa relativa y F relativa a partir de 1968 basándose en los resultados combinados de bootstrap del modelo de producción ASPIC.

Figura 7. Estimaciones de B/B_{RMS} (panel superior) y F/F_{RMS} (panel inferior) con límites de confianza asociados del bootstrap del 80% (líneas de puntos) basados en los resultados combinados de bootstrap del modelo de producción ASPIC.

Figura 8. Índices de abundancia observados y línea ajustada del modelo basados en los índices predichos, para el modelo de producción TSM.

Figura 9. Estimaciones de biomasa relativa y de tasas de captura a partir del modelo de producción TSM.

Figura 10. Residuos estimados de capturabilidad por flota a partir del modelo XSA.

Figura 11. Estimaciones medias de Fs (edades 2-5) por año obtenidas con el modelo XSA.

Figura 12. Estimaciones de biomasa total (TB) y biomasa reproductora del stock (SSB) obtenidas con el modelo XSA.

Figura 13. Ajustes a los índices disponibles de CPUE obtenidos utilizando el VPA-2Box, a escala logarítmica. Los rombos son los datos observados y los cuadrados unidos por una línea son los predichos.

Figura 14. Selectividades estimadas por edad para cada índice utilizado en los análisis del VPA-2Box.

Figura 15. Tamaños de población por edad estimados para el pez espada del Mediterráneo, obtenidos con los análisis del VPA-2Box.

Figura 16. Biomasa reproductora y explotable estimada para el pez espada del Mediterráneo obtenida mediante los análisis del VPA-2Box.

Figura 17. Tasas estimadas de mortalidad por pesca para el pez espada del Mediterráneo obtenidas con los análisis del VPA-2Box.

Figura 18. Patrones de selectividad estimados para el pez espada del Mediterráneo, obtenidos con los análisis del VPA-2Box, por bloques de 5 años.

Figura 19. Comparación de algunos resultados obtenidos con dos métodos de evaluación estructurados por edad diferentes aplicados al pez espada del Mediterráneo. Arriba: reclutamiento, Medio: mortalidad por pesca por edad. Abajo: biomasa reproductora (t) y biomasa total (kg).

Figura 20a. Relación entre rendimiento en equilibrio – F para el pez espada del Mediterráneo basada en el VPA-2box (escalado asumiendo un nivel de reclutamiento de 1.059.533 peces).

Figura 20b. Relación entre rendimiento en equilibrio – F para el pez espada del Mediterráneo basada en el XSA (escalado asumiendo un nivel de reclutamiento de 1.059.533 peces).

Figura 21. Tendencias en las ratios estimadas de mortalidad por pesca relativa a la F que maximiza el rendimiento por recluta (F_{max}) frente a las ratios estimadas de biomasa reproductora relativa al nivel que resultaría de pescar en F_{max} . Arriba: resultados del VPA-2Box. Abajo: resultados del XSA. Los círculos abiertos grandes indican la posición del punto de datos de 2005.

Figura 22. El rango de resultados de bootstrap de las evaluaciones de la situación del VPA-2Box. El círculo grande y cerrado representa el resultado determinista. Aunque la incertidumbre en los resultados es elevada, todas las estimaciones indican que el stock está sobrepescado y sufriendo sobrepesca.

Figura 23a. Previsiones de B/B_{RMS} para los diferentes escenarios de captura constante mostrados basadas en los resultados combinados de bootstrap del modelo de producción ASPIC. Las líneas con símbolos representan la mediana de los resultados. La captura constante asumida para el escenario de RMS fue de 14.300 t. El intervalo de confianza refleja el límite superior del 80% para el escenario de 10.000 t y el límite inferior es el del escenario de 16.000 t.

Figura 23b. Previsiones de B/B_{MAX} (B_{MAX} es una aproximación para B_{RMS}) para los diferentes escenarios de captura constantes mostrados basadas en los resultados combinados de bootstrap del modelo VPA-2BOX. Las

líneas con símbolos representan la mediana de los resultados. El intervalo de confianza refleja el límite superior del 80% para el escenario de 10.000 t y el límite inferior es el del escenario de 16.000 t.

Figura 24. De izquierda a derecha y de arriba a abajo: diagramas de cajas por año, para las estimaciones de captura total (peso), captura de juveniles (peso), captura de juveniles (número) y de la ratio de captura de juveniles (número), obtenidas a partir de las simulaciones del Escenario 1 del VPA. Los círculos sólidos indican las tasas declaradas correspondientes para los años 2000-2005.

Figura 25. De izquierda a derecha y de arriba a abajo: diagramas de cajas por año, para las estimaciones de captura total (peso), captura de juveniles (peso), captura de juveniles (número) y de la ratio de captura de juveniles (número), obtenidas a partir de las simulaciones del Escenario 2 del VPA. Los círculos sólidos indican las tasas declaradas correspondientes para los años 2000-2005.

Figura 26. De izquierda a derecha y de arriba a abajo: diagramas de cajas por año, para las estimaciones de captura total (peso), captura de juveniles (peso), captura de juveniles (número) y de la ratio de captura de juveniles (número), obtenidas a partir de las simulaciones del Escenario 3 del VPA. Los círculos sólidos indican las tasas declaradas correspondientes para los años 2000-2005.

Figura 27. De izquierda a derecha y de arriba a abajo: diagramas de cajas por año, para las estimaciones de captura total (peso), captura de juveniles (peso), captura de juveniles (número) y de la ratio de captura de juveniles (número), obtenidas a partir de las simulaciones del Escenario 4 del VPA. Los círculos sólidos indican las tasas declaradas correspondientes para los años 2000-2005.

Figura 28. Resultados de las proyecciones en términos de mortalidad por pesca y biomasa relativas a F_{max} y B_{max} para los cuatro escenarios del VPA considerados.

Figura 29. Mediana de la SSB y niveles de captura anual con los límites de confianza asociados del 80% tal y como predicen los escenarios de veda estacional. Las estimaciones se refieren a los últimos diez años del periodo de proyección, es decir, después de la estabilización.

APPENDICES

Appendice 1. Ordre du jour

Appendice 2. Liste des participants

Appendice 3. Liste des documents

Appendice 4. Informations détaillées du modèle de production (ASPIC) pour l'évaluation du stock de la Méditerranée

Appendice 5. Code R utilisé pour l'évaluation XSA

Appendice 6. Modélisation VPA-2BOX: Ajustements aux données de l'indice pour l'espadon de la Méditerranée

APÉNDICES

Apéndice 1. Orden del día

Apéndice 2. Lista de Participantes

Apéndice 3. Lista de documentos

Apéndice 4. Detalles de la modelación de producción (ASPIC) para la evaluación del stock del Mediterráneo.

Apéndice 5. Código R utilizado para la evaluación del Análisis extendido de supervivientes.

Apéndice 6. Modelación VPA-2BOX: ajustes a datos de índice para el pez espada del Mediterráneo

		1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
TOTAL		337	0	452	340	393	0	914	200	112	206	300	318	394	1760	1752	1317	3440	3723	3341	4975	5958	4807	5034	4301	4637	5280	5958	5547	6579	6813	6343
Landings	Longline	337	0	452	340	393	0	414	0	0	94	188	94	282	1423	1192	869	1196	1350	1114	1426	1529	1388	1094	715	4143	4606	5046	4877	5115	5418	5770
	Other surf.	0	0	0	0	0	0	500	200	112	112	112	224	112	337	560	448	2244	2373	2227	3549	4429	3419	3940	3586	494	674	912	670	1464	1395	573
Discards	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Albania	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Algerie	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	196	500	368	370	320	521	650	760	870
	Chinese Taipei	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Croatia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	EC.Cyprus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	59	95	82	98	72	78	103
	EC.España	337	0	452	340	393	0	414	0	0	0	0	0	0	1200	1000	700	1000	1100	900	1100	1300	1105	700	89	89	667	720	800	750	1120	900
	EC.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	EC.Greece	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91	773
	EC.Italy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1568	2240	2016	3248	4144	3136	3730	3362	3747	3747	4506	3930	4143	3823	2939
	EC.Malta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	112	224	224	224	192	214	175	223	136	151	222	192	177
	EC.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Japan	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	3	1	0	5
	Libya	0	0	0	0	0	0	0	0	0	0	0	0	0	224	224	336	560	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Maroc	0	0	0	0	0	0	0	0	0	94	188	94	282	224	192	170	197	250	214	327	230	183	196	118	186	144	172	0	0	0	0
	NEI-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	728	672	517
	Tunisie	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	3	5	0	0	0	0	7	19
	Turkey	0	0	0	0	0	0	500	200	112	112	112	224	112	112	336	111	115	133	99	76	60	59	15	10	7	34	20	44	13	70	40
Discards	EC.Greece	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 1. Estimated catches (t) of swordfish (Xiphias gladius) in the Medditerranean Sea, by major area, gear and flag

Table 1.	(Continued)
----------	-------------

		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
TOTAL		6896	13666	15292	16765	18320	20365	17762	16018	15746	14709	13265	16082	13015	12053	14693	14369	13699	15569	15006	12814	15674	14405	14601
Landings	Longline	6313	6749	6493	7505	8007	9476	7065	7184	7393	7631	7377	8985	6319	5884	5389	6496	6097	6963	7180	7697	10415	11054	11274
	Other surf.	583	6917	8799	9260	10313	10889	10697	8834	8353	7078	5888	7097	6696	6169	9304	7873	7602	8606	7826	5117	5259	3343	3214
Discards	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9
	Albania	0	0	0	0	0	0	0	0	0	0	0	0	0	13	13	13	13	0	0	0	0	0	0
	Algerie Chinese	877	884	890	847	1820	2621	590	712	562	395	562	600	807	807	807	825	709	816	1081	814	665	564	635
	Taipei	0	0	0	0	0	0	0	0	0	0	1	1	0	1	3	0	0	0	0	0	0	0	0
	Croatia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	20	0	0	0	0	0	0
	EC.Cyprus	28	63	71	154	84	121	139	173	162	56	116	159	89	40	51	61	92	82	135	104	47	49	53
	EC.España	1322	1245	1227	1337	1134	1762	1337	1523	1171	822	1358	1503	1379	1186	1264	1443	906	1436	1484	1498	1226	951	910
	EC.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	27	0	19	0
	EC.Greece	772	1081	1036	1714	1303	1008	1120	1344	1904	1456	1568	2520	974	1237	750	1650	1520	1960	1730	1680	1230	1120	1311
	EC.Italy	3026	9360	10863	11413	12325	13010	13009	9101	8538	7595	6330	7765	7310	5286	6104	6104	6312	7515	6388	3539	8395	6942	7460
	EC.Malta	59	94	172	144	163	233	122	135	129	85	91	47	72	72	100	153	187	175	102	257	163	195	362
	EC.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	115	8	1	120	14
	Japan	6	19	14	7	3	4	1	2	1	2	4	2	4	5	5	7	4	2	1	1	0	3	5
	Libya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	8	6	0	10	2	0
	Maroc	43	39	38	92	40	62	97	1249	1706	2692	2589	2654	1696	2734	4900	3228	3238	2708	3026	3379	3300	3253	2523
	NEI-2	532	771	730	767	828	875	979	1360	1292	1292	0	0	0	0	0	0	0	0	0	0	0	0	0
	Tunisie	15	15	61	64	63	80	159	176	181	178	354	298	378	352	346	414	468	483	567	1138	288	791	791
	Turkey	216	95	190	226	557	589	209	243	100	136	292	533	306	320	350	450	230	370	360	370	350	386	425
Discards	EC.Greece	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	113

Table 2. Biological parameters and conversion factors for Mediterranean swordfish.

	Reference	Ν	LJ-FL (cm)	Method	Stock
$\frac{Sexes\ combined}{L_t} = 238.58\ (1 - e^{-0.185\ (t+1.404)}\)$	Tserpes and Tsimenides (1995)	1100	62-210	Spines	Med.

Growth parameters used by the SCRS for Atlantic and Mediterranean swordfish.

Size-weight relationships used by the SCRS for Mediterranean swordfish.

		Reference	Ν	LJ-FL (cm)	Stock
$GWT = 5.70 \times 10^{-6} \times LJ - FL$ $RWT = 8.90493 \times 10^{-7} \times LJ -$ LJ-FL: length from lower jaw to b	_3.16 FL ^{3.554738} fork	De Metrio (1987) Mejuto and De la Serna (1993)	462 1006	64-205 62-237	Mediterranean Mediterranean
RWT: round weight					
Conversion factors among the c swordfish	lifferent types of weight for the				
Equation	Reference		Geograph	hic area	
$RWT = 1.12 \times GWT$	Anon. (2004)		Mediterr	anean	

Estimated size of initial sexual maturity for Mediterranean swordfish.

						Reference	ce			Stock
50% of the fe	emales are ma	ture at 142	cm (3.5 y	rears)		de la Sei	rna <i>et al</i> ., (1996)		Mediterranean
Fraction mate Age 0 0	$\begin{array}{c} \text{are at age:} \\ 1 & 2 & 3 \\ 0 & 0 & 0.5 \end{array}$	<u>4 ></u> 5 1 1	<u>=5</u> 1							
Natural mort	ality: 0.2 for a	ll ages								
2005 Catch V	Veight (kg) at	age								
Age: 0	1	2	3	4	5	6	7	8	9	10^{+}
2.5	7.7	16.8	30.5	48.4	68.2	87.4	106.7	125.7	142.5	181.4

Table 3. Substitution table for Mediterranean swordfish.

