REPORT OF THE 2020 ICCAT MEDITERRANEAN SWORDFISH STOCK ASSESSMENT MEETING

(Online, 25 May- 2 June 2020)

"The results, conclusions and recommendations contained in this Report only reflect the view of the Swordfish Species Group. Therefore, these should be considered preliminary until the SCRS adopts them at its annual Plenary meeting and the Commission revise them at its Annual meeting. Accordingly, ICCAT reserves the right to comment, object and endorse this Report, until it is finally adopted by the Commission."

1. Opening, adoption of agenda and meeting arrangements

The meeting was held online due to the outbreak of Coronavirus (COVID-19), and particularly in Madrid, which obliged the ICCAT Secretariat to close. Therefore, it was decided to set an online meeting, from 25 May to 2 June 2020. Dr. George Tserpes (EU-Greece), the Mediterranean Swordfish Species Group rapporteur ("the Group") and meeting Chairman, opened the meeting and welcomed participants. Dr. Miguel Neves dos Santos (ICCAT Assistance Executive Secretary) welcomed the participants and thanked the efforts made by all participants to remotely attend the meeting. He also thanked Dr. Henning Winkle for attending the meeting as invited experts and providing his expertise to the Group.

The Secretariat provided information on how to use the online platform for the meeting (Microsoft TEAMS). The Chair reviewed the Agenda, which was adopted with several changes (Appendix 1).

The List of Participants is included in Appendix 2. The List of Documents and Presentations provided to the meeting is attached as Appendix 3. The abstracts of all SCRS documents and presentations provided at the meeting are included in Appendix 4. The following served as rapporteurs:

Sections	Rapporteur
Items 1, 9	M. Neves dos Santos
\quad Item 2.1, 2.2, 2.3	C. Palma, A. Kouadri-Krim
\quad Item 2.4	D. Macias
\quad Item 2.5, 2.6	F. Garibaldi, A. Di Natale
Item 4	A. Kimoto, J. Urbina, M. Ortiz
Item 5	G. Tserpes, D. Mantopoulou, B. Mourato, H. Winker, J. Ortiz de Urbina, A.
	Kimoto, M. Ortiz
Item 6	G. Tserpes, D. Mantopoulou, B. Mourato, H. Winker, M. Ortiz, A. Kimoto
Item 7	G. Tserpes, R. Coelho
Item 8	G. Tserpes, M. Neves dos Santos

2. Summary of available data submitted according to the swordfish intersessional meeting deadlines

The largest majority of the Mediterranean swordfish (SWO-M) fisheries statistics and biological information used in the current stock assessment, was revised and updated during the Report of the 2020 ICCAT intersessional meeting of the Swordfish Species Group (Anon., 2020, in press). During the meeting, a time schedule was established to revise and update some pending datasets foreseeing the estimations of both catch-at-size (CAS) and catch-at-age (CAA) matrices. Overall, all the deadlines were properly accomplished.

Under this section, several documents were presented on fisheries statistics (SCRS/2020/028, SCRS/2020/076) and biological information (SCRS/2020/043, SCRS/2020/058, and SCRS/2020/074).

2.1Catches

After the prohibition of gillnets in the Mediterranean, more than 95\% of SWO-M total catches are since 2008 associated with longline (LL) fisheries. Eight CPCs (descending order of importance: EU-Italy, EUSpain, EU-Greece, Morocco, Tunisia, Algeria, EU-Malta, and Turkey) account for the majority of those catches. This information, available in the ICCAT official Task I nominal catches (T1NC), lacks almost completely (exceptions: EU-Greece and EU-Spain in some years) the dead discards of undersized SWO catch series component. The Secretariat recalled that, estimations of both dead and live discards are mandatory data requirements to be reported under T1NC.

The document SCRS/2020/028 presented preliminary estimations of longline (LL) dead discards of undersized fish, obtained using the available Task 2 size frequencies (T2SZ) of three fleets (EU-España, EU-Greece, EU-Malta) who reported under their T2SZ datasets, fish below the ICCAT minimum size regulation on landings (90 cm in 2014, and updated to 100 cm in 2017). For these three fleets no estimations of dead discards were made, once it was assumed (the Secretariat should require to each concerned CPC a confirmation of this situation) that discards of undersize fish were included in the T1NC catches reported. The estimation of dead discards was made for the 5 remainder LL fleets (EU-Italy, Morocco, Tunisia, Algeria, and Turkey) which have not reported under T2SZ fish below 100 cm since the 2010. The estimated dead discards obtained represent overall about 12% to 14% between 2008 and 2017 and increased to 24% in 2017-2018, when the current minimum size was implemented, of the total LL catches.

The Group discussed these preliminary estimations and noted that catches of undersize SWO are dependent on the fishing season and the gear selectivity, characteristics that should be taken into account on future improvements of dead discards estimates. It was also noted that, some CPCs have experienced a transition from the traditional surface swordfish longline (LL-surf), to the so-called American style longline (LLAM) and the meso-pelagic longline (LLMESO) since 1999. The Group has recommended several times to ICCAT CPC the need to revise the reported statistics (Task I and Task II) taking into account the LL gear type discrimination over time. No major progress was made in this matter in the last two years.

The observations carried out in the last ten years (2010-2019) in the Ligurian Sea by onboard observers on the Italian longline fishing vessels using the two different gears, mesopelagic longline (LLMESO) and American style longline (LLAM), demonstrate that catches of undersized fish are strictly dependent on gear type, selectivity and seasonality. The LLMESO is mainly used from late May to early October with a discard rate of about 6.3% in numbers and 1.6% in weight, and even if used in autumn catches of undersized fish are extremely low. The LLAM is mainly used in the last quarter of the year. Combining the effects due to surface deployment, use of light baits and season, when young swordfish are becoming fully recruited to the gear, discarded catches are higher, raising up to the 41.0% in numbers and 17.2% in weight of the total swordfish catches.

Finally, the Group adopted the preliminary dead discards estimations presented in document SCRS/2020/028, for inclusion "as SCRS best estimates" in the T1NC database. However, the Group noted that these estimations should be considered provisional and be properly replaced in the future by the CPCs own estimations.

The Group noted again that the information from the national observer programmes are not available for most of the CPCs. The Group considers that this information (since 2019 officially known as, ICCAT CPCs "domestic observer programmes", a mandatory data requirement reported under form ST09) is crucial to improve the estimations of both undersize swordfish catches and dead/alive discards. However, the current status of the ST09 related data currently compiled by the Secretariat (highly incomplete, heterogeneous structures, and currently under a full revision) does not permit to use this data in the above context. The details of the roadmap established to fully revise and utilize this important dataset, are described in the Report of the 2020 Intersessional meeting of the Swordfish Species Group (Anon., 2020, in press).

The total T1NC catches (landings and dead discards), presented in Table 1 (the dead discard component included in T1NC is shown in Figure 1), are considered the best scientific estimations of SWO-M total removals to be used in the current stock assessment.