												-
t1Yr tiFleetC	t1GearG	tiYt	RF	szYr szFleetC szGearG	Lrng	Lmed V	Vimed sz'	Yt szh	it szint	szFrqT	TPerGrp	remarks
1990 EC.ITA	UN	2294	62.98587358	1990 EC.ITA-IT-TYRR GN	86-210	130	31	35	1159	1	6 mm	subs-raise
1990 EC.ITA-IT-IONI.	EGN.	62	1.702347935	1990 EC.ITA-IT-TYRR GN	86-210	130	31	35	1159	1	6 mm	subs-raise
1990 EC.ITA-IT-LIGU	IF GN	59	1,61997626	1990 EC.ITA-IT-TYRR GN	86-210	130	31	36	1159	1	6 mm	subs-raise
1991 EC ITA	LIN	2026	40 48377670	1991 EC ITA-IT-TYER ON	62-230	193		72	2015	1	6 mm	subsurpise
1991 EQ.11A	0.1	2920	40.40377075	1991 CC.11A-11-1101 GN	62-230	135		12	2010		6	Substalse
1995 EC.11A-11-ADR		1/0	13.9/6613	1995 ECTIA-IT-IONLYEE	30-260	99	13	12	970	5	6 mm	subs-raise
1995 EC. ITA-IT-IONI.	.5 GN	350	15.77571387	1995 EC.ITA-IT-IONI.FGN	35-220	119	32	22	697	5	6 mm	subs-raise
1995 EC.ITA-IT-SARD	ու	65	4.711000973	1995 EC.ITA-IT-TYRR LL	62-186	103	14	14	980	1	6 mm	subs-raise
1999 MAR	GN	2979	12,51815901	1999 MAR GN	80-230	140	45	238	5293	5	6 mm	raise
2000 MAR	GN	2503	10 27522164	2000 MAR (2N	55,050	1/1	45	130	2870	5	6 mm	raise
2000 1001		2000	19.27022104	2000 1001	80.200	141	40	100	2010		¢	in the second
2000 JPN	u	2	0.5///3/854	2000 EC.ESP LL	/0-220	144	51	3	68	5	6 mm	subs-raise
2001 DZA	GN	642	18.52497019	2001 MAR GN	95-235	143	48	35	724	5	6 mm	subs-raise
2001 DZA	LL.	133	0.095014876	2001 EC.ESP-ES-5W/ LL	55-210	105	16	1400	85908	5	6 mm	subs-raise
2001 DZA	UN	305	0.218605655	2001 EC ESP-ES-SWILL	55-210	105	15	1400	85908	5	6 mm	subs-raise
2001 EC CYP		195	1.484880248	2001 EC GRC 11	51,258	194	40	01	2900	-	6 mm	subsurpise
2001 20.01P		100	1.404003240	2001 20.010 22	01-200	104			2000		0 mm	2003-10130
2001 EC.ESP	u.	27	0.018931535	2001 EC.ESP-ES-SWILL	55-210	105	16	1400	89908	5	6 mm	subs-raise
2001 EC.ESP	u.	20	0.914813878	2001 EC.ESP LL	95-230	159	72	22	311	5	6 mm	raise
2001 EC.ESP	LL.	40	2.500815303	2001 EC.E5P LL	40-160	89	9	16	1676	5	6 mm	raise
2001 EC ESP	50	5	0.003543428	2001 EC ESP-ES-SWILL	55-210	105	16	1400	85908	5	6 mm	subs-raise
2001 50 550	70	-	0.000571991	2001 EC EED ES SMILL	55 210	105	15	1400	05000	-	5 mm	subscription
2001 EG.E3P	19	-	0.0025/1651	2001 EC.EOP-EO-OWNEE	33-210	100	10	1400	00900		0 mm	Substalse
2001 EC.ESP	UN	73	0.052151022	2001 EC.ESP-ES-SWILL	55-210	105	16	1400	86908	5	6 mm	subs-raise
2001 EC.ESP-E5-5W	A LL	1315	0.939718557	2001 EC.ESP-ES-5W/ LL	55-210	105	16	1400	85908	5	6 mm	raise
2001 EC.FRA	UN	12	0.008572771	2001 EC.ESP-ES-5WI LL	55-210	105	16	1400	85908	5	6 mm	subs-raise
1001 EC ORC		1790	18 08220004	2001 EC CEC 11	61,769	194	40	01	2200	4	6 mm	mine
2001 20.010		1/30	10.50000204	2001 20.0100 22	31-230	1.04	40	31	2300		0 1111	1013C
2001 EC.ITA-IT-SIC.8	5 UL	1632.28	136.812913	2001 EC.ITA-IT-SIC.S LL	75-190	115	21	12	573	5	ъmm	raise
2001 EC.ITA-IT-TYRE	RUL	603.72	88.22543291	2001 EC.ITA-IT-TYRR LL	75-165	103	13	7	508	5	6 mm	raise
2001 EC.ITA-IT-IONI.	IF UN	62	0.778710293	2001 EC.ITA-IT-TYRR GN	80-220	138	41	80	1959	5	6 mm	subs-raise
2001 EC.ITA-IT-IONI	SUN	332	4.153121563	2001 ECJTA-IT-TYRR GN	80-220	138	41	80	1959	5	6 mm	subs-raise
2001 EC ITA-IT-LICU	ELIN	21	0.250570008	2001 EC ITAJT-TYPE ON	80.220	198		80	1959	-	6 mm	subsuring
2001 EC.IIAAIT-EIGO		21	0.2350/0050	2001 2001 2001 2001	00-220	130	41		1909		0 1111	-
2001 EC.ITA-IT-TYRE	RUN	3737	46.72261758	2001 EC.ITA-IT-TYRR GN	80-220	138	41	80	1959	5	6 mm	raise
2001 EC.MLT	u.	102	6.113752796	2001 EC.MLT LL	95-145	115	19	17	856	5	6 mm	raise
2001 EC.PRT-PT-MA	a LL	115	0.08222716	2001 EC.ESP-ES-SW/ LL	55-210	105	16	1400	86908	5	6 mm	subs-raise
2001 JPN		1	0 000714398	2001 EC ESP-ES-SWILL	55-210	105	15	1400	85908	5	6 mm	subs-raise
0004 1 814		i.	0.000074008		55 010	105		1400	05000		6	a de mine
2001 LBY	u.	6	0.003974908	2001 EC.ESP-ES-SWILL	55-210	105	16	1400	85905	5	6 mm	subs-raise
2001 MAR	GN	2266	65.38554245	2001 MAR GN	95-235	143	48	35	724	5	6 mm	raise
2001 MAR	LL.	754	0.538655764	2001 EC.ESP-ES-5W/LL	55-210	105	16	1400	86908	5	6 mm	subs-raise
2001 MAR	P5	4	0.00285759	2001 EC.ESP-ES-5W/LL	55-210	105	16	1400	86908	5	6 mm	subs-raise
2001 MAR	TD	2	0.001428705	2001 EC ESD-ES-SIARLI	55,210	105	15	1400	86908	5	6 mm	subsurpise
2001 1090	16	2	0.001420750	2001 EC.E0P=E0-000 EE	33*210	100	10	1400	00900		0 1111	Substalse
2001 TUN	u.	55/	47.52427382	2001 EC.ITA-IT-SIC.S EL	/5-190	115	21	12	5/3	5	6 mm	subs-raise
2001 TUR	GN	360	123.8681733	2001 TUR GN	70-185	120	26	3	111	5	6 yy	raise
2002 DZA	GN	467	4.136204952	2002 MAR GN	75-235	144	50	113	2277	5	6 mm	subs-raise
2002 DZA	LL.	99	0.065343006	2002 EC.ESP-ES-5W/ LL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 074	UN	2/8	0 16968759	2002 EC ESD-ES-SIART	60,210	102	14	1515	107751	5	6 mm	subsurpise
2002 024		240	0.10000700		00-210	102		1010	107701	, in the second s	0 mm	200310130
2002 EC.CYP	u.	104	1.136627953	2001 EC.GRC LL	51-258	134	40	91	2300	1	6 mm	subs-raise
2002 EC.ESP	u.	43	0.028513312	2002 EC.ESP-ES-SWILL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 EC.ESP	LL.	6	10.55588309	2002 EC.E5P LL	70-210	133	41	1	13	5	6 mm	raise
2002 EC ESP	ш.	25	0.968294278	2002 EC.ESP LL	75-180	111	20	25	1283	5	6 mm	raise
2002 50 550	 	10	0.010540577	2002 EC EED ES SIALL	60.210	102	- 14	1515	107751	-	5 mm	cube mire
2002 EC.E3P	30	19	0.0125405/7	2002 EC.E3P-E3-5W/LL	60-210	102	14	1515	107/51	5	6 mm	Sub5-raise
2002 EC.ESP	TP	2	0.00151807	2002 EC.ESP-ES-SWILL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 EC.ESP	UN	55	0.037027703	2002 EC.ESP-ES-SW/ LL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 EC.ESP-E5-5W	ALL	1347	0.88932491	2002 EC.ESP-ES-5W/LL	60-210	102	14	1515	107751	5	6 mm	raise
2002 EC ERA	UN	27	0.01782082	2002 EC ESP-ES-SWILL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 20.000			10.10155450	2002 50 500 11	54 555	102				ž	6	
2002 EC.GRC	u.	1660	10.43405109	2001 EC.GRG LL	51-236	154	40	aı	2300	1	6 mm	subs-raise
2002 EC.ITA-IT-SIC.S	5 UL	1344	62.86524395	2002 EC.ITA-IT-SIC.S'LL	75-160	111	18	21	1192	5	6 mm	raise
2002 EC.ITA-IT-TYRE	RUL	497	23.25152859	2002 EC.ITA-IT-SIC.S LL	75-160	111	18	21	1192	5	6 mm	subs-raise
2002 EC.ITA-IT-IONI.	FUN	25	1.191414555	2002 EC.ITA-IT-SIC.S LL	75-160	111	18	21	1192	5	6 mm	subs-raise
2002 EC ITA-IT-IONI	S LINI	195	6 95/210052	2002 EC ITA-IT-SIC S'LL	75,160	111	18	21	1102	-	6 mm	subsuring
2002 COLTANT HONE		130	0.004210902	2002 ECTIANT-010.0 EE	73-100		10	21	1152	-		
2002 EC.IIA-II-LIGU	IF UN	•	0.39/135165	2002 EC.ITA-IT-SIC.S EL	/5-160	111	10	21	1192	5	6 mm	subs-raise
2002 EC.ITA-IT-TYRE	RUN	1528	71.48487333	2002 EC.ITA-IT-SIC.S'LL	75-160	111	18	21	1192	5	6 mm	subs-raise
2002 EC.MLT	u.	257	15.46779879	2001 EC.MLT LL	95-145	115	19	17	856	5	6 mm	subs-raise
2002 EC.PRT-PT-MA	I LL	8	0.005016231	2002 EC.ESP-ES-SWILL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 JPN	ш	-	0.00066000	2002 EC ESP-ES-SMALL	60-210	100	14	1515	107751	5	6.000	subsubing
2002 3414			0.00000000	2002 00.000400-000400	00-210	102	14	1515	10//31		0 1111	
2002 MAR	en	2230	19.75104292	2002 MAR GN	/8-235	144	50	113	22/7	5	o mm	ratse
2002 MAR	uL.	1149	0.758374886	2002 EC.ESP-ES-5WILL	60-210	102	14	1515	107751	5	6 mm	subs-raise
2002 TUN	u.	1138	53.23242105	2002 EC.ITA-IT-SIC.S'LL	75-160	111	18	21	1192	5	6 mm	subs-raise
2002 TUR	UN	370	4.060012575	2001 EC.GRC LL	51-258	134	40	91	2300	1	6 mm	subs-raise
2003 DZA	UN	665	0,49015856	2003 EC.ESP-ES-SWILL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2008 EC CYD			1 2264020	2002 EC CEC	60 005	110			1000		6.157	subc mine
2000 EG.01P		4/	1.200400035/		00-235	135			1000		0,,,	Suus-raise
2003 EC.ESP	uL.	78	0.057854189	2003 EC.ESP-ES-SWILL	60-215	113	20	1357	68028	5	ьmm	Subs-raise
2003 EC.ESP	LL.	6	0.004088586	2003 EC.ESP-ES-SWILL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 EC.ESP	LL.	24	0.017449545	2003 EC.ESP-ES-5W/ LL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 EC F5P	TP	ą	0.002102891	2003 EC.ESP-ES-SWILL	60-215	119	20	1357	68028	5	6 mm	subs-raise
2008 EC 550	IN		0.04050505	2002 EC EC EC Statu	60 015	110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1007	68000		6 mm	rube mine
2003 EC.E3P	UN	20	0.04209039	2003 EC.E0P-E0-5W/EE	60-215	115	20	1357	00020	5	6 mm	Subs-false
2003 EC.ESP-E5-5W	A LL	1057	0.77927914	2003 EC.E5P-ES-5WILL	60-215	113	20	1357	68028	5	6 mm	raise
2003 EC.GRC	u.	1230	32.13312355	2003 EC.GRC LL	60-235	135	38	38	1000	5	6 yy	raise
2003 EC.ITA-IT-SIC.S	5 LL	2468	152.1652768	2003 EC.ITA-IT-SIC.S'LL	40-185	114	20	16	795	5	6 mm	raise
2003 EC ITA	SP	2.00	0.149184829	2003 EC.ITA-IT-TYSE HP	75-190	125	30	13	448	5	6 mm	subs-raise
2008 EC 175	TD	2	0.1404040		75 100	.20	**	10			6 mm	subs mins
2003 EC.11A	IP I	2	v. 149154523	2005 ECTIA-IT-TYRE HP	/5-190	126	30	13	448	5	o mm	subs-faise
2003 EC.ITA	UN	104	7.757610803	2003 EC.ITA-IT-TYRR HP	75-190	125	30	13	448	5	6 mm	subs-raise
2003 EC.ITA-IT-ADRI	L LL	645	124.9597614	2003 EC.ITA-IT-ADRI. LL	89-210	121	25	5	200	1	6 mm	raise
2003 EC.ITA-IT-ADRI	I. UN	16	3,082874489	2003 EC.ITA-IT-ADRI/UN	68-158	100	12	5	419	1	6 mm	raise
2003 EC ITA-IT-IONI	NI	160	16 67757795	2003 EC ITA-IT-IONIA I I	51-221		18	10	551	1	6 mm	raise
2003 EC.TRATHONI.		162	10.0//5//25	2003 CONTANTHUNIA EL	01-221	30	10	10	001		6 mm	Torse
2003 EC.ITA-IT-IONI.	r UN	41	19.0177795	2003 EC.ITA-IT-IONIA GN	83-203	132	41	2	53	1	6 mm	raise
2003 EC.ITA-IT-IONI.	5 LL.	885	106.9129666	2003 EC.ITA-IT-IONIA LL	52-208	95	16	8	508	1	6 mm	raise
2003 EC.ITA-IT-IONI.	S UN	273	225.5422618	2003 EC.ITA-IT-IONIA GN	49-183	90	14	1	88	1	6 mm	raise
2003 EC ITA-IT-LIGU	FLL	155	9,880504988	2003 EC.ITA-IT-TY 11 11	61-200	124	28	15	554	1	6 mm	subs-mise
2008 EC ITA (T L C)	FIN		0.950005577	2003 EC ITA IT TYPE ON	75 225	100		51	2225	5	6.0000	sube mine
2003 EG.TIA-TI-LIGU		22	0.0053555//	2003 COLTANI - I TRUCON	10-225	122	21	01	2230		0.000	suus-raise
2003 EC.ITA-IT-SARI	u uL	372	23.71321197	2003 EC.ITA-IT-TY.LI LL	61-200	124	28	16	564	1	6 mm	subs-raise
2003 EC.ITA-IT-SARI	D UN	68	1.110859355	2003 EC.ITA-IT-TYRR GN	75-225	122	27	61	2235	5	6 mm	subs-raise
2003 EC.ITA-IT-TYRE	RHP	7	0.484850575	2003 EC.ITA-IT-TYRR HP	75-190	125	30	13	448	5	6 mm	raise
2003 EC.ITA-IT-TYRE	RLL	1156	73,70410504	2003 EC.ITA-IT-TY.LI LL	61-200	124	28	16	564	1	6 mm	raise
2003 EC ITA-IT-TYPE	RUN	2016	32,94024743	2003 EC.ITA-IT-TYRE ON	75-225	122	27	61	2235	5	6 mm	raise
2000 20.11991 -1110		2010	02.94024/42	2000 COLUMNITY TOP, ON	10,220	122	21	01	2230			ionse .
2003 EC.MLT	uL.	163	10.0199725	2003 EC.ITA-IT-SIC.S'LL	40-185	114	20	16	796	5	e mm	subs-raise