2.2 Length compositions

The size data (T2SZ) available is primarily reported by CPCs, but also includes data from ICCAT special observer programs, sampling initiatives by CPCs, and data recovery projects financed by ICCAT. During the recent years, a reasonable portion of T2SZ information was recovered and revised to include higher time-area resolution. All the updates were analysed in the 2020 Swordfish intersessional meeting (Anon., 2020, in press).

Important T2SZ recoveries includes, (a) the ICCAT data recovery project (SCRS/2020/020) who compiled highly detailed fishing operations of three Italian fleets (harpoons, gillnets, and longlines) operating in the Strait of Messina and in the southern Tyrrhenian Sea, with individual weights of SWO caught between 1972 and 1989, and, (b) the full T2SZ revision of the EU-Greece longline surface fleet between 2003 and 2017.

All the T2SZ information available on SWO-M was used to estimate the catch-at-size (CAS) and catch-atage matrices. Table 2 presents the SCRS catalogue for SWO-M for the period 1989 to 2018, showing the existing T2SZ datasets (DSet=t2, cells with "b") used in the CAS estimations.

In relation to the undersized SWO not reported within the T2SZ datasets to ICCAT, the Group reiterated the need that each CPCs revise those datasets, in particular after 2008, by including the undersized SWO available by gear type.

2.3 Catch at size/age data

Task II size samples (T2SZ) and Task II catch-at-size (T2CS) for the Mediterranean swordfish stock (SWOMed) have been regularly submitted by the main fishing fleets in the last two decades. Both size datasets (T2SZ, T2CS), have been used in the past (Anon. 2017; Anon 2015), for estimating the overall CAS and CAA matrices. Following the recommendations of the work plan for the SWO-Med in 2019, the Secretariat did a full update of the CAS and CAA matrices for the period 1972-2018, including all the revisions made to both T1NC and T2SZ over the past four years. The details are presented in document SCRS/2020/076.

CAS matrix

The final overall CAS matrix obtained is presented in Table 3. As in previous CAS estimations of SWO-M, the same set of substitution rules were used, as replacement rules for missing T2SZ or T2CS data. However, given the large recoveries of T2SZ over the last three years, a large portion of the extrapolations are covered by T2SZ and T2CS. This can be observed in Figure 2, where the majority of the years (except 1982 and 1983) have the total catches (T1NC) covered by at least 50% of the corresponding size data (T2CS or T2SZ). On the last two decades, T1NC catches are generally covered by nearly 70% of the corresponding size data, being the reminder 30% based on substitutions.

The Figure 3 presents the weighted (by fleet and gear) mean weight estimations (kg) obtained from new the CAS estimations. The mean weights obtained from the CAS of the 2016 Swordfish Stock Assessment (Anon., 2017) was included for comparison. Overall, both series shown similar long-term trends, declining from about 30 kg since the seventies to around 25 kg in the end of the 90 's, oscillating around 25 kg until 2010 and increasing to $30-35 \mathrm{~kg}$ until 2018. The latest mean weight estimations show more consistency (less variation) between years.

CAA matrix

The CAS was converted to CAA using two approaches. The first one, decomposes the overall size distribution by year, assuming that they represent the combination of size distributions from multiple ages classes, or a mixture distribution of size at age (Kell and Kell, 2011). This method, used in the 2016 stock assessment, requires a mean and variance priors for each age class, which were estimated from the current von Bertalanffy growth model for Mediterranean swordfish (Tserpes and Tsimenides, 1995). The second one, is the traditional age slicing which estimates the age of each size class using the inverse von Bertalanffy growth equation.

Both CAA estimations (Tables 4 and 5, respectively) include the estimated dead discards of the four longline fleets, which assumed the same CAS distribution for the fleets that have reported discards (EU-España, and EU-Greece). Figure 4 show the relative age proportions of the two slicing approaches used (slicing and the mixture distribution, respectively).

The CAA estimated by the Mixture approach was used in age structure models (XSA and a4a) as decided by the Group.

2.4 Indices of abundance

One new index of abundance was presented during the meeting to the Group. Document SCRS/2020/043 reported standardized catch rates for the Spanish longline fishery in the western Mediterranean, for the period 1988-2018. Swordfish catch rates in number of fish and biomass were analysed by means of a General Linear Modelling approach assuming a negative binomial and a log-normal error distribution, respectively. Both series showed notable annual fluctuations without any definite trend for the period under study.

The Group asked about the use of the data coming from only surface longline or both, surface and mesopelagic series in the standardization. The speaker answered that both series were used in this paper. The Group point out that in previous meeting the general agreement was to treat both series (surface and mesopelagic longlines) together.

2.5 Biology

Document SCRS/2020/058 presented an additional list of annotated bibliography related to Italian authors, including the overview of all papers. The full list now includes about 700 papers and the contents can be explored thanks to the annotations. It was discussed the opportunity to move this annotated bibliography to a most advanced database with electronic metadata which is currently already under study. It was also discussed the possibility for having direct links to all documents in pdf, but this will imply a huge workload and important costs, due also to the difficulty of manipulating also historical documents. The discussion pointed out that an annotated bibliography also provides the background for avoiding any useless duplication of efforts and studies, and the Secretariat proposed to recommend all scientists to possibly provide similar annotated bibliographies for each CPC.

Document SCRS/2020/074 discussed stage 2 of the gonadal maturity scale for swordfish, a point raised by a presentation (SCRS/P/2020/005) provided in the previous ICCAT Swordfish Species Group intersessional meeting (Anon, 2020 (in press)). The document clarified that all existing gonadal maturity scales, both macroscopic and histological, set stage 2 as developing and never as mature; therefore, the previous studies used consistent classifications.

The discussion pointed out the differences between macroscopic and histological scale, highlighting that also large adult (sexual mature) females could be found at stage 2 , not only during the yearly initial gonadal development, but also recovering after a previous spawning activity. It was highlighted that the macroscopic maturity stage 2 can be found in either sexually immature juveniles (i.e.: fish that are maturing for the first time, which technically could become sexually mature because of the gonad development) and potentially sexually mature adults (i.e.: fish that has previously spawned). It was clarified again that this is linked to the right stage 2 classification according to the most accepted scale and this is particularly important for the calculation of the L50. A workshop within the biological sampling project has been planned to take place in later 2020, with the main objectives of establishing ageing and histology reference sets.

The Group discussed also the reproductive aspects of the swordfish in relation to the maturation process and the percentage of mature females at different ages. Differences between Mediterranean areas can exist and that it would be very useful to have representative samplings in all the various parts of the Mediterranean, being the Mediterranean swordfish a single panmictic population, but avoiding starting from scratch, because many data are already available in previous studies. Swordfish might reach L50 at a lower size in some areas and particularly in the Levantine Sea, due to the different oceanographic conditions and the size structure of the local population and it was noted that for the same reasons L50 seems higher in the Ligurian Sea. The need of a standardization of the methods used for the calculation of L50 was also highlighted.