2003 EC.PRT-PT-MAI LL	1	0.000449619	2003 EC.ESP-ES-SW/ LL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 LBY LL	10	0.007417979	2003 EC.ESP-ES-SW/ LL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 MAR GN	1629	54,35412019	2003 MAR GN	85-225	134	38	30	784	5	6 mm	raise
2002 MAR	1670	1 220224525	2003 EC ESD.ES.5///11	60.215	119	20	1957	68038	5	6 mm	rube mire
	1070	1.230324000	2000 E0.E09-E0-044 EE	00-215	110		1007	00020		6	Substatise
2003 MAR TP	1	0.000737081	2003 EC.ESP-ES-SWILL	60-215	113	20	1357	68028	5	6 mm	subs-raise
2003 TUN LL	285	17.57182174	2003 EC.ITA-IT-SIC.S'LL	40-185	114	20	16	795	5	6 mm	subs-raise
2003 TUN PS	2	0.148886453	2003 EC.ITA-IT-TYRR HP	75-190	125	30	13	448	5	6 mm	subs-raise
2003 TUN TP	0	0									ianore (<0.5t)
2003 TUN TW											ignore (<0.5t)
				** ***						e	ignore (local)
2003 TUK P5	350	9,1435/1/41	2003 EC.GRC LL	60-235	135	38	38	1000	5	ъуу	subs-raise
2004 DZA GN	233	3.189360514	2004 MAR GN	85-240	147	53	73	1390	5	6 mm	subs-raise
2004 DZA HL	112	0.127439834	2004 EC.E5P-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 DZA LL	52	0.059168494	2004 EC.ESP-ES-SW/ LL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 DZA P5	45	0.051203505	2004 EC ESP-ES-SWELL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 DZA UN	100	0.12891830	2004 EC EED EE EVALU	60.205	104	17	879	62545	ě	6 mm	subs-raise
2004 024 011	122	0.13001035	2004 EC.EDF-ED-DW/EE	00-200	104		0/5	32043		0	Substatise
2004 EC.CYP LL	49	0.5845182/6	2004 EC.GRC LL	60-235	134	38	84	2225	5	ъуу	subs-raise
2004 EC.ESP LL	23	0.026351599	2004 EC.E5P-ES-5W/LL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC.ESP LL	6	0.007127528	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 EC.ESP LL	11	0.012812255	2004 EC.ESP-ES-SW/ LL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC ESP TD	1	0.001512341	2004 EC ESD-ES-SM/11	60,235	104	17	879	52543	5	6 mm	subsurpise
2004 50 550		0.0001012041	2004 E0 E50 E5 SHALL	00-200	104		070	02040	č	6	subs miss
2004 EC.E3P ON	20	0.023133743	2004 EC.EOP-E0-076 EE	00-200	104	11	0/9	32043	0	0 1111	Substalse
2004 EC.ESP-E5-5Wi LL	889	1.011423966	2004 EC.ESP-ES-SWILL	60-235	104	17	879	52643	5	6 mm	raise
2004 EC.FRA UN	19	0.021619258	2004 EC.ESP-ES-SWI LL	60-235	104	17	879	52643	5	6 mm	subs-raise
2004 EC.GRC LL	1129	13.43885021	2004 EC.GRC LL	60-235	134	38	84	2225	5	6 yy	raise
2004 EC.ITA-IT-SIC.S LL	2473	57,58625719	2004 EC.ITA-IT-5IC.5 LL	45-235	121	28	43	1525	5	6 mm	raise
2004 EC ITA SD	2	0.66535060	2004 EC ITAJT, TYRE HD	90,180	195	90	٩	77	5	6 mm	subsurpise
2004 EC ITA TO	-	0.9935759/5	2004 EC ITA IT TYPE HD	00.190	105				-	6 000	subc mire
		0.002070040	2004 2001241-1110011-	30-100							3003 Tolde
2004 EC.ITA UN	2/	8.982234312	2004 EC.ITA-IT-TYRR HP	90-180	136	39	3	11	5	ъmm	subs-raise
2004 EC.ITA-IT-ADRI. LL	589	21,45004487	2004 EC.ITA-IT-ADRI, LL	82-191	120	27	12	460	1	6 qu	join-raise
2004 EC.ITA-IT-ADRI. LL		21.45004487	2004 EC.ITA-IT-ADRJ. LL	69-200	121	26	15	592	1	6 qu	join-raise
2004 EC.ITA-IT-ADRI. UN	4	0.045575724	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC ITA-IT-IONI NU	154	6 1753519	2004 EC ITA-IT-IONIA I I	49-265	103	21	25	1200	1	6 au	raise
2004 EC ITA IT IONIA UN		0.125508241		95 200	100	95		2452	-	6 qu	rube mire
2004 ECTIANTHONORON		0.123506241	2004 EC.TRATI-THR. GN	65-230	135			2400		6 mm	Substalse
2004 EC.ITA-IT-IONI.5 LL	831	33.32284045	2004 EC.ITA-IT-IONIA LL	49-265	103	21	25	1200	1	6 qu	subs-raise
2004 EC.ITA-IT-IONI.5 UN	178	2.032569716	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-LIGUF LL	149	9.287437263	2004 EC.ITA-IT-TY.LI LL	63-206	122	28	16	581	1	6 qu	raise
2004 EC.ITA-IT-LIGUF UN	2	2,265579191	2004 EC.ITA-IT-TY.LI GN	76-240	130	42	1	21	1	6 au	raise
2004 EC ITA-IT-SARD II	298	95 565/9205	2004 EC ITA-IT-SARD II	105-223	147	45		70	1	6 01	raise
	250	50.00049200		100-220	142	**		0.00	-	6 qu	i di Se
2004 ECTIA-IT-SARD UN	5	0.05/094655	2004 ECTIA-IT-TYRK GN	85-230	133	36	00	2453	5	6 mm	subs-raise
2004 EC.ITA-IT-TYRR HP	5	1.763179328	2004 EC.ITA-IT-TYRR HP	90-180	135	39	3	77	5	6 mm	raise
2004 EC.ITA-IT-TYRR LL	957	263.3656496	2004 EC.ITA-IT-TYRR LL	80-155	97	11	4	324	5	6 mm	raise
2004 EC.ITA-IT-TYRR UN	1256	14.33725718	2004 EC.ITA-IT-TYRR GN	85-230	133	36	88	2453	5	6 mm	raise
2004 EC.MLT LL	195	1,566489573	2005 EC.MLT LL	52-184	101	17	125	7520	1	6 mm	subs-raise
2004 EC DET-DT-MALLI	120	0 13577025	2004 EC ESP.ES.SMALL	60,235	104	17	879	52543	5	6 mm	subsynise
2004 CC.PRIME PARA	120	0.13077023	2004 E0.E074E0-0474EE	00-200	104		075	52045		6	Substatise
2004 JPN LL	3	0.002876499	2004 EC.ESP-ES-SWILL	60-235	104	17	8/9	52543	5	6 mm	subs-raise
2004 LBY LL	2	0.00277523	2004 EC.E5P-E5-5W/LL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 MAR GN	1299	17.78102707	2004 MAR GN	85-240	147	53	73	1390	5	6 mm	raise
2004 MAR LL	1954	2.223359959	2004 EC.ESP-ES-5W/LL	60-235	104	17	879	52543	5	6 mm	subs-raise
2004 TUN 11	701	18.41698518	2004 EC ITAJT-SIC STU	45-295	121	28	43	1525	5	6 mm	subsystice
2004 707		4 50 4074 800	2004 50 050	40 200	121		~~	0000	č	6	subs miss
2004 10K LL	300	4.594071000	2004 EC.GRC LL	60-235	134	30	04	2220	5	буу	Subs-raise
2005 DZA GN	311	3.657412701	2005 MAR GN	90-260	156	64	85	1320	5	6 mm	subs-raise
2005 DZA HL	175	0.223953785	2005 EC.E5P-ES-5W/LL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 DZA LL	93	0.119020754	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 DZA P5	55	0.071668411	2005 EC.ESP-ES-SW/ LL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC CYP 11	53	0.558458101	2005 EC GRC 11	85-225	133	37	95	2577	5	6 au	subs-raise
2000 20.017 12		0.000400101	2000 E0.0100 EE	50.000				10740	č	6 qu	subs miss
2003 EC.ESP EL	24	0.030349013	2000 EC.EOP-EO-OVA EE	30-220	110	10	701	42742	0	0 11111	Substalse
2005 EC.ESP LL	13	0.016563082	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP LL	64	0.081594486	2005 EC.E5P-ES-5W/LL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP TP	3	0.004037747	2005 EC.ESP-ES-SW/ LL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC.ESP UN	45	0.059388797	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 EC ESP-ES-5WI LL	760	0.972444355	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	raise
2005 EC GRC 11	1494	15 06418099	2005 EC GEC 11	85,225	133	37	95	2577	5	6 m	raise
	1424	10.00410000		75 445	100	40	50	2011	-	0 40 6 ann	mine
2005 ECTIA-IT-SIC.5 LL	2608	115,1733727	2005 EC.TIA-IT-SIC.S LL	/5-185	113	19	23	1187	5	e mm	raise
2005 EC.ITA SP	2	0.410354194	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA TP	2	0.332199585	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA UN	68	13.19027767	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	subs-raise
2005 EC.ITA-IT-ADRI. LL	564	0.395484091	2005 EC.ITA-IT-ADRI, LL	77-230	145	58	1425	24722	1	6 gu	raise
2005 EC ITA-IT-ADRILLIN	6	0 15811225	2005 EC ITA-IT-TYRE ON	75-250	135	40	38	955	5	6 mm	subsurpise
2005 EC ITA IT IONI NU		7 000000555		75 200	104	~~	01	766		6.01	anire .
2005 ECTIANT-IOND/EC	1/1	7.909900555	2005 COLTA-THADRI, CO	13-200	124	20	21	/00	5	6 du	raise
2005 EC.ITA-IT-IONL! UN	41	2.58394223	2005 EC.ITA-IT-IONIA UN	45-190	97	15	16	1055	5	6 qu	raise
2005 EC.ITA-IT-IONI.5 LL	815	35.98726335	2005 EC.ITA-IT-SIC.S'LL	75-185	113	19	23	1187	5	6 mm	subs-raise
2005 EC.ITA-IT-IONI.5 UN	253	6.674181576	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-LIGUF LL	153	0.303355474	2005 EC.ITA-IT-TY.LI LL	72-194	133	37	504	13572	1	6 gu	raise
2005 EC ITA-IT-LIQUE UN	-00	1 291250010	2005 EC ITA-IT-TYRE ON	75,250	195	40	18	955	5	6 mm	subs-roise
		0.0/200000		10 200	130			1000		6.000	subs to be
2005 EC.IIA-IT-SARD LL	265	3.84705977	2005 EC.HA-IT-TYRR LL	80-240	153	64	69	1085	5	e mm	subs-raise
2005 EC.ITA-IT-SARD UN	34	0.895959414	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	subs-raise
2005 EC.ITA-IT-TYRR HP	6	1.082579827	2005 EC.ITA-IT-TYRR HP	85-200	144	47	5	109	5	6 mm	raise
2005 EC.ITA-IT-TYRR LL	982	14.20855592	2005 EC.ITA-IT-TYRR LL	80-240	153	64	69	1085	5	6 mm	raise
2005 EC.ITA-IT-TYRR UN	1440	37.94852103	2005 EC.ITA-IT-TYRR GN	75-250	135	40	38	955	5	6 mm	raise
2005 EC.MLT U	79	0.588656010	2005 EC MLT	52-184	101	17	125	7520	1	6 mm	subs-roise
2003 50 10 5	15	0.000000012	2005 CO.M.T. LL	02-104	101	17	120	7320		6.000	suushaise
2005 EC.MLT LL	289	2.31637296	2005 EC.MLT LL	52-184	101	17	125	/520	1	ьmm	raise
2005 EC.PRT-PT-MAI LL	14	0.017804481	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 JPN LL	5	0.006154525	2005 EC.ESP-ES-SWILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 MAR GN	722	8.490842347	2005 MAR GN	90-260	155	64	85	1320	5	6 mm	raise
2005 MAR 11	1801	2,304907294	2005 EC.ESP-FS-SMILL	50-220	110	18	781	42742	5	6 mm	subs-raise
2005 TUN U	704	3/ 07754570	2005 EC ITA IT SIG STU	75,495	440	10		1197	-	6 000	subs mine
2005 TUN LL	/91	34.92/51572	2005 EC.11A-11-51C.5 LL	10-185	113	19	23	118/	5	e inm	subs-raise
2005 TUK LL	425	4.496697606	2005 EC.GRC LL	85-225	133	37	95	2577	5	ьqu	SUDS-raise

Size (cm)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
10											102				41						
30 35											102										
40	49		807		3490	82		54		173	1246	1	1				10		1438		
45	496	332		440	1996	82		157			274						20		226	116	23
50	1268	1721		757	3715	175	231	1333	676	520	284			679	275		105	24	2467	1195	925
55	1020	1453	2262	1636	5249 8461	205	443	2466	12/2	829	2230	133	44	5950	52	93	218	154	3672	2869	3726
65	2572	2990	6060	2091 4798	6532	498 2452	2907	10565	5419 6565	8855	7934 7942	1387	1052	3327	2437	1213	403	808	13028	5880 14401	8972
70	4000	3965	9856	17416	12701	4357	8725	12271	11006	19596	9961	12286	8954	10004	11940	3725	10942	2235	10117	20594	1546
75	7351	4286	15570	20722	16227	8395	11145	12600	17584	21730	15047	10465	9893	16843	11467	5285	7018	9451	6579	12661	2992
80	14266	6855	22931	36847	22965	15621	13127	16968	22807	16438	22578	14524	13687	23804	12777	12971	12306	22051	8133	19693	8959
85	15203	11290	21179	33964	22505	29901	19676	17974	28555	11403	32709	19746	17651	47539	18334	23308	20539	35570	14535	36247	16627
90	23075	15964	34150	53565	36622	45180	26301	17817	33716	23079	40882	32765	26167	53251	30274	38664	31562	65227	31567	74126	35610
95 100	22770	19/56	29244	51/14	36975	41135 51963	33195	26830	40528	31967	52035	39212	31493	46525	35183	40952	39155	50924 56134	40235	44466	46099
100	28847	19395	19941	45087	472.57	50078	43173	60415	64008	59031	46353	37649	32642	37139	45542	41023	43974	56007	62920	34927	56929
110	30257	33073	24176	36776	39544	64052	42074	65567	72395	73148	40637	34490	34439	39861	39276	43291	49167	68031	78404	43299	68569
115	26992	34814	33384	40707	40861	60707	43728	55991	46493	62386	34593	32068	41396	38572	39972	39997	46150	55710	61124	37028	50229
120	29897	42255	23781	36050	37933	73117	46435	43702	35408	50955	37230	38290	43432	32689	33230	42564	42730	34555	55377	35034	34862
125	29454	39849	29188	32290	37531	56973	35736	31799	28727	37168	27193	32510	45167	27857	28551	34305	38671	33908	42236	32462	31854
130	25013	32335	26908	27267	23868	39333	36012	25736	22606	29773	30273	28908	38824	24333	22205	33224	32692	26446	34825	29991	28606
135	25216	24557	28630	25745	26480	26854	32724 25548	19950	14880	258/9	21606	19094	25039	1/825	21371	24598	26259	1/085	20154	17544	21957
140	20227	14890	16738	25916	22039	12398	18183	13649	9978	13071	10317	12268	14484	12715	14595	16108	18493	9355	15756	13488	13124
150	16353	20485	23857	24549	17897	12603	15988	13425	9251	10976	8095	11787	17263	11458	13732	15983	13967	6349	13781	13100	12389
155	14281	11603	17741	23569	18766	8162	13852	9361	8041	8818	9047	8867	10172	11590	13736	12262	9676	5974	10898	10637	9683
160	14760	14619	19574	16304	16830	9053	10482	10119	7497	9728	8391	6246	17504	9967	9526	12126	8596	6435	9067	9682	8822
165	9999	15121	19225	20563	15231	5194	8100	7546	6525	7060	5307	5420	7547	9678	8779	9425	8206	5488	6216	8402	7639
170	12454	14798	15095	12372	9931	5611	9020 5462	7579	5916	6991	5576	4884	5180	8750	7781	9212 5422	5367	4130	5411	7687	6044
1/5	9401	9491 10106	13803	7480	/855 5964	3885	5465 3707	5158 4718	4077	6405 4628	4458 3481	3949 2606	4557	5925	5195	5425 5420	4775	2406	2000	4703	4935
185	3457	4977	5016	4948	2840	1530	3366	2965	2384	3823	3576	2000 2547	2915	3601	3718	3585	3198	2195	1889	2593	3662
190	2907	4359	3146	2955	3878	1689	2150	2087	2353	2926	1332	1602	839	2959	3001	3375	2979	1405	2038	2402	1693
195	1468	688	1419	2444	3334	1306	1688	2423	1697	2304	1343	1277	729	2304	991	1741	1842	1317	1197	1643	1459
200	1215	1196	1746	2473	1187	886	1379	2359	1384	1417	1071	920	915	1186	949	1139	802	910	774	1346	1268
205	839	2406	1255	666	661	243	1076	938	718	729	872	666	467	801	460	1051	749	439	1163	829	799
210	395 612	2185	1800	1975	644	469	512	215	519	963	512	501	230	603	546 255	4/6	750	5/4 237	5/8	300	620 820
215	571	110	451	451	10	66	222	98	161	196	186	266	99	175	165	341	312	214	85	315	504
225		5	8	13	511	74	182	133	174	292	64	8	58	181	48		143	237	89	96	271
230		5	807	442	2		254	183	34	166	16	2	86	143	42	58	114	95		114	163
235							55	36	15	62	51	4		36	7	88	209	71	43	192	124
240	3	4						29	2	61	25	1	1	28	7	44				23	77
245	2				2				44	7	42			23	96	4					12
250	3				3				21		25 25	1	1	0	48	44	20	24			59 12
260									21		25	1	1	62	41		20	24			12
265														0						39	
270												1	1		17						
280												1	1	0							
285		1	0													4					
295 Grand																4					
Total	463497	468876	538688	710008	633928	661357	560269	575512	585477	641094	571761	479749	529665	582627	500517	554196	555077	597474	659337	609796	566529

Table 5. Catch at age	, in number	of fish,	of Mediterranean	swordfish.
-----------------------	-------------	----------	------------------	------------

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	6956	10260	12669	13206	31982	4320	7039	23117	14134	17802	23486	4943	5447	19237	5703	2541	3599	1319	35011	27356	6866
1	81312	57372	125110	200401	138059	135680	103688	96640	143891	113441	158900	116850	99162	186668	110510	115895	111760	175122	98087	193664	102412
2	142885	138165	132141	216626	206460	279271	205034	261677	268701	299377	214501	175107	175012	188768	192234	207824	218564	267177	305739	189784	267135
3	99727	122451	102534	107217	113313	161486	133993	101367	85861	118543	101570	109047	146535	89276	92402	117320	123261	96208	134199	106013	102803
4	60524	57874	67234	80562	70340	43836	60258	44158	33884	41780	34615	41219	54040	43398	49690	54575	53357	27395	49567	45355	42959
5	32604	37985	48388	46531	39786	18046	24862	22567	17993	21857	17913	15476	31916	25547	23974	27689	20875	14760	19485	23423	20865
6	23564	24430	29722	25046	17394	10545	12879	12535	9888	13108	9861	7997	8986	14932	13542	14084	9971	6910	7991	11776	10579
7	9652	11631	11477	9713	7550	3955	6043	6108	5315	7429	5727	4625	5450	7649	7753	7773	6360	3977	4375	5950	5926
8	2636	2434	2679	3625	4885	2166	2645	3257	2636	3476	1836	1934	1115	3488	2029	3031	2968	1803	2058	2650	2234
9	1547	2158	2248	2737	1452	957	1794	2734	1672	1715	1574	1320	1085	1575	1162	1545	1090	1071	1272	1673	1570
10 +	2089	4116	4486	4342	2707	1095	2033	1352	1503	2568	1776	1232	916	2088	1518	1920	3271	1730	1553	2154	3180
	463497	468876	538688	710008	633928	661357	560269	575512	585477	641094	571761	479749	529665	582627	500517	554196	555077	597474	659337	609796	566529

Year	CPUE*	Yield (t)	Year	CPUE	Yield (t)
1950	-9.00	1586.0	1978	1.47	5958.0
1951	-9.00	1580.0	1979	3.02	5547.0
1952	-9.00	1837.0	1980	0.77	6579.0
1953	-9.00	1500.0	1981	0.42	6813.0
1954	-9.00	1952.0	1982	-9.00	6343.0
1955	-9.00	1840.0	1983	0.61	6896.4
1956	-9.00	1893.0	1984	1.31	13665.6
1957	-9.00	2000.0	1985	2.17	15292.0
1958	-9.00	2914.0	1986	0.83	16764.9
1959	-9.00	2200.0	1987	0.53	18320.0
1960	-9.00	3112.0	1988	0.68	20365.4
1961	-9.00	3206.0	1989	1.07	17761.9
1962	-9.00	3300.0	1990	0.78	16017.5
1963	-9.00	3318.0	1991	0.59	15746.3
1964	-9.00	2394.0	1992	0.47	14709.4
1965	-9.00	3760.0	1993	0.41	13264.9
1966	-9.00	3752.0	1994	0.54	16082.2
1967	-9.00	3217.0	1995	0.58	13014.8
1968	-9.00	3440.0	1996	0.57	12052.8
1969	-9.00	3723.0	1997	0.41	14693.3
1970	-9.00	3341.0	1998	0.64	14368.9
1971	-9.00	4975.0	1999	0.64	13698.6
1972	-9.00	5958.0	2000	0.42	15568.8
1973	-7.80	4807.0	2001	0.55	15006.1
1974	-9.00	5034.0	2002	0.59	12814.3
1975	0.22	4301.0	2003	0.50	15674.1
1976	0.74	4637.0	2004	0.52	14405.4
1977	-9.00	5280.0	2005	0.53	14601.1

Table 6. Inputs used for production modeling of the Mediterranean swordfish stock. Note that negative CPUE values indicate missing data which were not used in the model fitting. (*) negative values represent missing values.

 Table 7. Summary of production model estimates of current stock status based on bootstrap (999) results from three production model outcomes (see Appendix 4 for details).

P(F>F _{MSY})	0.70	7	
P(B <b<sub>MSY)</b<sub>	0.64		
P(B <b<sub>MSY, F>F_{MSY})</b<sub>	0.64		
	Median	<u>10%-tile</u>	<u>90%-tile</u>
B/B _{MSY}	<u>Median</u> 0.87	<u>10%-tile</u> 0.50	<u>90%-tile</u> 1.38
B/B _{MSY} F/F _{MSY}	<u>Median</u> 0.87 1.27	<u>10%-tile</u> 0.50 0.64	<u>90%-tile</u> 1.38 2.54

Table 8. Fishing mortality by age estimates obtained from the XSA model.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.01	0.01	0.01	0.01	0.04	0.00	0.01	0.02	0.01	0.02	0.03	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.03	0.03	0.01
1	0.12	0.10	0.17	0.24	0.17	0.21	0.15	0.13	0.17	0.15	0.22	0.18	0.16	0.26	0.16	0.17	0.14	0.21	0.15	0.23	0.15
2	0.29	0.30	0.33	0.51	0.42	0.61	0.56	0.69	0.65	0.65	0.49	0.39	0.46	0.49	0.48	0.52	0.54	0.58	0.70	0.48	0.55
3	0.36	0.44	0.39	0.48	0.56	0.69	0.68	0.60	0.51	0.68	0.48	0.49	0.68	0.45	0.48	0.60	0.69	0.49	0.66	0.56	0.53
4	0.39	0.37	0.45	0.60	0.69	0.44	0.60	0.50	0.41	0.51	0.43	0.37	0.49	0.43	0.49	0.59	0.61	0.31	0.50	0.49	0.47
5	0.43	0.45	0.61	0.66	0.69	0.37	0.48	0.47	0.40	0.51	0.43	0.35	0.55	0.45	0.45	0.57	0.47	0.34	0.39	0.47	0.44
6	0.60	0.68	0.78	0.76	0.56	0.39	0.50	0.48	0.39	0.56	0.46	0.34	0.35	0.54	0.45	0.53	0.41	0.28	0.31	0.43	0.41
7	0.65	0.69	0.82	0.64	0.55	0.24	0.40	0.47	0.38	0.57	0.52	0.40	0.42	0.58	0.60	0.52	0.48	0.29	0.28	0.40	0.40
8	0.34	0.34	0.33	0.68	0.79	0.29	0.25	0.39	0.38	0.46	0.27	0.33	0.16	0.52	0.30	0.50	0.38	0.24	0.23	0.28	0.26
9	0.48	0.51	0.60	0.67	0.65	0.34	0.43	0.44	0.36	0.46	0.39	0.31	0.31	0.35	0.33	0.39	0.34	0.23	0.27	0.30	0.26
10	0.48	0.51	0.60	0.67	0.65	0.34	0.43	0.44	0.36	0.46	0.39	0.31	0.31	0.35	0.33	0.39	0.34	0.23	0.27	0.30	0.26

Table 9. Estimates of stock abundance (numbers) at the beginning of the year, obtained from the XSA model.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	858436	1059774	1266447	1192898	998972	996250	1050985	1234377	1078160	1112449	957806	930276	1086685	1001879	1016078	1141916	1227789	944378	1322151	1033050	992349
1	797601	696545	858403	1025437	964736	789016	811759	854116	989748	869958	894720	762979	757181	884782	802898	826743	932627	1001978	772000	1050874	821091
2	621285	579714	518539	590113	659254	665501	523854	571183	612186	680732	610051	589513	519444	530583	556513	557802	572480	662851	662717	543677	686098
3	359138	380215	350448	305825	289114	354544	295131	245383	233945	261085	289799	307254	325503	268391	265271	283343	270574	273027	303651	269566	275048
4	206550	204492	201474	194893	154309	135289	146042	121949	110237	114633	107875	146248	153851	135595	139697	134376	127051	111435	137326	128691	125822
5	101496	114786	115466	104674	87509	63513	71453	65672	60285	59854	56429	57275	82731	77537	72092	69853	61194	56307	66617	68028	64722
6	56812	53856	59920	51264	44125	36109	35799	36220	33541	33210	29426	30133	32994	39164	40575	37530	32412	31390	32842	37053	34703
7	21924	25438	22272	22551	19628	20559	20099	17772	18420	18586	15459	15251	17488	18944	18696	21079	18115	17590	19486	19707	19774
8	10149	9324	10439	8007	9780	9311	13274	11033	9075	10310	8570	7528	8337	9428	8666	8373	10296	9132	10826	12021	10796
9	4420	5941	5448	6140	3317	3651	5676	8488	6110	5064	5325	5365	4426	5821	4595	5271	4140	5765	5854	7012	7459
10	5969	11331	10871	9741	6184	4178	6432	4198	5492	7583	6008	5007	3737	7717	6003	6551	12423	9313	7148	9028	15108

Table 10. Results obtained with VPA-2Box for Mediterranean swordfish.

VPA-2BOX
SUMMARY STATISTICS AND DIAGNOSTIC OUTPUT

Med SWO 1985-2005 10:11, 6 September 2007

Total objective function	=	-22.01	
(with constants)	=	45.07	
Number of parameters (P)	=	8	
Number of data points (D)) =	73	
AIC : 2*objective+2P	=	106.14	
AICc: 2*objective+2P()) =	108.39	
BIC : 2*objective+Plog(D)) =	124.46	
Chi-square discrepancy	=	219.10	
Loglikelihoods (deviance)) =	22.01 (192.39)
effort data	=	22.01 (192.39)
Log-posteriors	=	0.00	
catchability	=	0.00	
f-ratio	=	0.00	
natural mortality	=	0.00	
mixing coeff.	=	0.00	
Constraints	=	0.00	
terminal F	=	0.00	
stock-rec./sex ratio	=	0.00	
Out of bounds penalty	=	0.00	

TABLE 1. FISHING MORTALITY RATE FOR SWO Med

======									======		
	1	2	3	4	5	б	7	8	9	10	11
1005		0 110		0 270	0 207						
1985	0.009	0.119	0.294	0.370	0.387	0.433	0.609	0.005	0.270	0.202	0.202
1986	0.011	0.096	0.304	0.441	0.382	0.450	0.081	0.702	0.298	0.370	0.370
1987	0.011	0.1/6	0.331	0.388	0.464	0.640	0.///	0.819	0.340	0.494	0.494
1988	0.012	0.242	0.518	0.490	0.603	0.687	0.833	0.635	0.673	0.696	0.696
1989	0.036	0.169	0.422	0.568	0.702	0.689	0.601	0.654	0.784	0.636	0.636
1990	0.005	0.209	0.603	0.692	0.450	0.387	0.390	0.262	0.393	0.338	0.338
1991	0.007	0.150	0.558	0.662	0.607	0.499	0.528	0.406	0.280	0.663	0.663
1992	0.021	0.131	0.682	0.599	0.477	0.482	0.509	0.516	0.400	0.522	0.522
1993	0.015	0.175	0.639	0.499	0.409	0.363	0.404	0.422	0.441	0.369	0.369
1994	0.018	0.156	0.658	0.658	0.485	0.507	0.493	0.607	0.541	0.579	0.579
1995	0.027	0.217	0.491	0.489	0.406	0.397	0.453	0.416	0.292	0.507	0.507
1996	0.006	0.185	0.393	0.499	0.375	0.320	0.309	0.398	0.240	0.353	0.353
1997	0.006	0.159	0.462	0.673	0.498	0.561	0.311	0.359	0.156	0.206	0.206
1998	0.022	0.270	0.508	0.455	0.429	0.466	0.562	0.475	0.411	0.343	0.343
1999	0.006	0.166	0.492	0.504	0.497	0.448	0.485	0.649	0.220	0.232	0.232
2000	0.003	0.171	0.533	0.640	0.639	0.576	0.519	0.575	0.574	0.260	0.260
2001	0.003	0.144	0.557	0.711	0.688	0.543	0.421	0.471	0.451	0.418	0.418
2002	0.002	0.217	0.597	0.512	0.333	0.409	0.346	0.295	0.235	0.290	0.290
2003	0.028	0.148	0.717	0.694	0.546	0.419	0.407	0.384	0.244	0.259	0.259
2004	0.039	0.213	0.471	0.589	0.535	0.543	0.485	0.607	0.425	0.321	0.321
2005	0 005	0 203	0 507	0 507	0 507	0 507	0 507	0 483	0 483	0 483	0 483
2000	0.005	0.205	0.007	0.007	0.007	0.007	0.007	0.105	0.105	0.105	0.105

==											
	1	2	3	4	5	6	7	8	9	10	11
1985	853462.	796739.	616580.	353546.	206569.	101617.	56464.	23221.	12247.	9290.	12545.
1986	1053587.	692476.	579010.	376370.	199924.	114802.	53956.	25155.	10380.	7657.	14604.
1987	1263362.	853340.	515207.	349874.	198335.	111734.	59934.	22353.	10210.	6310.	12593.
1988	1205321.	1022910.	585970.	303101.	194424.	102113.	48229.	22561.	8072.	5953.	9443.
1989	999786.	974910.	657188.	285737.	152087.	87127.	42043.	17168.	9789.	3370.	6283.
1990	1005953.	789684.	673827.	352859.	132539.	61708.	35799.	18865.	7309.	3658.	4186.
1991	1064293.	819703.	524399.	301905.	144673.	69209.	34325.	19845.	11888.	4040.	4579.
1992	1230303.	805015.	577687.	245820.	110500	64558.	34390.	16570.	10826.	/355.	5037.
1993	10/1302.	986457.	621109.	239228.	110020	64//3.	32032.	17044	8096.	5941.	5340.
1994	055796	804388. 996127	605492	208342.	112771	500148.	308/0.	1944.	9091. 7966	4204.	0385.
1995	911924	761227.	590663	202529	144462	62089	22000.	15447.	9965	4971	4507.
1997	1064216	742080	518092	326443	150822	81272	36928	19831	8496	6419	5419
1998	990080	866387	518225	267288	136359	75067	37976	22159	11342	5952	7890
1999	997147	793237	541468	255196	138796	72716	38559	17728	11286	6157	8043
2000	1121672.	811247.	549896.	271075.	126162.	69118.	38038.	19435.	7585.	7414.	9214.
2001	1210564.	916051.	559797.	264130.	117071.	54510.	31813.	18529.	8957.	3498.	10498.
2002	958634.	987873.	649287.	262697.	106203.	48193.	25940.	17102.	9470.	4672.	7546.
2003	1395125.	783675.	651177.	292608.	128903.	62341.	26214.	15032.	10427.	6131.	7485.
2004	779565.	1110620.	553233.	260198.	119717.	61163.	33561.	14292.	8380.	6685.	8607.
2005	1497990.	613560.	734974.	282844.	118194.	57406.	29106.	16925.	6380.	4484.	9082.
2006		1220249.	410140.	362450.	139484.	58287.	28310.	14354.	8546.	3222.	6850.
TABLE 3. ====================================	CATCH OF SWO	Med									
	I	2		4		6			9	10	
1985	6956.	81312.	142885.	99727.	60524.	32604.	23564.	9652.	2636.	1547.	2089.
1986	10260.	57372.	138165.	122451.	57874.	37985.	24430.	11631.	2434.	2158.	4116.
1987	12669.	125110.	132141.	102534.	67234.	48388.	29722.	11477.	2679.	2248.	4486.
1988	13206.	200401.	216626.	107217.	80562.	46531.	25046.	9713.	3625.	2737.	4342.
1989	31982.	138059.	206460.	113313.	70340.	39786.	17394.	7550.	4885.	1452.	2707.
1990	4320.	135680.	279271.	161486.	43836.	18046.	10545.	3955.	2166.	957.	1095.
1991	7039.	103688.	205034.	133993.	60258.	24862.	12879.	6043.	2645.	1794.	2033.
1992	23117.	96640.	261677.	101367.	44158.	22567.	12535.	6108.	3257.	2734.	1352.
1993	14134.	143891.	268701.	85861.	33884.	1/993.	9888.	5315.	2636.	1672.	1503.
1994	17802.	113441.	299377.	118543.	41/80.	21857.	13108.	/429.	34/6.	1/15.	2568.
1995	23486.	116050	214501.	101570.	34615.	1/913.	9861.	5/2/.	1836.	15/4.	1000
1996	4943.	116850.	175107.	146525	41219.	154/6.	/99/.	4625.	1934.	1320.	1232.
1000	5447. 10007	99162. 196669	100760	140535.	54040. 42200	31910.	14022	5450.	1115.	1085.	910.
1000	±9237.	110510	100700.	032/0.	40500.	2004/.	125/2	7752	2400.	1162	2000. 1519
7333	5/03.	115005	192234.	924UZ. 117220	49090.	239/4.	14094	1/53.	2029.	1545	1020
2000	∠54⊥. 2500	111760	20/824.	122261	545/5. 52257	2/009.	14084.	6260	3U31. 2069	1000	1920.
2001	1310	175122	210301.	96208	27395	14760	6910	3977	1803	1071	1730
2002	35011	98087	207177.	134199	49567	19485	7991	4375	2058	1071.	1553
2003	27356	193664	189784	106013	45355	23423	11776	5950	2650	1673	2154
2005	6866	102412	267135	102803	42959	20865	10579.	5926.	2234.	1570.	3180.

TABLE 2. ABUNDANCE AT THE BEGINNING OF THE YEAR [BY AREA] FOR SWO Med

TABLE 4. SPAWNING STOCK FECUNDITY AND RECRUITMENT OF SWO Med

year	spawning biomass	recruits from VPA
1985	34910.	853462.
1986	35546.	1053587.
1987	35038.	1263362.
1988	31432.	1205321.
1989	26051.	999786.
1990	23069.	1005953.
1991	24349.	1064293.
1992	22123.	1230363.
1993	20860.	1071362.
1994	21923.	1114172.
1995	21033.	955786.
1996	23114.	911834.
1997	25760.	1064216.
1998	25279.	990080.
1999	24768.	997147.
2000	24068.	1121672.
2001	21667.	1210564.
2002	19699.	958634.
2003	22199.	1395125.
2004	22031.	779565.
2005	21468.	1497990.

Age	WeightVPA	WeightXSA	SelectivityVPA	Sel.XSA	М	Maturity
0	2.514321	3.32	0.024095	0.03	0.2	0
1	7.735611	7.81	0.289941	0.4	0.2	0
2	16.80517	16.98	0.915818	0.9	0.2	0
3	30.47185	30.84	1	1	0.2	0.5
4	48.35025	49.01	0.868821	0.9	0.2	1
5	68.15898	68.83	0.798131	0.9	0.2	1
6	87.37038	89.29	0.698365	0.8	0.2	1
7	106.7164	107.98	0.74868	1	0.2	1
8	125.7099	126.75	0.6183	0.6	0.2	1
9	142.5164	144.02	0.494168	0.7	0.2	1
10	181.3714	180.177	0.494168	0.7	0.2	1

Table 11. Inputs for the equilibrium per-recruit analyses.

Table 12. Equilibrium catch (numbers), yield (t) and spawning stock biomass (t) corresponding to the 2005 level of fishing mortality and other biological reference points. Absolute quantities reflect an assumed level of recruitment of 1,059,533 fish.

VPA	F	Catch	Yield	SSB	XSA	F	Catch	Yield	SSB
F2005	0.51	539,062	14,917	22,629	F2005	0.56	572,218	14,339	16,319
Fmax	0.30	437,174	16,010	54,401	Fmax	0.26	425,023	16,570	58,957
F20%	0.29	432,577	16,008	56,109	F20%	0.27	432,168	16,564	56,320
F30%	0.21	363,444	15,461	84,164	F30%	0.19	361,622	16,146	84,481
F40%	0.16	302,236	14,223	112,218	F40%	0.14	299,814	14,946	112,641

Figure 1. Cumulative estimates of swordfish catches (t) in the Mediterranean by major gear type, 1950-2005.

Figure 2. Map of the Mediterranean Sea with the locations referred to in the Report. The Mediterranean/Atlantic boundary used by ICCAT is at 5°W longitude. The approximate provincial administrative limit for the Mediterranean used by Morocco is also shown.

Figure 3. The relative CPUE time series used in production modeling, which results from the combined information in the Italian longline, Greek longline, Spanish longline, Japanese longline, Moroccan gillnet, and Italian gillnet time series.

Figure 4. Fits of the three productions models (ASPIC) with different model structures to the observed CPUE data.

Figure 5. Scatter of stock status results for 2005 from 1500 bootstrap results using three model formulations (ASPIC, see Appendix 4) for the Mediterranean swordfish. The median outcome is indicated as the large closed circle in the center of the distribution of points.

Figure 6.a. The median estimated trajectory of B- and F-ratios expressed relative to MSY for the period 1968-2005. The results are amalgamated from the three production model scenarios described in the **Appendix 4**.

Figure 6.b. The time trajectory of estimated median relative biomass and relative F starting from 1968 based on the combined bootstrap outcomes of the ASPIC production model.

Figure 7. Estimates of B/B_{MSY} (upper plate) and F/F_{MSY} (lower plate) with associated 80% bootstrap confidence limits (dashed lines) based on the combined bootstrap outcomes of the ASPIC production model.

Figure 8. Observed abundance indices and model fitted line based on the predicted indices, for the TSM production model.

Figure 9. Relative biomass and catch rate estimates from the TSM production model.

Figure 10. Estimated catchability residuals by fleet from the XSA model.

Figure 11. Mean Fs (ages 2-5) by year estimates obtained with the XSA model.

Figure 12. Total (TB) and spawning stock biomass (SSB) estimates obtained with the XSA model.

Figure 13. Fits to the available CPUE indices obtained using VPA-2Box, in log scale. The diamonds are the observed data and the squares connected with a line are the predicted ones.

Figure 14. Estimated selectivities at age for each index used in the VPA-2Box analyses.

Figure 15. Estimated populations sizes at age for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 16. Estimated spawning and exploitable biomass for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 17. Estimated fishing mortality rates for Mediterranean swordfish obtained with the VPA-2Box analyses.

Figure 18. Estimated selectivity patterns for Mediterranean swordfish obtained with the VPA-2Box analyses, by 5-year blocks.

Figure 19. Comparison of some results obtained with two different age-structured assessment methods applied to Mediterranean swordfish. Top: Recruitment; Middle: Fishing mortality at age. Bottom: Spawning biomass (t) and total biomass (kg).

Figure 20a. Equilibrium yield – F relationship for Mediterranean swordfish based on VPA-2box (scaled assuming a level of recruitment of 1,059,533 fish).

Figure 20b. Equilibrium yield – F relationship for Mediterranean swordfish based on XSA (scaled assuming a level of recruitment of 1,059,533 fish).

Figure 21. Trends in the estimated ratios of fishing mortality relative to the F that maximizes yield per recruit (F_{max}) against the estimated ratios of spawning biomass relative to the level that would result from fishing at F_{max} . Top: VPA-2Box results. Bottom: XSA results. The large open circles indicate the position of the 2005 data point.