During the intersessional meeting, the Group agreed that the L50 adopted in the last 2016 and previous stock assessments (de la Serna et al., 1995), was too high (142.2cm) and possibly not representative of the real situation in the entire Mediterranean basin. The possibility to adopt for the present stock assessment a different progression for females (0 mature at age 1, 15% mature at age $2,65 \%$ mature at age 3 and 100% mature at age 4) was proposed by the Chair. It was not decided to adopt the L50 value from Marisaldi et al., 2020, noting that these papers show various problems in the calculations of the L50 and, therefore, should be better checked before considering them.

Considering that this parameter is crucial for the assessment and it is particularly relevant when using the slicing, it was proposed to deepen the matter in a future workshop to be held under the umbrella of the ICCAT Swordfish Project in a near future.

2.6 Other relevant data

No further documents were presented under this Agenda item, nor additional discussion was necessary.

3. Relative abundance indices: overview of indexes to be potentially used based on the output of the swordfish intersessional meeting

During the 2020 Intersessional meeting of the Swordfish Species Group several of the indices of abundance available for the Mediterranean stock was discussed (see section 7.2 in Anon., 2020, in press). Additional information is provided in section 2.4 of this report. Briefly the Group reviewed three indices of abundances from the Greece longline, EU-Italy Ligurian longline, and the Morocco longline fisheries targeting swordfish. The Group decided to include the Greek and Morocco longline index as presented, and recommended revisions for the EU-Italy Ligurian index, splitting the index for the mesopelagic and the surface "American style" longline gears as they are very different in terms of fishing effort and operations, and unlikely to account for these differences in the standardization model. The Group also agreed to an intersessional workplan requesting that other CPCs provided indices of abundance in advance to the assessment meeting for consideration to be included. The Group also noted that changes in discard rates over time series may have affected the estimates of the overall trends for all indices.

Document SCRS/2020/043 presented the standardized index for the EU-Spain longline swordfish 1988 2018, operating mainly in the western Mediterranean region. The index used trip-based information of catches and fishing effort collected by observers and fishery reports. The index included factors of area, quarter and their interactions. Diagnostics, fits and results were presented in both numbers and biomass indices, the Group considered them appropriate and recommended to use the biomass index as the diagnostics indicated better fit overall.

It was inquired if the index considered factors that may have affected catchability and if the data included discards. The authors indicated that no other factors were available for the standardization and some of the catch effort information was from the domestic observer program.

Document SCRS/2020/027 that was presented during the 2020 Intersessional Swordfish Species Group meeting in March (Anon., 2020, in press) was updated for this meeting and a presentation was provided with the updated results following the recommendations from the Group. The index for the mesopelagic longline 2010-2019 from the Ligurian Sea was selected as index of abundance for this fishery. The model included the year, month, bait type and soaking time as predictors in the standardization process. Results both in number and biomass indicated a general declining trend in the index since 2010, reaching in 2018 its lowest value.

Authors emphasized that the operations of the mesopelagic longline are not comparable with the surface longline; for example the gear is left for several days at sea (up to three) contrary to the surface longline, where a single day operation is the norm. They use a different hook and type of bait (natural and artificial bait) and operate at different times of the year (mainly late May - early October) compared to the surface longline fleet using the American style longline (October - December). Also, the larger mesopelagic vessels in the Mediterranean may set several longline gears in a trip, while intercalating setting and haul-back among deployed gears.

Afterwards, the Group reviewed the available standardized indices for the Mediterranean swordfish (Table 6) and updated the evaluation table (Table 7). The Group agreed to include the following four indices for the assessment models: a) the Greek longline index (1987-2018), b) the Italian Ligurian mesopelagic index (2010-2018), c) the Moroccan longline index (2012-2018), and d) the Spanish longline index (1988-2018). Three of these indices were available in both numbers and biomass, the Group recommended using the biomass indices for the Surplus Production models, and when possible the number indices for the age-structured models, although they were not available by age class (Figures 5 and 6). Finally, historic indices of abundance used in prior assessments were considered, such as the

Moroccan gillnet index (1999-2011), the Sicilian longline index (1991-2009), the Sicilian gillnet index (1990-2009), and the Ligurian longline surface index (1990-2009). It was noted that historic indices are not relevant for the XSA model, as the model requires information in the most recent period. Overall, the Group only considered using the historic Ligurian longline surface index within the a4a model as a sensitivity case.

It was noted that recent management regulations (minimum size implementations Rec. [13-04], and Rec. [16-05]) may have affected the trend of the indices, as it is likely that discards at sea are not always included in the catch-effort time series. The Group recommended that CPCs intensify their effort to collect information regarding discards of undersize swordfish both within their targeting fisheries as well as from other longline fisheries where juvenile swordfish are reportedly caught, such as the albacore and bluefin tuna longline fisheries. The Group also recommended improving fishery data collection for the different types of longline fleets currently operating in the Mediterranean Sea to account for differences in selectivity and or catchability within the standardization of catch and effort data.

4. Methods and other data relevant to the assessment based on the output of the swordfish intersessional meeting

4.1 Assessments models and Preliminary runs

The Group agreed to apply two age structured models (XSA and a4a) and one Bayesian State-Space Production Model (JABBA). This followed the decisions of the data preparatory meeting in March 2020 (Anon., 2020, in press). Considering the time limitations and the nature of the meeting (held online), it was not feasible to apply additional approaches such as ASPIC or particular data-poor models. During the meeting, a tentative analysis of catch only model was conducted based on the JABBA results.

The Group generally discussed the use of the estimated discards in the assessment models (see section 2.3). In the preliminary runs (see section 5), 2 age structured models demonstrated the results with/without the estimated discards, while JABBA provided only the scenario with the discards. The Group felt that the currently available discards information reported by CPCs does not reflect fully dead discarded undersized swordfish for Mediterranean swordfish. However, it was also noted that the current approach could be revisited by CPCs (e.g. fewer discards seem to exist in certain mesopelagic fisheries). On the other hand, discards of undersized swordfish that may exist in various albacore or bluefin tuna fisheries have not been considered in the current discards estimation. Finally, the Group agreed to include the estimated discards within the total catch time series used as input to the current assessment.

4.1.1 XSA (Extended Survivors Analysis)

Document SCRS/2020/077 provided preliminary assessments of the Mediterranean swordfish stock performed by Extended Survivors Analysis (XSA) implemented in FLR (Kell et al., 2007). The method has been previously used for providing advice for the Mediterranean swordfish stock (ICCAT, 2015; 2017). The available catch-at-size (CAS) data covered the period 1985-2018 and the catch-at-age (CAA) data used in the assessments were generated using a statistical approach. The analysis included five model runs:
(a) Continuity run; having the same settings and using CPUE series from the same fleets employed for tuning the 2016 assessment, i.e., constant natural mortality M=0.2, Greek, EU-Spain and Moroccan longline CPUE indices. XSA control settings are available in Table 8.
(b) Candidate run 1; assuming constant M , without discards and considering all available recent tuning indices, i.e. standardized scaled CPUEs from the Greek, EU-Spain, Moroccan, and Ligurian longline fisheries. XSA control settings are available in Table 8.
(c) Candidate run 2; assuming Lorenzen M, without discards. Apart from the modified M vector, all other data and settings were similar to Candidate run 1.
(d) Candidate run 3; assuming constant M, with discards. Similar to Candidate run 1, but including discards, estimated from SCRS/2020/028.
(e) Candidate run 4; Lorenzen M, with discards. Similar to Candidate run 2, but including discards.