Figure 22. The range of bootstrap outcomes from the VPA-2BOX status evaluations. The large, closed circle represents the deterministic outcome. Although the uncertainty in the outcomes is high, all of the estimates indicate the stock is overfished and undergoing overfishing

Figure 23a. Forecasts of B/B_{MSY} for the different constant catch scenarios shown based on the combined bootstrap outcomes from the ASPIC production model. The lines with symbols represent median outcomes. The assumed constant catch for the MSY scenario was 14,300 t. The confidence interval reflects the upper 80% bound for the 10,000 t scenario and the lower boundary is that from the 16,000 t scenario.

Figure 23b. Forecasts of B/B_{MAX} (B_{MAX} is a proxy for B_{MSY}) for the different constant catch scenarios shown based on the combined bootstrap outcomes from the VPA-2BOX model. The lines with symbols represent median outcomes. The confidence interval reflects the upper 80% bound for the 10,000 t scenario and the lower boundary is that from the 16,000 t scenario.

Figure 24. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 1 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 25. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 2 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 26. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 3 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 27. From left to right and top to bottom: Box-whisker plots by year, for the total catch (weight), juvenile catch (weight), juvenile catch (number) and juvenile catch ratio (number) estimates obtained from the VPA Scenario 4 simulations. Solid circles indicate the corresponding reported rates for the years 2000-2005.

Figure 28. Projections results in terms of fishing mortality and biomass relatives to F_{max} and B_{max} for the four VPA scenarios considered.

Figure 29. Median SSB and annual catch levels with the associated 80% confidence limits as predicted by the seasonal closure scenarios. Estimates refer to the last ten years of the projection period, i.e. after stabilization.

Appendix 1

Agenda

1. Opening, adoption of the Agenda and meeting arrangements.

- 2. Descriptions of fisheries
- 3. Biological data
- 4. Catch data
- 5. Relative abundance indices
- 6. Stock status results
- 7. Projections
- 8. Recommendations
 - 8.1 Research and statistics
 - 8.2 Management
- 9. Other matters
- 10. Adoption of the report and closure

Appendix 2

List of Participants

CONTRACTING PARTIES

SCRS Chairman

Scott, Gerald P. SCRS Chairman, NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida, 33149-1099 Tel: +1 305 361 4220, Fax: +1 305 361 4219, E-Mail: gerry.scott@noaa.gov

CANADA

Neilson, John D.

Head, Large Pelagics Project, Population Ecology Section, St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St. Andrews, New Brunswick, E5B 2L9 Tel: +1 506 529 5913, Fax: +1 506 529 5862, E-Mail: neilsonj@mar.dfo-mpo.gc.ca

EUROPEAN COMMUNITY

Chessa, Agostina

Ministero delle Politiche Agricole, Alimentari e Forestali Italiano, Direzione Generale Pesca, Via Dell'Arte 16, Roma, Italy Tel: +39 06 59084777; E-mail: a.chessa@politicheagricole.it

De la Serna Ernst, José Miguel

Instituto Español de Oceanografía, C.O. de Málaga, Apartado 285 - Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain Tel: +34 952 476 955, Fax: +34 952 463 808, E-Mail: delaserna@ma.ieo.es

Di Natale, Antonio

Director-AQUASTUDIO, Via Trapani, nº 6, 98121 Messina, Sicily, Italy Tel: +39 090 346 408, Fax: +39 090 364 560, E-Mail: adinatale@acquariodigenova.it

Ortiz de Urbina, José María

Instituto Español de Oceanografía, C.O. de Málaga, Apartado 285 - Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain Tel: +34 952 476 955; Fax: +34 952 463 808; E-mail: urbina@ma.ieo.es

Peristeraki, Panagiota

Hellenic Center for Marine Research, Institute of Marine Biological Resources, P.O. Box 2214, 71003 Iraklion, Greece Tel: +30 2810 337 830, Fax: +30 2810 337 820, E-Mail: notap@her.hcmr.gr

Tserpes, George

Hellenic Center for Marine Research (HCMR), Institute of Marine Biological Resources, P.O. Box 2214, 71003 Iraklion, Crete, Greece Tel: +30 2810 337851, Fax: +30 2810 337820, E-Mail: gtserpes@her.hcmr.gr

Valeiras Mota, Xulio*

Instituto Español de Oceanografia, Promontorio San Martín, s/n - Apto. 240, 39080 Santander, Spain Tel: +34 942 291 060, Fax: +34 942 275 072, E-Mail: xulio.valeiras@st.ieo.es

MOROCCO Abid, Noureddine Center Regional de L'INRH á Tanger/M'dig, B.P. 5268, 90000 Drabed, Tanger Tel: +212 3932 5139, Fax: +212 3932 5139, E-Mail: abid.n@menara.ma; noureddine_abid@yahoo.fr

ICCAT SECRETARIAT

C/Corazón de María, 8 – 6th fl. 28002 Madrid, Spain Tel: +34 91 416 5600, Fax: +34 91 415 2612, E-Mail: info@iccat.int

> Restrepo, Víctor Kebe, Papa Pallarés, Pilar Palma, Carlos

Appendix 3

List of Documents

- SCRS/2007/106 By catches and discards of the Greek swordfish fishery. PERISTERAKI, P., N. Kypraios, G. Lazarakis and G. Tserpes.
- SCRS/2007/107 Standardization of swordfish (*Xiphias gladius*) catch rates from the Greek and Italian Mediterranean longline fisheries. TSERPES, G., P. Peristeraki and A. Di Natale.
- SCRS/2007/108 Discards of undersized swordfish individuals in the Greek swordfish fisheries. TSERPES, G. and P. Peristeraki.
- SCRS/2007/109 Estimates of Mediterranean swordfish stock by means of a non-equilibrium surplus production model approach. TSERPES, G.
- SCRS/2007/115 A time series of swordfish longline CPUE in the northwestern Mediterranean: search for exploitation and/or climatic factors influencing fish abundance. ORSI RELINI, L., G. Palandri, F. Garibaldi, C. Cima, L.Lanteri, M. Relini.
- SCRS/2007/116 Standardized catch rates of swordfish (*Xiphias gladius*) from the Moroccan driftnet fishery operated in the Mediterranean Sea, period: 1998- 2006. ABID, N., and M. Idrissi.
- SCRS/2007/117 Age and growth of swordfish (*Xiphias gladius*) in western Mediterranean Sea. VALEIRAS, X., J.M. de la Serna, D. Macías, M. Ruiz, S. García-Barcelona, M.J. Gómez and J.M. Ortíz de Urbina.
- SCRS/2007/118 Updated standardized catch rates in number and weight for swordfish (*Xiphias gladius* L.) caught by the Spanish longline fleet in the Mediterranean Sea, 1988- 2005. ORTIZ DE URBINA, J. M., J. M. de la Serna, J. Mejuto and D. Macías.
- SCRS/2007/119 CPUE series (1985-2006) for swordfish (*Xiphias gladius* 1.) by gear type in the Tyrrhenian Sea and in the Strait of Sicily. DI NATALE, A. and A. Mangano.

Appendix 4

Details of Production Modeling (ASPIC) for Mediterranean Stock Assessment

2007 Mediterranean swordfish stock assessment

AllCPUEcombined fix b1 at .75k, including Sicilian index series

ASPIC -- A Surplus-Production Model Including Covariates (Ver. 5.16). BOT program mode, LOGISTIC model mode, YLD conditioning, SSE optimization

- Author: Michael H. Prager; NOAA Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road; Beaufort, North Carolina 28516 USA Mike.Prager@noaa.gov
- Reference: Prager, M. H. 1994. A suite of extensions to a nonequilibrium surplus-production model. Fishery Bulletin 92: 374-389.

CONTROL PARAMETERS (FROM INPUT FILE)

Input file: correctedshortseries.inp

(ASPIC User's Manual is available

from the author).

Operation of ASPIC: Fit logi	stic (So	chaefer) mod	el by direct optimization with b	ootstrap.	
Number of years analyzed:		38	Number of bootstrap trials:		333
Number of data series:		1	Bounds on MSY (min, max):	1.000E+03	5.000E+06
Objective function:	Least	t squares	Bounds on K (min, max):	1.000E+04	4.000E+07
Relative conv. criterion (simp	lex):	1.000E-08	Monte Carlo search mo	ode, trials:	0 50000
Relative conv. criterion (resta	rt):	3.000E-08	Random number seed:		673221
Relative conv. criterion (effor	t):	1.000E-04	Identical convergences re	equired in fittin	ıg: 6
Maximum F allowed in fitting	g:	8.000			

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS) error code 0

Normal convergence

GOODNESS-OF-FIT AND WEIGHTING (NON-BOOTSTRAPPED ANALYSIS)

Loss component number and title	Weighted e	Weight SSE	ed N	Current MSE	Inv. var. weight	R-squared weight	in CPUE
Loss(-1) SSE in yield Loss(0) Penalty for B1 > K Loss(1) Combined Series	0.000E+ 0.000E 6.330E+	-00 +00 1 00 29	2.	N/A 0. 344E-01	000E+00 1.000E+00	N/A 1.000E+0	00 0.140
TOTAL OBJECTIVE FUNCTION Estimated contrast index (ideal = Estimated nearness index (ideal =	DN, MSE, RMSH = 1.0): (= 1.0): 1	E:).3911 .0000	6.3	2978787E+ $C^* = (Bma)$ $N^* = 1 - m $	-00 2.4 ax-Bmin)/K nin(B-Bmsy	435E-01 4	4.934E-01

MODEL PARAMETER ESTIMATES (NON-BOOTSTRAPPED)

Paramet	er	Estimate	User/pgm gues	s 2nd gues	s Estimated	User guess	
B1/K	Starting relative biomass (in	n 1968)	7.500E-01	7.500E-01	2.514E-01	0	1

MSY	Maximum sustainable yield	1.214E+04	8.750E+04 9.33	39E+03 1	1
Κ	Maximum population size	2.346E+05	1.000E+06 5.604	E+04 1	1
phi	Shape of production curve (Bmsy	v/K) 0.5000	0.5000	0	1
	Catchability Coefficients by Data	a Series	-		
q(1)	Combined Series	4.344E-06	1.800E-06 1.710E	-04 1	1
MAN	AGEMENT and DERIVED PARA	METER ESTIMAT	TES (NON-BOOTSTF	RAPPED)	
Param	neter	Estimate	Logistic formula	General formula	1
MSY	Maximum sustainable yield	1.214E+04			
Bmsy	Stock biomass giving MSY	1.173E+05	K/2	K*n**(1/(1-n))	
Fmsy	Fishing mortality rate at MSY	1.035E-01	MSY/Bmsy	MSY/Bms	у
n	Exponent in production function	2.0000			
g	Fletcher's gamma	4.000E+00	[n**(ı	n/(n-1))]/[n-1]	
B./Bn	nsy Ratio: B(2006)/Bmsy	9.374E-01			
F./Fm	sy Ratio: F(2005)/Fmsy	1.269E+00			
Fmsy/	F. Ratio: Fmsy/F(2005)	7.881E-01			
Y.(Fn	nsy) Approx. yield available at Fm as proportion of MSY	sy in 2006 1.138E 9.374E-01	+04 MSY*B./Bn	nsy MSY*	B./Bmsy
Ye.	Equilibrium yield available in 20	06 1.209E+04	4*MSY*(B/K-(B/K)**2) g*MS	$Y^{*}(B/K-(B/K)^{**n})$
	as proportion of MSY	9.961E-01	````		
	Fishing effort rate at MSY in uni	ts of each CE or CC	C series		
fmsy(1) Combined Series	2.382E+04	Fmsy/q(1)	Fmsy/q(1)	
MedS	WO2007AllCPUEcombined fix b1	at .75k,including S	icilian index series		
		•			

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)

	Esti	mated I	Estimated E	stimated O	bserved	Model Estin	nated Ratio	of Ratio o	f
	Year	total s	starting av	erage tota	l total	surplus F	mort bion	nass	
Obs	or ID	F mor	t biomass	biomass	yield y	ield producti	on to Fms	y to Bmsy	
1	1968	0.019	1.760E+05	1.787E+05	3.440E+03	3.440E+03	8.813E+03	1.860E-01	1.500E+00
2	1969	0.020	1.814E+05	1.837E+05	3.723E+03	3.723E+03	8.256E+03	1.959E-01	1.546E+00
3	1970	0.018	1.859E+05	1.881E+05	3.341E+03	3.341E+03	7.717E+03	1.716E-01	1.584E+00
4	1971	0.026	1.903E+05	1.915E+05	4.975E+03	4.975E+03	7.293E+03	2.511E-01	1.622E+00
5	1972	0.031	1.926E+05	1.932E+05	5.958E+03	5.958E+03	7.068E+03	2.981E-01	1.642E+00
6	1973	0.025	1.937E+05	1.947E+05	4.807E+03	4.807E+03	6.853E+03	2.385E-01	1.651E+00
7	1974	0.026	1.957E+05	1.965E+05	5.034E+03	5.034E+03	6.604E+03	2.475E-01	1.668E+00
8	1975	0.022	1.973E+05	1.984E+05	4.301E+03	4.301E+03	6.348E+03	2.095E-01	1.682E+00
9	1976	0.023	1.994E+05	2.001E+05	4.637E+03	4.637E+03	6.096E+03	2.239E-01	1.699E+00
10	1977	0.026	2.008E+05	2.012E+05	5.280E+03	5.280E+03	5.942E+03	2.537E-01	1.712E+00
11	1978	0.030	2.015E+05	2.014E+05	5.958E+03	5.958E+03	5.899E+03	2.858E-01	1.717E+00
12	1979	0.028	2.014E+05	2.016E+05	5.547E+03	5.547E+03	5.878E+03	2.659E-01	1.717E+00
13	1980	0.033	2.017E+05	2.014E+05	6.579E+03	6.579E+03	5.905E+03	3.157E-01	1.720E+00
14	1981	0.034	2.011E+05	2.007E+05	6.813E+03	6.813E+03	6.014E+03	3.281E-01	1.714E+00

15	1982	0.032	2.003E+05	2.001E+05	6.343E+03	6.343E+03	6.090E+03	3.063E-01	1.707E+00
16	1983	0.035	2.000E+05	1.996E+05	6.896E+03	6.896E+03	6.163E+03	3.338E-01	1.705E+00
17	1984	0.070	1.993E+05	1.957E+05	1.367E+04	1.367E+04	6.719E+03	6.748E-01	1.699E+00
18	1985	0.081	1.923E+05	1.884E+05	1.529E+04	1.529E+04	7.679E+03	7.844E-01	1.639E+00
19	1986	0.093	1.847E+05	1.805E+05	1.676E+04	1.676E+04	8.613E+03	8.975E-01	1.575E+00
20	1987	0.107	1.766E+05	1.720E+05	1.832E+04	1.832E+04	9.496E+03	1.029E+00	1.505E+00
21	1988	0.125	1.678E+05	1.626E+05	2.037E+04	2.037E+04	1.033E+04	1.211E+00	1.430E+00
22	1989	0.115	1.577E+05	1.542E+05	1.776E+04	1.776E+04	1.094E+04	1.113E+00	1.344E+00
23	1990	0.108	1.509E+05	1.485E+05	1.602E+04	1.602E+04	1.128E+04	1.043E+00	1.286E+00
24	1991	0.109	1.462E+05	1.440E+05	1.575E+04	1.575E+04	1.151E+04	1.057E+00	1.246E+00
25	1992	0.105	1.419E+05	1.404E+05	1.471E+04	1.471E+04	1.167E+04	1.013E+00	1.210E+00
26	1993	0.096	1.389E+05	1.381E+05	1.326E+04	1.326E+04	1.176E+04	9.281E-01	1.184E+00
27	1994	0.119	1.374E+05	1.352E+05	1.608E+04	1.608E+04	1.186E+04	1.149E+00	1.171E+00
28	1995	0.098	1.332E+05	1.326E+05	1.301E+04	1.301E+04	1.193E+04	9.485E-01	1.135E+00
29	1996	0.091	1.321E+05	1.320E+05	1.205E+04	1.205E+04	1.195E+04	8.823E-01	1.126E+00
30	1997	0.113	1.320E+05	1.306E+05	1.469E+04	1.469E+04	1.198E+04	1.087E+00	1.125E+00
31	1998	0.112	1.293E+05	1.281E+05	1.437E+04	1.437E+04	1.204E+04	1.084E+00	1.102E+00
32	1999	0.109	1.269E+05	1.261E+05	1.370E+04	1.370E+04	1.207E+04	1.050E+00	1.082E+00
33	2000	0.126	1.253E+05	1.235E+05	1.557E+04	1.557E+04	1.211E+04	1.218E+00	1.068E+00
34	2001	0.125	1.218E+05	1.204E+05	1.501E+04	1.501E+04	1.213E+04	1.205E+00	1.039E+00
35	2002	0.108	1.190E+05	1.186E+05	1.281E+04	1.281E+04	1.214E+04	1.044E+00	1.014E+00
36	2003	0.135	1.183E+05	1.165E+05	1.567E+04	1.567E+04	1.214E+04	1.300E+00	1.008E+00
37	2004	0.127	1.148E+05	1.136E+05	1.441E+04	1.441E+04	1.213E+04	1.226E+00	9.781E-01
38	2005	0.131	1.125E+05	1.112E+05	1.460E+04	1.460E+04	1.211E+04	1.269E+00	9.587E-01
39	2006	1	.100E+05			9	.374E-01		

RESULTS FOR DATA SERIES # 1 (NON-BOOTSTRAPPED)