Document SCRS/2020/077 included detailed estimates of recruitment, biomass, SSB, and fishing mortality, as well as various diagnostic plots and retrospective analysis for each run.

It was clarified that XSA treats all provided indexes as numbers for the given ages and it is ideally required to provide age-specific indices if available. Regarding the model settings, it was explained that shrinkage options were preferred as preliminary trials indicated better model performance.

The Group noted minor differences between runs using constant or Lorenzen M and suggested the adoption of constant M for the final runs, i.e. candidate runs 1 and 3 . It was also suggested to include the Spanish abundance index in numbers for the final runs, instead of the biomass one used in the document, although no major changes are expected given the generally similar pattern of both indices.

4.1.2. a4a (Assessment for All)

Document SCRS/2020/078 presented the preliminary stock assessment results using a statistical catch-at-age model: developed within the framework of Assessment for All (a4a) Initiative of the European Commission Joint Research Centre (Jardim et al., 2015). The a4a method utilizes catch-at-age data to derive estimates of historical population size and fishing mortality and, unlike XSA, model parameters are estimated by working forward in time while analyses do not require the assumption that removals from the fishery are known without error.

The key model settings for four runs are as follows:

- Catch-at-age data since 1985
- Use 5 CPUEs (Greek, Moroccan, Spanish, Ligurian, and Sicilian longline) considered to be representative of the 2-4 age-group.
- Age 5 plus group
- Maturity: $15 \%, 65 \%, 100 \%$ at ages 2,3 , and over 4
- Other technical parameter settings are shown in Table 9.

Four runs were:
1: constant M, without discards
2: Lorenzen M, without discards
3: constant M, with discards
4: Lorenzen M, with discards
The document presented the fits to indices, estimated recruitment, biomass, SSB, and fishing mortality, and retrospective analysis for each run.

The authors made several technical clarifications to the questions by the Group. It was clarified that the model did not use a stock and recruitment relationship for estimating recruitment, a4a is a forward calculation, and the model does not need to assume the conditions before the model starts, like the Stock Synthesis model. The unit of all indices was biomass and a4a can treat the unit of index correctly in the model.

After the presentations and overall discussions on the model runs, the Group requested further analyses to incorporate Ligurian surface longliners 1991 to 2009, and to be provided reference points. The authors provided the results, which were consistent with the preliminary runs.

4.1.3. JABBA Bayesian state-space Production model

SCRS/2020/082 presented the preliminary stock assessment results applying the Bayesian state-space production model JABBA (Winker et al., 2018) applied to the entire available catch time series (19502018), including the estimated discards, by fitting four standardized long-line CPUE (in weight) indices for Greek, Moroccan, Ligurian, and EU-Spain longline fleets.

The authors described the development of two reference candidate models, which use alternative assumptions about the intrinsic growth rate (r) and the shape of the production function. For the Reference model we assumed a prior distribution for r with a mean of 0.47 and CV of 0.49 (log.sd $=0.46$) which was derived from a Leslie matrix model approach using Monte-Carlo simulations, as done during the 2014 Swordfish Stock Assessment meeting (Anon., 2015), and updated with current biological parameters. As an alternative scenario, the authors newly developed an r prior distribution with an associated shape parameter of a Pella-Tomlinson production function from an Age-Structured Equilibrium Model (ASEM) approach with Monte-Carlo simulations (Winker, 2020). Regarding the two assumptions of M (constant M and Lorenzen M), the r prior distributions generated separately were combined into a single joint r prior.

Accordingly, the two candidate models were specified as:
(1) Reference model: with $\log (r) \sim N(\log (0.45), 0.46)$ and a fixed input value of $\mathrm{B}_{\mathrm{MSY}} / \mathrm{K}=0.5$ (Schaefer)
(2) ASEM model: with $\log (r) \sim N(\log (0.206), 0.2)$ and a fixed input value of $\mathrm{B}_{\text {муу }} / \mathrm{K}=0.38$

Common to both models was initial biomass depletion in 1950, which was considered to be close to an unfished state by assuming lognormal prior ($\varphi=\mathrm{B}_{1950} / \mathrm{K}$) with a mean $=1$ and CV of 10%. All catchability parameters were formulated as uninformative uniform priors, while additional observation variances were estimated for indices by assuming inverse-gamma priors to enable model internal variance weighting. Instead, the process error of $\log (B y)$ in year y was estimated "freely" by the model using an uninformative inverse-gamma distribution with both scaling parameters setting at 0.001 . Each model was run with three Monte-Carlo Markov Chains (MCMCs), each comprising 30,000 iterations that sampled with a burn-in period of 5,000 for each chain and thinning rate of five iterations. Accordingly, the marginal posteriors were represented by a total of 15,000 iterations for each model.

To evaluate CPUE fits, the model-predicted CPUE indices were compared to the observed CPUE and run tests were performed on the log-residuals for each CPUE index to quantitatively evaluate the randomness of residuals and potentially identify model misspecification. In addition, a Jackknife analysis was also performed on the influence of CPUE indices. To check for systematic bias in the stock status estimates, we also performed a retrospective analysis for each model by removing one year of data at a time sequentially ($\mathrm{n}=5$), refitting the model and comparing quantities of interest (i.e. biomass, fishing mortality, $B / B_{M S Y}$, $F / F_{M S Y}, B / B 0$ and MSY) to the reference model that is fitted to the full time series. To compare the bias between the models, it was computed the Mohn's (1999) rho (ρ) statistic.

In addition, the authors explored the robustness to various levels of under reporting prior to 1987 (i.e. the first year of catch data that were included in the 2016 XSA model). Four sensitivity runs were examined by multiplying the early catches from 1950 to 1986 by factors of $1.2,1.5,2$ and 3 , (i.e. underreporting of 20%, $50 \%, 100 \%$ and 200%).

4.2 New information for assessment (historical data)

In 2020, and following the recommendations from prior assessments, the data input and auxiliary information has substantially improved for the current evaluation of the Mediterranean swordfish stock. Section 2 in this report provides specific details on each new or updated element in reference to fishery and biological data inputs. Briefly, the catch series 1950-2018 has been updated and reviewed thoroughly adding historic catches for the 1972-1983 period, reallocating a significant portion of historic catches (1970's, 1980's) that were reported without gear specification into the appropriate fishing gear classification, and including estimates of discards for the longline fishery for the latest years (2008-2018). In addition, the size and CAS information has been thoroughly reviewed and updated for the 1972-1989 period, that made possible to extend the CAA estimation back to 1972. In addition, recent biological research on Mediterranean swordfish has been incorporated and updating the input biological parameters for the models, improving the estimation and robustness of important assessment model parameters such r.

Nevertheless, there is still uncertainty in other data and information, particularly in the ageing of the catch. Two approaches were used to estimate CAA, but they exclusively rely on a growth model and show large differences in estimates of the CAA (SCRS/2020/076). The lack of aged samples or age-length-keys greatly constrained the precision of the CAA estimation, plus the limited time series (1985-2018) available for the age-structure models greatly limited the ability of the models to fully capture the historic range of catch and productivity of this stock.

5. Stock status results

5.1 Results

5.1.1 XSA (Extended Survivors Analysis)

The Group noted minor differences among runs using constant or Lorenzen M as presented in document SCRS/2020/077 (see section 4) and suggested the adoption of constant M for the final runs, i.e. similar to candidate runs 1 and 3 in SCRS/2020/077. It was also suggested to include the Spanish abundance index in numbers for the final runs, instead of the biomass one used in the preliminary runs, although no major changes are expected given the generally similar pattern of both indices.

In line to the above considerations, in the two final runs ("Base" and "Discard") presented in SCRS/P/2020/029, constant $\mathrm{M}=0.2$ was assumed and the Spanish longline index was expressed in terms of numbers. Catch at age data covered the period 1985-2017 and four standardized CPUE series extending up to the latest years were used: Greek longliners (SCRS/2020/021), Moroccan longliners (SCRS/2020/026), EU-Spain longliners (SCRS/2020/043) and Ligurian longliners (SCRS/2020/027). The standardized CPUE indices were not differentiated by age and were considered to be representative of the 2-4 age-group abundances (Figure 7). Fleet catchability was assumed to be independent of year-class size for all terminal years. Regarding maturity, it was assumed 15% and 65% maturation at ages 2 and 3 respectively. Full maturity was considered from age 4 onward. Weights-at-age were derived from the mixture analysis and were consistent with the CAA. The F range (fbar) was set to ages 2-4. Details regarding the configuration of the XSA control object are shown on Appendix 5.

Regarding the base run, estimates of recruitment, SSB, catch and fishing mortality are shown in Figure 8, while stock number and F-at-age estimates by year are provided in Appendix 5. Results indicate that recruitment follows a decreasing trend, particularly in the last decade while current SSB levels are about 35% of those observed at the beginning of the period. Fishing mortality in the most recent years is slightly lower than previously observed. Figure 9 shows the XSA estimates by CPUE series, while the retrospective analyses is shown in Figure 10. Apart from some discrepancies observed in recruitment, there is not any particular pattern in the retrospective plots. Various diagnostic plots indicating the goodness of fit of the CPUE residuals are shown in Appendix 5. Those include (a) plots of the residuals against fitted values to check the variance, (b) plots of the residuals against year to check for systematic patterns that may indicate a poor fit, (c) calibration regression plots to compare the fits to the observations for ages 2,3 and 4, respectively, (d) plots checking for autocorrelation that may introduce bias, (e) QQ plots aiming to check for log-normality and (f) the relative weighting for each terminal year Ns by CPUE observation (XSA uses inverse variance weighting, in that CPUE series with poor fits are down-weighted in the fit).

Results of the discard run are shown in Figure 11, while stock number and F-at-age estimates by year are provided in Appendix 5. Results indicate that recruitment follows a decreasing trend in the last decade while current SSB levels are less than half of those observed at the beginning of the period. Fishing mortality fluctuates throughout the examined period, but without any specific overall trend. Figure 12 shows the XSA estimates by CPUE series, while the retrospective analyses is shown in Figure 13. Similarly to the base run, there is not any particular pattern in the retrospective plots apart from some discrepancies observed in recruitment. As in the case of the base run, a series of diagnostic plots are shown in Appendix 5.

Comparison of the results of the two runs is shown in Figure 14. Overall patterns are quite similar, but recruitment and mortality estimates for the more recent years are higher in the case of the discard run.

5.1.2 Statistical catch-at-age model: a4a Assessment for all

The Group reviewed the results, provided by the document (SCRS/2020/078) for preliminary assessment runs using a4a statistical catch - at - age model. Four runs were presented as preliminary, one assuming constant natural mortality ($M=0.2$), one assuming a natural mortality vector calculated using Lorenzen formulation and two runs with the abovementioned mortality vectors including estimated discards obtained from SCRS/2020/028. Each model structure kept the same among all runs and can be found in the SCRS/2020/078, a smoother was added to the catchability of Ligurian surface longline. Diagnostic tests in terms of residuals presented and some problematic patterns in recruitment residuals were apparent in all cases. Retrospective plots showed no pattern in harvest, SSB and Catch although a slight pattern in the terminal years appeared in the recruitment.

Following the recommendation of the Group and in line with the XSA runs, the assessments assuming a constant natural mortality considered adequate to assess the status of the stock. The Group requested for two final a4a runs, taking into consideration an additional standardized CPUE index, the one of the Ligurian surface longliners, expressed in biomass.

The final a4a runs, presented in the document SCRS/P/2020/030 used CAA data from 1985 to 2018 like the preliminary runs. Five standardized CPUE biomass indices were considered, Greek longliners (SCRS/2020/021), Moroccan longliners (SCRS/2020/026), EU-Spain longliners (SCRS/2020/043), Ligurian mesopelagic longliners (SCRS/2020/027), Sicilian longliners (Tserpes et al. 2011) and the historic Ligurian surface longliners (Fulvio et al., 2015) as suggested by the Group. All indices were considered representative of ages 2-4. The standardized CPUE indices are shown in Figure 15. Each model was configured the same way as in the preliminary runs and can be found in the Appendix 6. Age plus group was set to 5 while the F range was set to ages 2-4. The results of the two different runs can be found in Figures 16 and 17, respectively.

The results among the runs were very close, besides the estimated recruitment in recent years where the discards run estimation was a bit higher. Moreover, the uncertainty around estimates of the recruitment appeared high in both cases. The trajectory of SSB revealed a slight declining trend and after the mid2000s fluctuated around 7,500 t. Diagnostic tests were performed for both CAA and standardized CPUE indices residuals and are presented in Appendix 6. A negative pattern in the recruitment residuals is present in both runs, where it should be noted that this was probably the result of lack of a tuning index for age 0 . Retrospective analysis conducted for both cases, did not show any particular pattern except for the recruitment were some discrepancies were observed. Retrospective analysis for each run is presented in Figures 18 and 19. MCMC runs were performed for the two final runs as an alternative to the maximum likelihood estimation (MLE) that is being used as a default estimation procedure in the assessment. Comparisons of the results between the two approaches are presented in the Figure 20.

5.1.3 Bayesian Surplus Production model JABBA

The Group reviewed the results (SCRS/2020/082) obtained with JABBA Bayesian surplus production model. This document presents details on the model diagnostics and stock status estimates for two preliminary scenarios. For the 'Reference' model it was used an existing prior distribution for r which was derived from a Leslie matrix model approach with Monte-Carlo simulations during the 2014 Mediterranean Swordfish Stock Assessment meeting (Anon., 2015), while for the 'ASEM' model it was derived a new r prior from an Age-structured Equilibrium Model (ASEM) with Monte-Carlo simulations. Results for r prior distributions and median shape parameter with corresponding $B_{M S Y} / K$ values, are included also for comparison, the r prior distributions generated from the two M assumptions into a single joint r prior are shown in Table 10 and Figure 21. For the 'Reference' model the r prior was $\log (r) \sim$ $N(\log (0.45), 0.46)$ with a fixed input value of $B_{M S Y} / K=0.5$ (Schaefer model-type) and for 'ASEM' model the r prior with $\log (r) \sim N(\log (0.206), 0.2)$ and a fixed input value of $B_{M S Y} / K=0.38$ (Pella-Tomlinson model type) (Figure 21).