Combined Series

Data type	CC:	CPUE-catch	series
-----------	-----	------------	--------

	Observed	Estimated	Estim	Observed	Model	Resid in	Statist			
Obs	Year CPU	E CPU	E F	yield	yield log	g scale	weight			
1	196	8		7.76E-01	1 0.0	192	3.44E+03	3.44E+03	3 0	1.00E+00
2	196	9		7.98E-01	1 0.0	203	3.72E+03	3.72E+03	3 0	1.00E+00
3	197	0		8.17E-01	1 0.0	178	3.34E+03	3.34E+03	3 0	1.00E+00
4	197	1		8.32E-01	1 0.	026	4.98E+03	4.98E+03	3 0	1.00E+00
5	197	2		8.39E-01	1 0.0	308	5.96E+03	5.96E+03	3 0	1.00E+00
6	197	3		8.46E-01	1 0.0	247	4.81E+03	4.81E+03	3 0	1.00E+00
7	197	4		8.54E-01	1 0.0	256	5.03E+03	5.03E+03	3 0	1.00E+00
8	197	5 2.2	1E-01	8.62E-01	1 0.0	217	4.30E+03	4.30E+03	3 1.35957	1.00E+00
9	197	6 7.3	6E-01	8.69E-01	1 0.0	232	4.64E+03	4.64E+03	3 0.16637	1.00E+00
10	197	7		8.74E-01	1 0.0	262	5.28E+03	5.28E+03	3 0	1.00E+00
11	197	8 1.4	7E+00	8.75E-01	1 0.0	296	5.96E+03	5.96E+03	-0.52011	1.00E+00
12	197	9 3.02	2E+00	8.76E-01	1 0.0	275	5.55E+03	5.55E+03	-1.23656	1.00E+00
13	198	0 7.6	8E-01	8.75E-01	1 0.0	327	6.58E+03	6.58E+03	3 0.12981	1.00E+00
14	198	1 4.2	2E-01	8.72E-01	1 0.	034	6.81E+03	6.81E+03	3 0.72588	1.00E+00
15	198	2		8.69E-01	1 0.0	317	6.34E+03	6.34E+03	3 0	1.00E+00
16	198	3 6.0	9E-01	8.67E-01	1 0.0	345	6.90E+03	6.90E+03	3 0.35317	1.00E+00

Series weight: 1.000

17	1984	1.31E+00	8.50E-01	0.0698	1.37E+04	1.37E+04	-0.43346	1.00E+00
18	1985	2.17E+00	8.18E-01	0.0812	1.53E+04	1.53E+04	-0.97529	1.00E+00
19	1986	8.33E-01	7.84E-01	0.0929	1.68E+04	1.68E+04	-0.06057	1.00E+00
20	1987	5.31E-01	7.47E-01	0.1065	1.83E+04	1.83E+04	0.34106	1.00E+00
21	1988	6.76E-01	7.06E-01	0.1253	2.04E+04	2.04E+04	0.04408	1.00E+00
22	1989	1.07E+00	6.70E-01	0.1152	1.78E+04	1.78E+04	-0.47153	1.00E+00
23	1990	7.75E-01	6.45E-01	0.1079	1.60E+04	1.60E+04	-0.18418	1.00E+00
24	1991	5.94E-01	6.25E-01	0.1094	1.58E+04	1.58E+04	0.05185	1.00E+00
25	1992	4.75E-01	6.10E-01	0.1048	1.47E+04	1.47E+04	0.24991	1.00E+00
26	1993	4.05E-01	6.00E-01	0.096	1.33E+04	1.33E+04	0.39261	1.00E+00
27	1994	5.42E-01	5.87E-01	0.1189	1.61E+04	1.61E+04	0.08022	1.00E+00
28	1995	5.76E-01	5.76E-01	0.0982	1.30E+04	1.30E+04	0.00082	1.00E+00
29	1996	5.68E-01	5.73E-01	0.0913	1.21E+04	1.21E+04	0.00975	1.00E+00
30	1997	4.08E-01	5.67E-01	0.1125	1.47E+04	1.47E+04	0.32847	1.00E+00
31	1998	6.37E-01	5.56E-01	0.1122	1.44E+04	1.44E+04	-0.13483	1.00E+00
32	1999	6.43E-01	5.48E-01	0.1086	1.37E+04	1.37E+04	-0.16024	1.00E+00
33	2000	4.20E-01	5.37E-01	0.126	1.56E+04	1.56E+04	0.2458	1.00E+00
34	2001	5.47E-01	5.23E-01	0.1247	1.50E+04	1.50E+04	-0.04437	1.00E+00
35	2002	5.86E-01	5.15E-01	0.108	1.28E+04	1.28E+04	-0.1293	1.00E+00
36	2003	4.99E-01	5.06E-01	0.1346	1.57E+04	1.57E+04	0.01448	1.00E+00
37	2004	5.17E-01	4.93E-01	0.1268	1.44E+04	1.44E+04	-0.04657	1.00E+00
38	2005	5.32E-01	4.83E-01	0.1313	1.46E+04	1.46E+04	-0.09636	1.00E+00

* Asterisk indicates missing value(s).

Appendix 5

R-code used for the XSA assessment

library(FLCore) library(FLEDA) library(FLAssess) library(FLXSA)

read stock data
swo <- read.FLStock("swo.idx")</pre>

set catch = landings (there are no discard data)
catch(swo) <- landings(swo)
catch.n(swo) <- landings.n(swo)
catch.wt(swo) <- landings.wt(swo)</pre>

set units

for (i in c("stock.n","catch.n","landings.n","discards.n")) units(slot(swo,i)) <- "thousands" for (i in c("stock.wt","catch.wt","landings.wt","discards.wt")) units(slot(swo,i)) <- "kg" for (i in c("catch","landings","discards")) units(slot(swo,i)) <- "tonnes" units(swo@harvest)<- "year-1"

read tuning file
swo.ind <- read.FLIndices("swo.tun")</pre>

define plusgroup
swo@range["plusgroup"]<- 10</pre>

XSA control swo.xsactl <- FLXSA.control(fse = 0.3, rage = 1, qage = 6, shk.n = TRUE, shk.f = TRUE, shk.yrs = 5, shk.ages = 5, window = 100, tsrange = 20, tspower = 3, vpa = TRUE)

Selecting the fleets
swo.ind00 <- swo.ind[c(1,2,3,4,5,6)] # the number of fleets
swo.ind00[["SPLL"]]@range[] <- c(2,9,9,1988,2005,0,1)
swo.ind00[["GRLL"]]@range[] <- c(2,9,9,1987,2005,0,1)
swo.ind00[["ITLL"]]@range[] <- c(2,9,9,1991,2005,0,1)
swo.ind00[["MODN"]]@range[] <- c(3,9,9,1998,2005,0,1)
swo.ind00[["JALL"]]@range[] <- c(3,9,9,1985,1993,0,1)
swo.ind00[["ITDN"]]@range[] <- c(3,9,9,1991,2001,0,1)</pre>

VPA

swo.xsa <- FLXSA(swo, swo.ind00, swo.xsactl, "Assessment in 2006")

Diagnostic plots

xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$SPLL, main="SPLL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$GRLL, main="GRLL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$MODN, main="MODN", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$JALL, main="JALL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$JILL, main="ITLL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$ITLL, main="ITLL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$ITLL, main="ITLL", pch=19) xyplot(data~year|as.factor(age), data=swo.xsa@index.res\$ITLL, main="ITLL", pch=19)

Abundance & Mortality plots fm <- swo.xsa@harvest stock.n <- swo.xsa@stock.n

ttl <- list(label="Mediterranean Swordfish stock abundance", cex=1) yttl <- list(label="Number of fish", cex=0.9) xttl <- list(cex=0.9) i <- 0:10

xyplot(data~year|as.factor(age), data=swo.xsa@stock.n[i], type="p", pch=19, main=ttl, ylab=yttl, xlab=xttl) xyplot(data~year|as.factor(age), data=swo.xsa@harvest[i], type="p", pch=19, main=ttl, ylab=yttl, xlab=xttl)

updated stock object
swo <- swo+swo.xsa</pre>

Total and spawning biomass estimates
stock.n <- swo@stock.n
stock.wt <- swo@stock.wt
mat <- swo@mat
spbio <- stock.n*stock.wt*mat
totbio <- stock.n*stock.wt
swo@m.spwn <- spbio</pre>

Diagnostics (inspect the diagnostics in the old style)
diagnostics(swo.xsa)