The model fits and run tests conducted on the log-residuals to each of the four standardized CPUE LL indices are shown in Figures 22 and 23. Both models appeared to fit CPUE data reasonably well, and run tests indicated no evidence to reject the hypothesis of randomly distributed residual patterns for all four indices. The goodness-of-fit was very similar for the 'Reference' model (RMSE = 28.4\%; Figure 24) and the 'ASEM' model (RMSE = 28.7\%; Figure 24). JABBA residual diagnostic plots indicated a conflict between
positive residuals for EU-Spain LL CPUE fits and negative residuals for the other three CPUE indices for the last two years 2017-2018 (Figure 24). Analysis of process error deviates show a negative trend in most recent years (Figure 24), which might be partially explained by the association of the decreasing trend in abundance with decrease in landings in recent years.

Marginal posterior distributions along with prior densities for both models are shown in Figure 25. The medians of marginal posteriors for r were 0.414 and 0.188 for the 'Reference' and the 'ASEM' models, respectively (Table 11). The estimated median of marginal posterior for K was 135,017 tonnes for the 'Reference' model and 194,523 tonnes for the 'ASEM' model. Estimates of MSY showed similar values between models (13,811 tonnes for the 'Reference' model and 12,931 tonnes for the 'ASEM' model, Table 11). The marginal posterior median for $B_{M S Y}$ varied between 67,509 tonnes ('Reference' model) and 73,928 tonnes ('ASEM' model), while $F_{M S Y}$ median estimates were slightly higher for the 'Reference' model (0.207) than the 'ASEM' model (0.176) (Table 11).

In general, both models showed similar trends for the medians of $B / B_{\text {MSY }}$ and $F / F_{\text {MSY }}$ over time, and the discrepancy of values between the models became less since the 1990s, with an overall decreasing trend of biomass from 1970 to the most recent year (Figure 26). The $F / F_{M S Y}$ trajectory showed a gradual increasing trend between 1970 and the mid-1980s, a sharp increase in the late-1980s (around 0.5 to 1.0 in a few years), and the relatively stable afterwards (Figure 26). The estimated biomass has been less than the MSY level since the mid-1990s for the 'Reference' model ($B_{2018} / B_{M S Y}=0.650$), whereas it has dropped under the MSY level since the mid-2010s for the 'ASEM' model ($B_{2018} / B_{M S Y}=0.777$). Since the late 1980s after the sharp increase, the estimated fishing mortality have been fluctuated at over MSY level for the 'Reference' model ($F_{2018} / F_{M S Y}=0.990$) and at around MSY level for the 'ASEM' model ($F_{2018} / F_{M S Y}=0.880$) (Table 11).

A retrospective analysis for five years indicates no evidence of strong patterns with Mohn's rho statistic within the acceptable range of -0.15 and 0.20 (Figures 27 and 28; Table 12). However, the 'Reference' model indicated slightly stronger retrospective patterns with regards to stock status trajectories $B / B_{M S Y}$, $F / F_{M S Y}$ and B / B_{0} for the retrospective runs through in 2013 and 2014 (Figure 27), which may also explain the notably smaller retrospective bias for these quantities in the 'ASEM' model (Figure 28).

The Jackknife sensitivity analysis of CPUE indices showed that Greek and the EU-Spain LL CPUE were highly influential with regards to stock status trajectories and $M S Y$ (Figures 29 and 30). Removing the Greek LL index resulted in much more optimistic stock status trajectories, with biomass level well above $B_{M S Y}$. Removing the EU-Spain LL index, would result in considerably more pessimistic stock trajectories, estimating that the stock was overfished since the mid-1990s. The 'ASEM' model was generally slightly less sensitive to the Jackknife index analysis when compared to the 'Reference' model.

The second sensitivity analysis explored the robustness to various levels of under reporting prior to 1987 by multiplying the early catches from 1950 to 1986 by factors of 1.2, 1.5, 2 and 3, (i.e. assumed underreporting of $20 \%, 50 \%, 100 \%$ and 200%, Figure 31). The motivation of this sensitivity analysis was primarily related to the conflicting stock status results between JABBA, and the age-structure models XSA and a4a. For these sensitivity model runs the increasing of the historical catch time series resulted in a systematic increase in the estimates of K and $M S Y$ and the decline in stock biomass between 1970 and the late 1980s (Figure 32 and 33). Only by raising the historical catch by a factor of three (200\%) would result in a decrease of the stock biomass to levels about 50% of $B / B_{M S Y}$ by 1990 , which would be roughly similar to the results from the 2016 XSA assessment model results. If this historic catch (1950-1986) were correct, it would imply that the Mediterranean swordfish stock surpass the historic catches of both North Atlantic and South Atlantic swordfish stocks, something that the Group considered were unlikely for that time period.

However, it is important to point out that the minimum size regulations by some CPCs, technological creeping associated to changes in the fishing practices targeting Mediterranean swordfish, as reflected by the changes on market and consumption of this species could potentially causes under reporting and uncertainty in the early period of catch time series. Hence, all these factors combined should be considered for better understanding the catch evolution for this stock.

JABBA surplus production phase plots for the 'Reference' and 'ASEM' models are shown in Figure 34. In general, it revealed similar patterns for both models. The peak in catches in 1982 concurred with the onset of an extended period of overfishing associated with continues declines in stock biomass and eventually led to an overfished stock. Accordingly, Kobe biplots show the typically anti-clockwise pattern with the stock status moving from underexploited through a period of unsustainable fishing to the overexploited phase (Figure 34). The resulting stock status posteriors for 2018 from each model would however have somewhat different implications for management actions. The 'ASEM' model is more optimistic with regards the current fishing levels, $F_{2018} / F_{M S Y}$, with a cumulative probability of over 60% (yellow + green) that current fishing mortality is sufficiently low enough to facilitate stock rebuilding. The 'Reference', by contrast, suggests that there is a more than 50% probably that stock remains overfish and that overfishing is still occurring (Figure 34).

5.2 Final results and Synthesis of Stock Status

The Group reviewed two XSA runs (constant M with/without discards, SCRS/P/2020/029), two a4a runs (constant M with/without discards, SCRS/P/2020/030), and two JABBA runs (Reference and ASEM models, SCRS/P/2020/028).

An important difference between the two age-structured models, XSA and a4a, and the surplus production model JABBA was that the whole catch series from 1950 to 2018 was used as input into JABBA, whereas both XSA and a4a could only be initiated in 1985, thus omitting the catch information for the period 19501984. With regards to the JABBA model, the Group discussed the assumption that relative stock biomass was close to unfished level in 1950 ($\sim 99 \%$ of the carrying capacity). The Group agreed that factors such as the limited and localized number of fisheries at that time, their artisanal character (boats did not even have an engine), and the slowdown in fishing activity due to the Second World War, would suggest this assumption is reasonable and in agreement with the expert knowledge of scientists well familiar with the Mediterranean swordfish fisheries. The Group noted that this early period is now considerably more reliable due to a number of Task I revisions that lead improvement of the historic catch data (see details below).

The Group specifically discussed the differences in the stock status between XSA (including discards) and JABBA models in 1985 (i.e. the first year considered in XSA). The XSA final run including discards estimated that SSB in 1985 was at 54.1% of $S S B_{M S Y}$ and 9.67% of unfished $S S B_{0}$, whereas the joint results from the two JABBA models ('Reference' and 'ASEM') estimated that the stock levels where still sustainable by 1985 , with $B / B_{M S Y}=1.59$ and $B / B 0=0.70$ (Figure 35). The Group then examined the catch time series relative to the estimates of MSY from XSA (MSY $=16,300 \mathrm{t}$) and JABBA (joint-MSY $=13,325 \mathrm{t}$), which showed that catches remained always below MSY for the period 1950-1985 in the case of both models (Figure 35). However, overfishing of a previously underexploited stock can theoretically only occur once the catches start exceeding levels at MSY (see green shaded area in Figure 35), and even then, fishing mortality may initially remain below $F_{M S Y}$ until biomass is fished down and approaches $B_{M S Y}$ (c.f Figure 34 in section 5.1.3 of this report). Furthermore, XSA predicted that despite very low stock levels in 1985, MSY could still be exceeded over the next four years 1986-1989, and support catches over the next two decades (1990's and 2000's) above 80\% of MSY despite a decreasing stock biomass (Figure 35).

The Group therefore agreed that it is biologically implausible that the Mediterranean swordfish stock could have been overfished to low biomass levels of less than $60 \% S S B_{M S Y}$ and less than 10% of $S S B_{0}$ as estimated by the XSA model, considering that total catches never had exceeded $14,000 \mathrm{t}$ prior to 1985 . The presented a4a model results were broadly comparable with XSA results, and hence produced the same conflicts between the catch history and the initial low stock biomass in 1985. Considering all evidence, the Group decided to provide the scientific advice for the Mediterranean swordfish stock based on both JABBA models ('Reference' and 'ASEM').

However, the Group noted that the JABBA assessment runs showed a systematically negative pattern in the process error variation of biomass over the period 2005-2016 (Figure 36), which was also observed in the form of a strong negative trend in recruitment residuals in both XSA and a4a. Possible causes may be linked to environmental factors, but may also be relate to other factors such as unaccounted fishing mortality of undersized fish, changes in selectivity, or a combination thereof. Irrespective of the underlying cause, all models indicate that stock's productivity has been below average in the last decade. The Group discussed that this is of particular relevance when projecting the future stock status based on
an average stock productivity from 2019 onwards, which is how projections are currently implemented in all three modelling platforms (JABBA, XSA, and a4a). The Group noted that approaches exist to account for such serial correlation in process error deviations and that this is inherently associated with increased uncertainty about the future (Chang et al., in press; background paper). The Group recommended that this and comparable approaches for age-structured models should be further explored in future and agreed that the current projections for Mediterranean swordfish are associated with a risk to be overly optimistic and should therefore be interpreted with caution.

The Group also discussed the resulting differences in the benchmark estimates (Reference Points) of the current stock assessment in 2020 with respect to the previous one in 2016 (Anon., 2017). It was noted that since the 2016 assessment there have been several changes both in the fisheries operations and in the data available as in input to the assessment models, which have undergone substantial revisions and the integration of new data for the 2020 evaluation. Briefly, some of the new data related to these changes would be:

1. A general improvement in the information available for the Mediterranean swordfish stock, including:
(a) A comprehensive review of Task I nominal catches, with the inclusion of the EU-Italy GILL catches between 1972 and 1983 (Figure 1 in Anon., 2020, in press, in March SWO report);
(b) A significant increase in information related to the size distributions of the fish, that provided a new full and revised CAS estimation.
2. Change in the models used for the assessment of the stock:
(a) Until 2016, the assessment advice was based on an age-structured approach for providing the management advice. However due to lack of Indices of abundance for the earlier period (prior to 1987), the start time for this model input was 1985, when the stock was already under high exploitation with the highest historic catch occurring in 1987. Therefore, the model could only be informed by a declining trend and giving the significant uncertainty in the aging of the catch, the model was unable to properly estimate stock productivity (e.g. lack of contrast in the catch data).
(b) In 2020, instead this evaluation included a Bayesian Surplus production model that started in 1950 and was able to use all the historic catch information available, in addition the model used updated biological information to construct better parameter priors more consistent with the expected population dynamics of the Mediterranean swordfish.

Both JABBA models considered different production functions (Schaefer and Pella-Tomlinson model type) and incorporated previously considered as well as the most recent biological information into the r prior distributions. The Group agreed that combining the results of both production models is desirable to better account for model structural uncertainties. Error uncertainty in model fit results is characterized by running Monte-Carlo Markov Chain (MCMC) posteriors of biomass and fishing mortality developed from 30,000 MCMC iterations in total (three MCMC chains of 5,000 iterations in each model).

The trajectory of $B / B_{\text {MSY }}$ in the joint marginal posterior distributions showed a relatively stable pattern between 1950 and 1970 followed by a sharp decrease until the mid-1990s to an overfished status (Figure 37 and Table 13). Since the early 2000s the relative biomass had remained stable at levels below $B_{M S Y}$ until 2010 where it started to decrease again. The biomass in 2018 was estimated to be 0.72 relative to $B_{M S Y}$ with 95% credibility intervals (CI): 0.38-1.28 (Table 14). The $F / F_{\text {MSY }}$ trajectory showed an increasing trend since the beginning of time series as the fishery has been developed, crossing $F_{\text {MSY }}$ in the middle of 1980s. Since the late 1980s after the sharp increase, the estimated fishing mortality has fluctuated at around MSY level ($F_{2018} / F_{M S Y}=0.929$) (Figure 37 and Table 13).

The medians and 95\% CI of the joint marginal posterior distributions for the reference points are shown in Table 14. The estimated median of marginal posterior for $B 0$ was 169,231 tonnes ($85,506-274,312 \mathrm{t}$), while estimates of $M S Y$ was 13,325 tonnes (10,899-17,346 t). The joint marginal posterior median for $B_{M S Y}$ varied between 71,319 tonnes and the $F_{M S Y}$ median estimates was 0.186 (Table 13).

Finally, a Kobe phase plot is presented to provide multi-model inference based on combined of both JABBA models (Figure 38), which predicts with 86.7% probability that stock biomass remains below levels that can produce MSY in 2018, with a 41.1% probability that the stock is overfished and overfishing is still occurring (red) and a 45.6% probability that the stock is overfished but overfishing is not occurring (yellow). In summary, the current Mediterranean swordfish biomass (B_{2018}) remained below $B_{\text {MSY }}$ while the current fishing mortality rate is being close to and/or below the sustainable level ($F_{M S Y}$) that would allow rebuilding to biomass levels that support MSY in the short- to medium term.