VPA-2BOX Modeling: Fits to Index Data for SWO Med

5.1 JPN	I LL												
Lognorm	al dist number	s											
Ages 1	11			07 40									
109-116	.e11100a	=	-	2/.48									
Chi-sq	dicare	=	1	19 61									
cur-by.	UIBCIE	pancy-	1	10.01									
Year	Observ	ed	Predicte	d ((esiduals Obs-pred) Dev	ndard iation	Cato	Q habil.	Untrar Obse	nsfrmd erved	Untransfrmd Predicted	Chi-square Discrepancy
1985	1.	084	0.2	56	0.82	8	0.198	0.5	17E-05		1.595	0.697	38.728
1986	0.	127	0.2	58	-0.13	2	0.198	0.5	17E-05		0.612	0.698	0.492
1987	-0.	352	0.1	92	-0.54	4	0.198	0.5	17E-05		0.379	0.653	4.641
1988	-0.	126	_0.0	20	-0.08	9 5	0.198	0.5	178-05		0.523	0.572	1 205
1990	0.	805	-0.0	43	0.22	8	0.198	0.5	17E-05		1 207	0.468	58 527
1991	-0.	491	-0.1	33	-0.35	8	0.198	0.5	17E-05		0.330	0.472	2.472
1992	0.	004	-0.2	01	0.20	4	0.198	0.5	17E-05		0.542	0.441	1.030
1993	-1.	282	-0.1	99	-1.08	3	0.198	0.5	17E-05		0.150	0.442	11.157
Selecti	vities	by age	2		-	~	-		0	1.0	1.1		
rear	1	2	3	4	5	ь 	/	8	9	±0	11		
1985	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1986	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1987	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1988	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1989	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1990	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1991	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1992	0.001	0.003	0.013	0.032	0.167	0.433	0.656	0.752	0.870	0.326	1.000		
1993	0.001	0.003	0.013	0.032	0.107	0.435	0.050	0.752	0.870	0.320	1.000		
5.2 GRE	LL												
Lognorm	al dist												
average	biomas	s											
Ages 1	11												
		_		7 11									
log-lik deviand	elihood	-		7.11									
log-lik devianc Chi-sg.	elihood e discre	= = pancv=		7.11 37.59 26.18									
log-lik devianc Chi-sq.	elihood e discre	= = pancy=		7.11 37.59 26.18									
log-lik devianc Chi-sq.	discre	= = pancy=	Dredicte	7.11 37.59 26.18	esiduals	Sta	ndard	Cato	Q	Untrar	nsfrmd	Untransfrmd	Chi-square
log-lik devianc Chi-sq. Year	discre Observ	= = pancy= ed 	Predicte	7.11 37.59 26.18 d ((esiduals Obs-pred	Sta) Dev 	ndard iation	Cato	Q habil.	Untrar Obse	nsfrmd erved	Untransfrmd Predicted	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 	Observ -0.	= = pancy= ed 024	Predicte	7.11 37.59 26.18 d ((95	esiduals Obs-pred -0.31	Sta) Dev 9	ndard iation 0.198	Catc 0.4	Q habil. 25E-07	Untrar Obse	nsfrmd erved 0.937	Untransfrmd Predicted 1.289	Chi-square Discrepancy 2.060
log-lik devianc Chi-sq. Year 1987 1988	elihood e discre Observ -0. 0.	= pancy= ed 024 176	Predicte 0.2 0.1	7.11 37.59 26.18 d ((95 71	esiduals Dbs-pred -0.31 0.00	Sta) Dev 9 5	ndard iation 0.198 0.198	Catc 0.4 0.4	Q 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144	Untransfrmd Predicted 1.289 1.139	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990	Observ 0. 0.	= pancy= ed 024 176 031 220	Predicte 0.2 0.1 0.0	7.11 37.59 26.18 d ((95 71 37	esiduals Dbs-pred -0.31 0.00 -0.00	Sta) Dev 9 5 6 0	ndard iation 0.198 0.198 0.198	Catc 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990	Untransfrmd Predicted 1.289 1.139 0.996	Chi-square Discrepancy 2.060 0.005 0.016
log-lik devianc Chi-sq. Year 1987 1988 1990 1991	Observ -0. 0. 0. -1	= pancy= ed 024 176 031 280 012	Predicte 0.2 0.1 0.0 -0.0	7.11 37.59 26.18 Re d (0 	esiduals Dbs-pred -0.31 0.00 -0.00 0.29 -0.92	Sta) Dev 9 5 6 0 7	ndard iation 0.198 0.198 0.198 0.198 0.198	Cato 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.249	Untransfrmd Predicted 1.289 1.139 0.996 0.950	Chi-square Discrepancy 0.005 0.016 2.410 9.476
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993	elihood ee Observ 0. 0. 0. -1. -0.	= pancy= ed 024 176 031 280 012 018	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0	7.11 37.59 26.18 Re d (0 	esiduals Dbs-pred -0.31 0.00 -0.00 0.29 -0.93 0.05	Sta) Dev 9 5 6 0 7 1	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198	Cato 0.4 0.4 0.4 0.4 0.4	Q 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942	Untransfrmd Predicted 1.289 0.996 0.950 0.890 0.890	Chi-square Discrepancy 0.065 0.016 2.410 9.476 0.025
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994	Observ 	= pancy= ed 024 176 031 280 012 018 344	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 -0.0	7.11 37.59 26.18 Rd ((95 71 37 10 75 69 56	esiduals Dbs-pred - 0.31 0.00 -0.00 0.29 -0.93 0.05 0.40	Sta) Dev 9 5 6 0 7 1 0	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.908	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995	Observ 	= pancy= ed 024 176 031 280 012 018 344 235	Predicte 	7.11 37.59 26.18 Rd ((95 71 37 10 75 69 56 50	esiduals Dbs-pred - 0.31 0.00 -0.00 0.29 -0.93 0.05 0.40 -0.18	Sta) Dev 9 5 6 0 7 1 0 6	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.908 0.913	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998	elinood ee Observ 0. 0. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	= pancy= ed 024 176 031 280 012 012 018 344 235 401	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0	7.11 37.59 26.18 Rd d ((95 71 37 10 75 69 56 50 42	esiduals Dbs-pred -0.31 0.00 -0.00 0.29 -0.93 0.05 0.40 -0.18 0.35	Sta) Dev 9 5 6 0 7 1 0 6 9	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 1.354 0.759 1.433	Untransfrmd Predicted 1.289 1.139 0.996 0.996 0.890 0.890 0.890 0.908 0.913 1.001	Chi-square Discrepancy 0.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999	ee discre Observ -0. 0. 0. 0. -1. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	ed 024 176 031 280 012 018 344 235 401 203	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0	7.11 37.59 26.18 R(d ((95 71 37 10 75 69 56 50 42 29	esiduals Obs-pred -0.31 0.00 -0.93 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17	Sta) Dev 9 5 6 0 7 1 0 6 9 5	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.349 0.354 0.754 0.753 1.433 1.433	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.896 0.908 0.908 0.913 1.001 0.988	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703
log-lik devianc Chi-sq. 1987 1998 1990 1991 1992 1994 1993 1994 1995 1998 1999 2000	ee discre Observ 	ed 024 176 031 280 012 018 344 235 401 203 008	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0 0.0	7.11 37.59 26.18 R. d ((95 71 37 75 69 56 50 42 29 21 20	esiduals Dbs-pred -0.31 0.00 -0.00 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17	Sta) Dev 9 5 6 0 7 1 1 0 6 9 5 3 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. .25E-07 .25E-07 .25E-07 .25E-07 .25E-07 .25E-07 .25E-07 .25E-07 .25E-07 .25E-07	Untrar Obse	hsfrmd prved 0.937 1.144 0.990 1.270 0.349 0.349 0.942 1.354 0.759 1.433 1.176 0.952	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.908 0.913 1.001 0.988 0.940	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001
log-lik devianc Chi-sq. Year 1987 1998 1990 1991 1992 1993 1994 1995 1994 1995 1999 2000 2001 2000	ee discre Observ -0. 0.	ed 024 176 031 280 012 018 344 203 018 344 203 008 036 234	Predicte 	7.11 37.59 26.18 R(d ((95 71 37 10 75 69 56 50 42 29 21 96 73	esiduals Dbs-pred -0.31 0.00 -0.00 0.29 -0.93 0.40 -0.18 0.35 0.17 0.01 0.13	Sta) Dev 9 5 6 0 7 1 0 6 9 5 3 3 1	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.908 0.913 1.001 0.988 0.940 0.872 0.872	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.620
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 1995 1998 1999 2000 2001 2000 2001	Image: Weight of the second	= = = = = = = = = = = = = = = = = = =	Predicte 	7.11 37.59 26.18 R(d ((95 71 37 10 75 56 56 56 56 56 56 50 42 29 21 96 73 35	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07	Sta) Dev 9 5 6 0 7 1 0 6 9 5 3 3 1 4	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 	Untrar Obse	nsfrmd erved 0.937 1.149 0.949 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.997	Untransfrmd Predicted 1.289 1.139 0.996 0.9950 0.890 0.896 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1999 2000 2001 2001 2002 2004	Index Observ -0. 0.	= = pancy= ed 024 176 031 280 012 018 344 235 401 203 044 235 401 203 008 036 234 008 003	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.11 37.59 26.18 R(d ((esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05	Sta) Dev 9 5 6 0 7 7 1 0 6 9 5 3 3 1 1 4 7	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. .25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd rvved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.942 1.433 1.176 0.955 0.995 0.995 0.957	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.890 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 2002 2002 2003 2004 2005	Image: Network Observ -0. 0.	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.	7.11 37.59 26.18 Ref d (() 	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.13 -0.16 0.07 0.05	Sta) Dev 9 5 6 0 7 1 0 6 9 5 3 3 1 1 4 7 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. .25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.795 0.795 0.795 0.795 0.985	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1994 1995 1998 1999 2000 2001 2002 2003 2004 2005	<pre>lelinood e e discre discre -0. 0. 0. 010. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.11 37.59 26.18 d ((95 71 37 75 69 50 50 50 42 29 21 96 73 35 60 27	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.05	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 4 7 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	hsfrmd rved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.7957 0.985	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.822 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 2000 2001 2002 2003 2004 2005 Selecti	<pre>letinood e e discre discre -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	ed 024 176 031 280 012 018 344 235 401 203 044 235 401 203 008 036 234 008 038 003 025 by age	Predicte 0.2 0.1 0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 -	7.11 37.59 26.18 Rd ((71 37 75 69 50 42 29 21 96 50 42 29 21 96 27	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.45 0.45 0.47 0.11 0.13 -0.16 0.05 0.05 0.55 0	Sta) Dev 9 5 6 0 7 1 0 6 9 5 5 3 3 1 4 7 2 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07 255-07	Untrar Obse	hsfrmd rvved 1.144 0.990 1.270 0.349 0.942 1.354 1.354 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.9957 0.9957 0.985	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.872 0.822 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 1999 2000 2001 2000 2001 2000 2001 2003 2004 2003 2004 2005 Selecti Year	<pre>lee discre discre -0. 0. 0. 0. 0. -1. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 	7.11 37.59 26.18 d ((95 71 37 75 69 56 50 42 29 21 96 73 35 60 27 4	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.40 -0.13 0.40 -0.13 -0.16 0.07 0.05 0.05 0.05 0.17 0.01 0.13 -0.16 0.07 0.05 0.05 0.17 0.01 0.13 -0.16 0.07 0.05 0.05 0.17 0.01 0.13 -0.16 0.05 0.05 0.17 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.40 0.12 0.12 0.40 0.12 0.12 0.12 0.15 0.17 0.01 0.13 0.12 0.12 0.15 0.17 0.11 0.13 0.12 0.12 0.15 0.17 0.01 0.13 0.15 0.15 0.15 0.17 0.01 0.13 0.05 0.17 0.05 0.17 0.05 0.17 0.05 0.17 0.05 0.17 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.55 0.15 0.15 0.55 0.15 0.55 0.15 0.55 0.15 0.55 0.15 0.55 0.15 0.55 0.15 0.55 0.15 0.05	Sta) Dev 9 5 6 0 7 1 1 0 6 9 9 5 3 3 1 4 7 2 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07 25E-07	Untrar Obse	hsfrmd rvved 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.955 0.760 0.995 0.7907 0.995 0.995 0.995 1.1	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.892 0.926 0.904 0.935	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1994 1995 1998 2000 2001 2002 2001 2002 2004 2005 Selecti Year 1987	<pre>lefinood e discre -0. 0. 0. 0. 0. -0. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	ed 024 176 031 280 012 280 012 018 344 203 008 234 401 203 008 234 003 025 by age 2 0.126	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.11 37.59 26.18 R. d ((95 71 37 10 75 69 56 56 56 56 56 56 50 229 21 96 73 35 60 27	esiduals bbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.15 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.05 0.12 0.05 0.12 0.05 0.05 0.12 0.05 0.05 0.05 0.05 0.12 0.05 0.22	Sta) Dev 9 5 6 0 7 1 0 6 9 5 3 3 1 4 7 2 2 6 0.952	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07	Untrar Obse 10 0.857	nsfrmd arved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.995 0.760 0.997 0.995 0.985	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1998 1999 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1988	<pre>letinood e e discre discre -0. 0. 0. 010. 0. 00. 0. 00. 0 vities 1 0.017 0.017</pre>	ed 	Predicte 	7.11 37.59 26.18 d ((95 71 37 75 69 56 50 56 50 22 73 35 60 27 27 0.795 0.795	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.5 0.05 0.920 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 4 7 2 2 0.952 0 0.952	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habi1. 25E-07	Untrar Obse 0.857 0.857	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.997 0.957 0.985 11 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 2002 2003 2004 2005 Selecti Year 1988 1990	<pre>letinood e discre -0. 0. 0. -0. 0. -0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -	7.11 37.59 26.18 Rd ((95 71 37 75 69 50 42 29 21 96 50 42 29 21 96 27 33 56 27 27 27 27 27 27 27 27 27 27 27 27 27	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.45 0.40 -0.18 0.35 0.40 0.17 0.01 0.13 -0.16 0.07 0.5 0.5 0.920 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 7 2 6 0.952 0.952	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 255-07 0 255-07 0 0.862 0.862 0.862	10 0.857 0.857	hsfrmd rvved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.995 0.995 0.995 0.995 0.985	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1998 1999 1992 1993 1994 1995 1998 1999 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1987 1987 1987 1987	<pre>letinood ee discre -0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 0.0 0.0 0.0 -0.5 -0.5	7.11 37.59 26.18 R(d ((95 71 37 75 69 56 50 42 29 21 96 60 27 35 60 27 35 60 27 21 96 60 27 50 42 29 21 96 60 27 50 60 27 50 60 27 50 60 27 50 60 27 50 60 80 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 50 70 70 70 70 70 70 70 70 70 70 70 70 70	esiduals bbs-pred -0.31 0.00 -0.93 0.40 -0.13 0.40 -0.13 -0.16 0.07 0.05 0.05 0.05 0.5 0.05 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.920	Sta) Dev 9 5 6 0 7 1 1 0 6 6 9 9 5 3 3 1 4 7 2 0.952 0.952 0.952 0.952	ndard iation 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07	10 0.857 0.857 0.857	hsfrmd prved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.995 0.995 0.995 0.995 11 0.903 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.926 0.904 0.935	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1988 1990 1991 1991 1991	<pre>lelinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.5 -0.0 -0.5 -0.	7.11 37.59 26.18 R. d ((95 71 37 37 56 50 56 56 56 56 50 42 29 21 96 73 35 60 27 4 0.795 0.795 0.795 0.795 0.795	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.13 -0.16 0.07 0.55 0.05 5 0.920 0.920 0.920 0.920 0.920 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.1988 0.1988 0.1988 0.1988 0.1988 0.19888 0.19888000000000	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07	Untrar Obse 0.857 0.857 0.857 0.857	nsfrmd erved 0.937 1.144 0.990 1.354 0.759 1.433 0.759 1.433 0.995 0.760 0.997 0.995 0.985 11 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1998 1990 1992 1998 1999 2000 2001 2002 2003 2004 2002 2003 2004 2005 Selecti 1988 1999 1988 1999 1993 1992 1993	<pre>letinood e e discre discre Observ 0.0 0. 00. 00. 0. 00. 0. 0. vities 1 0.017 0.017 0.017 0.017 0.017 0.017 0.017</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 -0.5 -0.5	7.11 37.59 26.18 R. d ((95 71 37 75 69 50 50 50 50 50 22 73 35 60 27 21 96 60 27 3 35 60 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.5 0.9200 0.9200 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 7 2 2 6 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07	10 0.857 0.857 0.857 0.857 0.857	hsfrmd rved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.997 0.985 11 0.903 0.903 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.913 1.001 0.988 0.940 0.872 0.822 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1 1987 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000 2001 2002 2003 2004 2005 Selecti Year 1988 1990 1991 1992 1993 1994	<pre>letinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.564 -0.56	7.11 37.59 26.18 Rtd ((95 71 37 75 69 50 42 29 21 96 50 42 29 21 96 50 27 33 56 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 -0.00 0.29 -0.93 0.45 0.45 0.47 0.01 0.13 -0.16 0.07 0.05 0.5 0.920	Sta) Dev 9 5 6 0 7 1 0 6 9 5 3 3 3 1 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 255-07 0 862 0.8620	10 0.857 0.857 0.857 0.857 0.857	hsfrmd rvved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.16 0.952 0.952 0.965 0.967 0.9957 0.9957 0.9957 0.9957 0.9957 0.9957 0.993 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.896 0.913 1.001 0.872 0.872 0.872 0.872 0.872 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1999 2000 2001 2002 2001 2002 2001 2002 2004 2005 Selecti Year 1987 1988 1999 1991 1992 1993 1991 1992 1993	<pre>letinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.11 37.59 26.18 d ((95 71 37 75 69 56 50 42 29 21 96 56 50 42 29 21 96 60 27 35 60 27 35 60 27 20 79 50.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 -0.99 -0.93 0.40 -0.13 -0.16 0.07 0.05 0.05 0.05 0.05 0.05 0.920 0.9	Sta) Dev 9 5 6 0 7 1 1 0 6 9 9 5 3 3 1 1 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 0.862 0	Untrar Obse 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	hsfrmd prved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 1.354 0.952 0.995 0.760 0.995 0.995 0.995 0.995 11 0.903 0.90	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1 1987 1988 1990 1991 1992 1993 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1998 1999 1999 1999 1999	<pre>letinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 	7.11 37.59 26.18 R. d ((95 71 37 56 50 56 50 42 29 21 96 73 35 60 27 3 35 60 27 4 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 5 3 3 1 4 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198 0.1900 0.000 0.00000 0.00000 0.000000	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habi1. 25E-07	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 0.995 0.965 0.760 0.997 0.995 0.985 11 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.890 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1988 1990 1999 1998 1999 1999 1999 1999	<pre>letinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.5 -0.	7.11 37.59 26.18 d ((95 71 37 75 69 50 50 50 42 96 50 42 99 50 73 35 60 27 21 96 50 27 21 96 50 50 27 20 73 55 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.5 0.920 0	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 7 2 0.952	ndard iation 0.198 0.190 0.1000 1.000	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 0.862	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	hsfrmd rved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.997 0.9957 0.985 11 0.903 0.90	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1 1987 1988 1990 1991 1992 1993 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1988 1990 1991 1992 1993 1994 1995 1998 1999 2000	<pre>letinood ee discre -0. 0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 -0.5 -0.5	7.11 37.59 37.59 6.18 d ((95 71 37 75 69 50 42 96 50 42 96 50 42 96 50 42 97 33 56 0 27 73 35 60 27 73 35 60 27 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 -0.09 -0.93 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.920 0.9	Sta) Dev 9 5 6 0 7 1 0 9 5 3 3 3 3 1 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198 0.1000 1.0000	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 255-07 0.862	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	hsfrmd prved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.16 0.952 0.952 0.957 0.9957 0.9957 0.9957 0.9957 0.9957 11 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.913 1.001 0.988 0.940 0.872 0.872 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1988 1990 1991 1992 1993 1991 1992 1993 1994 1995 1997 1997 1997 1997 1997 1997 1997	<pre>letinood e discre</pre>	<pre>ed </pre>	Predicte 0.2 0.1 0.0 -0.0 -0.0 0.0 0.0 -0.5 -0.5	7.11 37.59 26.18 R. d ((95 71 37 37 56 50 56 56 56 50 42 29 21 73 35 69 56 50 22 73 35 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals Dbs-pred -0.31 0.00 -0.93 0.93 0.15 0.40 -0.18 0.35 0.17 0.13 -0.16 0.07 0.55 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 4 7 2 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952	ndard iation 0.198 0.190 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habi1. 25E-07 25E-08 0.862	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	nsfrmd arved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 0.995 0.760 0.995 0.760 0.997 0.957 0.985 11 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.908 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 5.0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1987 1998 1999 1999 1999 1999 1999 1999	<pre>letinood e discre</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 	7.11 37.59 26.18 R.(95 71 37 75 69 56 50 42 29 21 96 73 35 60 27 33 56 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals Dbs-pred -0.31 0.00 -0.93 0.05 0.40 -0.18 0.35 0.17 0.01 0.13 -0.16 0.07 0.05 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 5 3 3 1 4 4 7 2 0.95	ndard iation 0.198 0.190 0.000 1.000	Catco 	Q habi1. 25E-07 25E-08 20 862 0.862 0	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	nsfrmd erved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 0.995 0.995 0.997 0.995 0.985 11 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.950 0.890 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 2000 2001 2002 2003 2004 2005 Selecti 1988 1990 1991 1992 2005 Selecti 1998 1999 1993 1994 1995 1998 1999 1995 1998 1999 1995 1998 1999 2000 2001 2002 2003 2004 2005	<pre>letinood e discre discre -0. 0. 0. 0. 0. -0. 0. -0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. 0. -0. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.5 -0.0 -0.5 -0.	7.11 37.59 26.18 d ((95 71 37 75 69 50 50 50 50 50 27 21 96 50 50 27 35 60 27 35 60 27 35 60 27 35 60 27 50.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 0.29 -0.93 0.05 0.40 -0.18 0.35 0.17 0.11 0.13 -0.16 0.07 0.05 0.920	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 1 4 7 2 0.952 0.	ndard iation 0.198 0.190 0.000 1.000	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-08 20 862 0.	10 	hsfrmd rved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.760 0.997 0.957 0.985 11 0.903	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.892 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.861 4.095 0.703 0.001 0.359 0.680 0.077 0.036 0.027
log-lik devianc Chi-sq. Year 1987 1988 1990 1991 1992 1993 1994 1995 1998 2000 2001 2002 2003 2004 2005 Selecti Year 1988 1990 1992 1993 1994 1995 1998 1999 1993 1994 1995 1998 1999 2000 2001 2001 2001 2002 2003 2004 2005	<pre>letinood e discre discre -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0</pre>	= = = = = = = = = = = = = = = = = = =	Predicte 0.2 0.1 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.11 37.59 37.59 6.18 Rtd ((95 71 37 71 37 75 69 50 42 95 50 42 96 50 42 96 50 42 97 33 56 50 42 99 50 73 35 60 27 73 35 60 27 73 35 60 27 50 795 0.795 0.795 0.795 0.795 0.795 0.795 0.795	esiduals bbs-pred -0.31 0.00 -0.02 -0.33 0.45 0.47 0.01 0.13 -0.16 0.05 0.55 0.920 0.9	Sta) Dev 5 6 0 7 1 0 6 9 5 3 3 3 1 4 7 2 0.952	ndard iation 0.198 0.190 1.000	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 25E-07 25E-08 20 862 0.862	10 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857	hsfrmd rved 0.937 1.144 0.990 1.270 0.349 0.942 1.354 0.759 1.433 1.176 0.952 0.995 0.905 0.907 0.9957 0.985 11 0.903 0.90	Untransfrmd Predicted 1.289 1.139 0.996 0.890 0.896 0.913 1.001 0.988 0.940 0.872 0.872 0.822 0.926 0.904 0.935	Chi-square Discrepancy 2.060 0.005 0.016 2.410 9.476 0.025 5.345 0.703 0.001 0.359 0.680 0.077 0.036 0.027

-----5.3 ITA LL Lognormal dist. average biomass Ages 1 - 11

log-lik	elihood	=	8.22
deviance	е	=	25.67
Chi-sq.	discrep	ancy=	25.07

				Re	siduals	Sta	ndard		Q	Untrar	sfrmd	Untransfrmd	Chi-square
Year	Observ	red	Predicte	d (C	bs-pred) Dev	iation	Cato	habil.	Obse	rved	Predicted	Discrepancy
1991	-0.	013	-0.0	03	-0.01	0	0.198	0.5	02E-07		0.950	0.959	0.021
1992	-0.	057	-0.0	57	0.00	0	0.198	0.5	02E-07		0.909	0.910	0.010
1994	-0.	119	0.0	03	-0.12	2	0.198	0.5	02E-07		0.855	0.966	0.439
1995	0.	110	0.0	13	0.09	7	0.198	0.5	02E-07		1.074	0.975	0.162
1997	-0.	353	0.0	44	-0.39	7	0.198	0.5	02E-07		0.676	1.006	2.903
1998	0.	163	0.0	10	0.15	3	0.198	0.5	02E-07		1.133	0.972	0.507
1999	0.	327	0.0	04	0.32	3	0.198	0.5	02E-07		1.335	0.967	3.134
2000	-0.	580	-0.0	19	-0.56	1	0.198	0.5	02E-07		0.539	0.944	4.845
2001	0.	072	-0.0	54	0.12	6	0.198	0.5	02E-07		1.034	0.912	0.313
2002	0.	533	0.0	06	0.52	7	0.198	0.5	02E-07		1.640	0.968	10.901
2003	-0.	273	0.0	08	-0.28	1	0.198	0.5	02E-07		0.733	0.970	1.684
2004	0.	047	-0.0	16	0.06	3	0.198	0.5	02E-07		1.010	0.948	0.049
2005	0.	145	0.0	61	0.08	3	0.198	0.5	02E-07		1.113	1.024	0.108
0-1		h											
Serect	ivities	by age	2	4	-	~	7	ō	0	1.0	11		
Iear	T	4	2	4	5	0	1	0	9	10	11		
1001	0 033	0 303	1 000	0 800	0 516	0 433	0 306	0 448	0 3 2 1	0 300	0 297		
1002	0.033	0.303	1 000	0.000	0.516	0.433	0.396	0.449	0.321	0.309	0.207		
1994	0.033	0.303	1 000	0.800	0.516	0.433	0.396	0.448	0.321	0.309	0.207		
1995	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
1997	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
1998	0 033	0 303	1 000	0 800	0 516	0 433	0 396	0 448	0 321	0 309	0 287		
1999	0.033	0 303	1 000	0 800	0.516	0 433	0.396	0 448	0 321	0 309	0 287		
2000	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
2000	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
2001	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
2002	0.033	0.303	1 000	0.000	0.516	0.133	0.396	0.110	0.321	0.309	0.207		
2004	0 033	0 303	1 000	0 800	0 516	0 433	0 396	0 448	0 321	0 309	0 287		
2005	0 033	0 303	1 000	0 800	0 516	0 433	0 396	0 448	0 321	0 309	0 287		
2000	0.000	5.505	1.000	0.000	0.010	0.155	0.550	5.110	0.021	0.505	0.207		

5.4 ESP LL Lognormal dist. average biomass Ages 1 - 11 log-likelihood = deviance = Chi-sq. discrepancy=

14.58 29.13 35.75

				Re	siduals	Sta	ndard		Q	Untran	sfrmd	Untransfrmd	Chi-square
Year	Observ	red 1	Predicte	d (C	bs-pred) Dev	iation	Catc	habil.	Obse	rved	Predicted	Discrepancy
1000									417 07			1.065	
1988	υ.	/68	0.1	07	0.66	1	0.198	0.5	41E-07		2.064	1.065	20.230
1989	υ.	254	0.0	96	0.15	8	0.198	0.5	41E-07		1.234	1.054	0.548
1990	υ.	334	0.0	74	0.26	0	0.198	0.5	41E-07		1.337	1.031	1.844
1991	υ.	211	-0.0	37	0.24	3	0.198	0.5	41E-07		1.182	0.922	1.641
1992	-0.	2/6	-0.0	/5	-0.20	1	0.198	0.5	41E-07		0.726	0.888	0.979
1993	υ.	100	-0.0	28	0.11	2	0.198	0.5	41E-07		1.041	0.931	0.232
1994	υ.	102	-0.0	13	0.11	5	0.198	0.5	41E-07		1.059	0.944	0.250
1995	υ.	010	-0.0	10	0.01	1	0.198	0.5	41E-07		0.966	0.956	0.002
1996	-0.	146	0.0	40	-0.18	6	0.198	0.5	41E-07		0.827	0.996	0.864
1997	-0.	064	-0.0	10	-0.05	4	0.198	0.5	41E-07		0.898	0.947	0.124
1998	-0.	068	-0.0	36	-0.03	2	0.198	0.5	41E-07		0.894	0.923	0.063
1999	-0.	242	-0.0	38	-0.20	4	0.198	0.5	41E-07		0.752	0.921	1.001
2000	-0.	030	-0.0	50	0.01	9	0.198	0.5	41E-07		0.928	0.911	0.000
2001	-0.	385	-0.0	60	-0.32	5	0.198	0.5	41E-07		0.651	0.901	2.127
2002	-0.	016	0.0	12	-0.02	9	0.198	0.5	41E-07		0.942	0.969	0.056
2003	-0.	416	-0.0	11	-0.40	5	0.198	0.5	41E-07		0.631	0.946	2.992
2004	-0.	328	-0.0	05	-0.32	2	0.198	0.5	41E-07		0.690	0.952	2.098
2005	0.	209	0.0	34	0.17	4	0.198	0.5	41E-07		1.179	0.991	0.700
Select	ivities	hy are											
Year	1	2	з	4	5	б	7	8	9	10	11		
1988	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
1989	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
1990	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1991	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1992	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1993	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1994	0.027	0.587	1.000	0.584	0.462	0.291	0.175	0.139	0.088	0.069	0.071		
1995	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1996	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1997	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1998	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
1999	0.027	0.587	1 000	0.584	0.102	0.291	0.175	0.139	0.000	0.009	0.071		
2000	0.027	0.587	1 000	0.584	0.102	0.291	0.175	0.139	0.000	0.009	0.071		
2000	0.027	0.587	1 000	0.584	0.102	0.291	0.175	0.139	0.000	0.009	0.071		
2002	0.027	0 587	1 000	0 584	0 462	0 291	0 175	0.139	0 088	0 069	0 071		
2003	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
2004	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
2005	0 027	0 587	1 000	0 584	0 462	0 291	0 175	0 139	0 088	0 069	0 071		
2005	0.027	5.507	1.000	5.501	5.102	5.271	5.1,5	5.139	0.000	5.005	5.071		

5.5 MAR GN Lognormal dist.

average biomass Ages 1 - 11 log-likelihood deviance = 12.14 1.62

Year	Observ	ed P	redicte	Re d (C	siduals) bs-pred) Dev	ndard iation	Catc	Q habil.	Untran Obse	sfrmd rved	Untransfrmd Predicted	Chi-square Discrepanc
1998	0.	018	0.1	03	-0.08	5	0.198	0.6	72E-07		1.015	1.106	0.24
1999	-0.	079	0.0	83	-0.16	2	0.198	0.6	72E-07		0.922	1.084	0.69
2000	0.	175	0.0	27	0.14	8	0.198	0.6	72E-07		1.188	1.024	0.47
2001	-0.	038	-0.0	66	0.02	8	0.198	0.6	72E-07		0.961	0.934	0.00
2002	-0.	005	-0.0	66	0.06	1	0.198	0.6	72E-07		0.992	0.934	0.04
2003	-0.	006	-0.0	16	0.01	1	0.198	0.6	72E-07		0.992	0.981	0.00
2004	0.	002	-0.0	38	0.04	1	0.198	0.6	72E-07		0.999	0.960	0.013
2005	-0.	068	-0.0	27	-0.04	1	0.198	0.6	72E-07		0.932	0.971	0.08
Selecti	lvities	by age	2		-	ć	-	0		1.0	11		
Year	1	2	3	4	5	6		8	9	10	11		
1998	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
1999	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2000	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2001	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2002	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2003	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2004	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
2005	0.000	0.028	0.223	0.432	0.615	0.872	0.982	1.000	0.748	0.661	0.718		
Lognorm average Ages 1 log-lik devianc	nal dist biomas l - 11 celihood ce	 s 		7.44									
Lognorm average Ages 1 log-lik devianc Chi-sq.	mal dist e biomas L - 11 celihood ce . discre	s = = pancy=		7.44 14.27 11.94 Re	esiduals	Sta	ndard		Q	Untran	ısfrmd	Untransfrmd	Chi-square
Lognorm average Ages 1 log-lik devianc Chi-sq. Year	nal dist e biomas L - 11 celihood ce . discre	. = = pancy=	redicte	7.44 14.27 11.94 Re d (C	esiduals	Sta) Dev	ndard iation	Catc	Q habil.	Untran Obse	sfrmd rved	Untransfrmd Predicted	Chi-square Discrepancy
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 	nal dist e biomas L - 11 celihood ce Observ		redicte 0.0	7.44 14.27 11.94 d (C 18	esiduals bbs-pred 0.04	Sta) Dev 	ndard iation 0.198	Catc 0.4	Q habil. 47E-07	Untran Obse	sfrmd rved 1.032	Untransfrmd Predicted 	Chi-square Discrepancy 0.011
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992	nal dist e biomas L - 11 celihood ce . discre Observ 	 s pancy= ed P 061 038	Predicte 0.0 -0.0	7.44 14.27 11.94 Red (C 18	esiduals bs-pred 0.04 0.02	Sta) Dev 3 2	ndard iation 0.198 0.198	Catc 0.4 0.4	Q habil. 47E-07 47E-07	Untran Obse	lsfrmd erved 1.032 0.934	Untransfrmd Predicted 0.988 0.914	Chi-square Discrepancy 0.011 0.000
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994	nal dist biomas l - 11 celihood ce Observ Observ 0. -0. -0.	 s pancy= ed P 061 038 083	0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 	esiduals bbs-pred 0.04 0.02 -0.04	Sta) Dev 3 2 9	ndard iation 0.198 0.198 0.198	Catc 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07	Untran Obse	esfrmd erved 1.032 0.934 0.892	Untransfrmd Predicted 	Chi-square Discrepancy 0.015 0.000 0.11
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995	nal dist biomas L - 11 celihood ce Observ -0. -0. 0. 0.	 s pancy= ed P 061 038 083 148	redicte 0.0 -0.0 -0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 18 60 34 16	esiduals bbs-pred 0.04 0.02 -0.04 0.02	Sta) Dev 2 9 5	ndard 'iation 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07	Untran Obse	sfrmd rved 1.032 0.934 0.892 1.125	Untransfrmd Predicted 0.988 0.914 0.937 0.954	Chi-square Discrepancy 0.011 0.000 0.111 0.605
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997	nal dist biomas l - 11 celihood ce Observ 0. -0. -0. 0. -0. -0. 0. -0.	 pancy= ed P 061 038 148 261	redicte -0.0 -0.0 -0.0 -0.0 0.0	7.44 14.27 11.94 d (C 18 60 34 16 89	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35	Sta) Dev 3 2 9 5 0	ndard 'iation 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	asfrmd erved 0.932 0.892 1.125 0.748	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060	Chi-square Discrepancy 0.011 0.000 0.111 0.600 2.382
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998	nal dist biomas L - 11 celihood ce Observ 0. -0. -0. -0. 0. 0. 0. 0.	 pancy= ed P 061 038 083 148 261 296	redicte -0.0 -0.0 -0.0 0.0 0.0 0.0	7.44 14.27 11.94 d (C 1 18 60 34 16 89 57	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23	Sta) Dev 3 2 9 5 0 9	ndard fiation 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	sfrmd 1.032 0.934 0.892 1.125 0.748 1.304	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027	Chi-square Discrepancy 0.011 0.000 0.111 0.600 2.382 1.501
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1998	al dist biomas L - 11 celihood ce Observ 0. -0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	. = = pancy= ed P 061 038 038 038 038 038 261 296 369	redicte -0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0	7.44 14.27 11.94 Red (C 18 60 34 16 89 57 39	esiduals bs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33	5 Sta) Dev 2 9 5 0 9 1	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	usfrmd rrved 1.032 0.934 0.892 1.125 0.748 1.304 1.304	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008	Chi-square Discrepancy 0.015 0.000 0.111 0.609 2.382 1.501 3.326
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1999 2000	nal dist biomas L - 11 celihood ce Observ 0. -0. -0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. -	. = pancy= ed P 061 038 083 148 261 296 369 492	redicte -0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0	7.44 14.27 11.94 Re d (C 	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48	Sta) Dev 2 9 5 0 9 1 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	sfrmd 20.932 0.932 0.892 0.748 1.304 1.404 0.593	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961	Chi-square Discrepancy 0.012 0.000 0.111 0.609 2.382 1.501 3.320 3.892
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1999 2000 2001	A chi a biomas l - 11 a biomas l - 11 celihood 20 Observ -0. -0. -0. -0. 0. -0. 0. -0. -0. -0. -	. = pancy= ed P 061 038 083 148 261 296 369 492 002	redicte 0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.	7.44 14.27 11.94 Red (C 18 60 34 16 89 57 39 10 83	esiduals bs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08	Sta) Dev - - 2 9 5 5 0 9 9 1 2 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	asfrmd rved 1.032 0.934 0.892 1.125 0.748 1.304 1.404 0.593 0.593 0.968	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1999 2000 2001 Selecti	al dist biomas biomas l - 11 ce Observ 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. <	. = pancy= ed P 061 038 083 148 261 296 369 492 002 by age	redicte -0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.	7.44 14.27 11.94 Red (C 18 60 34 16 89 57 39 10 83	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08	Sta) Dev 3 2 9 5 5 0 9 1 2 2 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07	Untran Obse	Asfrmd rved 1.032 0.934 0.892 0.748 1.304 1.404 0.593 0.968	Untransfrmd Predicted 0.988 0.914 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1997 1998 1999 2000 2001 Selecti Year	<pre>al dist biomas l - 11 celihood ce Observ Observ 00. 00. 0. 00. 0 0</pre>	 pancy= ed P 061 038 083 148 261 296 369 492 002 by age 2	redicte 0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0	7.44 14.27 11.94 ed (CC 18 60 34 16 89 57 39 10 83 4 	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08	Sta) Dev 3 2 9 5 5 0 9 1 2 2 2	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 8	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 9 	Untran Obse	Lsfrmd 1.032 0.934 1.125 0.748 1.304 0.593 0.968 11	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1999 1998 1999 2000 2001 Selecti Year 	A chi a biomas li - 11 a biomas li - 11 celihood 2e Observ -0. -0. -0. 0. -0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	s pancy= ed F 061 038 038 038 038 261 296 369 492 002 by age 2 0.073	redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895	Sta) Dev 2 9 5 5 0 9 1 2 2 2 0.847	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 9 0.720	Untran Obse 10 0.651	ssfrmd rved 0.934 0.892 1.125 0.748 1.304 1.404 0.593 0.968 11 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.012 0.000 0.111 0.609 2.382 1.501 3.326 3.892 0.102
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1999 1999 2000 2001 Selecti Year 1991 1992	al dist al dist biomas l - 11 celihood re Observ Observ 0. -0. 0. -0. 0. -0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.003	. = = = = = = = = = = = = = = = = = = =	redicte - 0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 18 34 16 89 57 39 10 83 4 1.000 1.000	esiduals bbs-pred 0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895 0.895	5 Sta) Dev 3 2 9 5 0 9 1 2 2 6 0.847 0.847	ndard fation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 9 0.720 0.720	Untran Obse 10 0.651 0.651	ssfrmd rved 0.934 1.125 0.748 1.304 0.993 0.968 11 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.000 0.111 0.609 2.382 1.501 3.326 3.892 0.102
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1999 2000 2001 Selecti Year 1991 1992 2091 2091 2094		 ed P ed P 061 038 083 148 261 296 369 492 002 by age 2 0.073 0.073 0.073	redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 d (CC 18 60 34 16 89 57 39 10 83 4 1.000 1.000 1.000	siduals bbs-pred - 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895 0.895 0.895	Sta Dev 3 2 9 5 0 9 1 2 2 2 0.847 0.847 0.847 0.847	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.248 0.248 0.848 0.848	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.926 0.926 0.926	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 0.720 0.720	Untran Obse 10 0.651 0.651	usfrmd rved 0.932 0.934 0.892 1.125 0.748 1.304 0.593 0.968 11 0.672 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.001 0.000 0.111 0.609 2.382 1.501 3.320 3.892 0.102
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1999 2000 2001 Selecti Year 1991 1999 1999 1999 1999 1999 1999 19	al dist abiomas biomas l - 11 celihood Observ 0. -0. 0. -0. 0. 0. 0. 0. 0. 0. 0.003 0.003 0.003	ed P 061 0- 038 0- 0 0- 0.073 0.073 0.073 0.073	redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 Red (C 	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895 0.895 0.895 0.895	Sta) Dev 3 9 5 0 9 1 2 2 0.847 0.847 0.847 0.847 0.847	ndard 'iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.248 0.848 0.848 0.848 0.848	Catco 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 9 0.720 0.720 0.720 0.720	Untran Obse 0.651 0.651 0.651	sfrmd prved 1.032 0.934 0.892 1.125 0.748 1.304 1.404 0.593 0.968 11 0.672 0.672 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.600 2.382 1.500 3.322 0.102
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1999 2000 2001 2001 2001 2001 2001 2001	Observ Observ Observ Observ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	. = = = = = = = = = = = = = = = = = = =	redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 18 60 34 16 89 57 39 10 83 4 1.000 1.000 1.000 1.000	siduals bbs-pred 0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895 0.895 0.895 0.895 0.895	5 Sta Dev 3 2 9 5 0 9 1 2 2 6 0.847 0.847 0.847 0.847 0.847	ndard 'iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.248 0.848 0.848 0.848 0.848	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 9 0 0.720 0.720 0.720 0.720	Untran Obse 0.651 0.651 0.651 0.651	sfrmd rved 1.032 0.934 1.125 0.748 1.304 0.968 11 0.672 0.672 0.672 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.600 2.382 1.500 3.320 3.892 0.102
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 2000 2001 Selecti Year 1991 1992 1994 1999 2000 2001 Selecti 1999 1999 1999 1994		 ed P 061 038 083 148 261 296 296 296 2002 by age 2 0.073 0.073 0.073 0.073 0.073	redicte 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 -0.0 3 0.564 0.564 0.564 0.564 0.564	7.44 14.27 11.94 (C) 60 34 16 89 57 39 10 83 4 1.000 1.000 1.000 1.000 1.000	esiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 0.23 0.33 -0.48 0.08 5 0.895 0.895 0.895 0.895 0.895 0.895 0.895	5 Sta) Dev 2 9 5 5 0 9 9 1 2 2 2 6 0.847 0.847 0.847 0.847 0.847 0.847 0.847	ndard iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.848 0.848 0.848 0.848 0.848 0.848	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 0.720 0.720 0.720 0.720 0.720 0.720	Untran Obse 0.651 0.651 0.651 0.651 0.651	ssfrmd reved 	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.000 0.111 0.609 2.382 1.500 3.320 3.320 3.320 0.102
Lognorm average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1997 1998 1999 2000 2001 Selecti Year 1991 1992 1994 1992 1994 1995 1997 1995			redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.	7.44 14.27 11.94 Ref d (C 	ssiduals bbs-pred 0.04 0.02 -0.04 0.16 -0.35 0.23 -0.48 0.08 5 	5 Sta Dev 3 2 9 5 0 9 1 2 2 2 6 3 2 9 5 0 9 1 2 2 2 6 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847	ndard 'iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.248 0.848	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 0.720 0.720 0.720 0.720 0.720 0.720 0.720	Untran Obse 0.651 0.651 0.651 0.651 0.651 0.651	ssfrmd 1.032 0.934 1.125 0.748 1.304 1.304 1.404 0.593 0.968 11 0.672 0.672 0.672 0.672 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.000 2.382 1.501 3.322 3.892 0.102
Lognorn average Ages 1 log-lik devianc Chi-sq. Year 1991 1992 1994 1995 1999 2000 2001 Selecti Year 1991 1992 1994 1995 1995 1997 1998 1997	Observ Observ Observ Observ Observ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ed P 061 038 083 083 083 083 083 061 038 083 061 038 061 038 061 038 061 038 061 038 061 038 061 038 061 049 002 002 002 002 007 0.073 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0	redicte -0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0	7.44 14.27 11.94 Re d (C 18 60 34 16 89 57 39 10 83 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000	siduals bbs-pred 0.04 0.16 -0.35 0.23 0.33 -0.48 0.08 5 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895	5 Sta Dev 3 2 9 5 0 9 1 2 2 6 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847	ndard 'iation 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.198 0.848 0.848 0.848 0.848 0.848 0.848 0.848	Catc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q habil. 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 47E-07 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720	10 0.651 0.651 0.651 0.651 0.651 0.651 0.651	sfrmd rved 1.032 0.934 1.125 0.748 1.304 1.404 0.593 0.968 11 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672	Untransfrmd Predicted 0.988 0.914 0.937 0.954 1.060 1.027 1.008 0.961 0.893	Chi-square Discrepancy 0.011 0.000 2.382 1.501 3.322 3.892 0.102

TOTAL NUMBER OF FUNCTION EVALUATIONS = 258