6. Projections

For future projections, the Group agreed to use a combination of projection results from both JABBA models ('Reference' and 'ASEM') to produce the advice recommendations, including the Kobe-2-Strategy Matrices. Uncertainty is characterized in the form of Monte-Carlo Markov Chain (MCMC) posteriors of $\mathrm{B} / \mathrm{B}_{\text {mSY }}$ and $\mathrm{F} / \mathrm{F}_{\text {msY }}$ which are stochastically forward projected over the range of alternative fixed catch scenarios within the JABBA model using JAGS. Each model was run 15,000 iterations using three MCMC chains of 5,000 each. Thus, the joint marginal posterior distributions of the projections were constructed with 30,000 MCMC iterations in total. In accordance with the Group's recommendations, the projections were conducted for a range constant catch scenarios, including a reference scenario of zero catch and then covering a range from $9,000 t$ to $15,000 t$ at specific intervals and for a period of 10 years (2019-2028). Projections were not carried out beyond 2028 due to uncertainty in recent recruitment. The catches for 2019 and 2020 were set to be $9,879 \mathrm{t}$ and $9,583 \mathrm{t}$, which corresponds to the TAC set for 2019 and 2020, respectively [Rec. 16-05, paragraph 4].

The projections of biomass (Figure 39) show that with catches as high as $10,000 \mathrm{t}$ the stock can recover to $B_{\text {msy }}$ by the end of the projection period (2028) with 60% probability [Rec. 16-05, paragraph 1]. Note that there is a one-year lag effect between the catch removal with an instant effect on fishing mortality and the biomass response in the following year. Therefore, implementing the TAC in 2020 is instantly affecting $F / F_{M S Y}$ in 2020, but this affects the estimate for $B / B_{M S Y}$ in the following year. Given that the 2018 biomass is estimated by the joint model to be below sustainable biomass levels ($\mathrm{B}_{2018} / \mathrm{B}_{\mathrm{MSY}}=0.72$, see Table 14 in Section 5.2 of this report) that could produce an estimated $M S Y$ of 13,325 tons ($10,899-17,346$), it would require the total catch to be below 8,000 tons or below 10,000 tons to rebuild the stock to $B_{M S Y}$ by 2025 or 2028, respectively, with a probability of at least 60% (Tables 15 and 17).

Current rate of exploitation was estimated to be at $\mathrm{F}_{2018} / \mathrm{F}_{\text {MSY }}=0.93$ for 2018, which indicates that current fishing mortality by targeting fisheries is below the reference value of $\mathrm{F}_{\text {msy }}$. Accordingly, projections of fishing mortality (Figure 39) show that catches up to 9.000 or 10,000 t would result in probabilities higher than 60% for not expecting overfishing by 2021 or 2022, respectively (Table 16).

However, it is important to note that the JABBA assessment runs showed a systematically negative pattern in the process error variation of biomass (2005-2016), which increases uncertainty in current stock status and immediate stock projections. If stock productivity were to remain below average, this would lead to over-optimistic predictions for the near future. Hence, the Group recommends that these projections should be interpreted with precaution.

7. Recommendations

7.1 Recommendations with financial implications

Data recovery plan

The Group has noted important improvements in historical T1 and T2 data when comparing to the information available in the 2016 assessment (Anon., 2017). However, the available CPUE data for the earlier period are still limited. Therefore, the early period of the fisheries cannot be fully accounted in the stock assessment models. As such, the Group recommended conducting a recovery of historical data, so that the entire history of the fishery is taken into account when assessing the stock. Particular effort should be dedicated to collecting available information from the major fisheries of the early years, with focus in fisheries with limited data. [Estimated cost: $€ 10,000$; Priority: medium given that will be used for next assessment (priority level to be revised)].

7.2 Recommendations without financial implications

7.2.1 Recommendations on research and statistics

Fisheries

- The Group noted that very few studies on longline selectivity were carried out in the past in the Mediterranean; moreover, they were generally limited in time and space and mainly focusing on the evaluation of the by-catch components of the swordfish fishery. Considering the differences showing up in terms of catch composition, CPUE, and size distribution of the swordfish catches, among the various longline types, it is recommended the development of selectivity studies by CPCs, in order to identify practices (gear design, hook size and bait type) and fishing strategies that can reduce undersized swordfish discards.
- Though the monthly probability to catch undersized swordfish, or the monthly discard rate has been examined in certain Mediterranean swordfish fisheries, there is no recent estimation of the monthly proportion of recruits and spawners in the Mediterranean swordfish catches. The Group recommended that monthly estimation of spawner and recruit proportion in the catches on a fine spatial scale, could facilitate management decisions for spatio-temporal restrictions.
- The Group agreed that data from the domestic observer programs are essential for assessment and management purposes, as they can provide fine resolution information on undersized catches and discard rates by fishery. Regarding the reporting ST09 form for domestic observer program data the Group recommends: (a) to include the mesopelagic and American style longline in the gear selection list, (b) to clarify better the selection of depth range for the fishing operations, (c) to have all form to be completed without exclusion [remove the "optional" from sub-form C in ST09] and this data should be used exclusively for scientific purposes in line with Rec. [16-14].
- The Group recommends that all ICCAT CPCs revise and replace the provisional dead discards estimations here adopted, using the best available information (port sampling, domestic observer data, etc.) at the National level. For that purpose, each CPC should allow their national scientists to have access to all the pertinent information.
- The Group reiterated the recommendation made by the SCRS in 2019 to obtain size and biological data to better characterize the discards of Mediterranean swordfish:

To the SCRS and the ICCAT Commission on allowing sampling on undersized swordfish: Currently there are Minimum Sizes established for Atlantic swordfish (Recs 17-02 and 17-03) and Mediterranean swordfish [Rec. 16-05]. Those "minimum sizes" refer to either "taking and landing" or "catching and retaining on board", depending on each specific Recommendation or paragraph. In order to allow the collection of biological samples during commercial fishing operations on undersized swordfish (e.g., vertebrae, tissue, reproductive tracts, stomachs) the SCRS recommends that the Commission considers establishing a new ICCAT recommendation allowing such procedures. The sampling on undersized swordfish would only be carried out if:

1. Specimens are dead at the haulback;
2. Samples are collected by a fishery observer and
3. The biological samples are taken in the framework of a research project notified, endorsed and carried out within the priorities of the Swordfish Species Group and the SCRS.

Abundance indicators

- Given the clear differences between the longline gears targeting Mediterranean swordfish (e.g. traditional surface longline, American style longline and mesopelagic longline) the Group recommended that the CPCs provide catch-effort data by gear category, as well as information on the proportion of their fleet operating in each of these categories. This information is necessary for estimating standardized indices of abundance from fisheries statistics.
- The Group recommends to consider in the standardization procedures important oceanographic changes that have occurred recently in the Mediterranean Sea (e.g. eastern Mediterranean transient) and may have impacted the availability of the stock to some fisheries, and/or the recruitment success of the population.
- The Group noted important oceanographic changes may be affecting recruitment success in the population and availability of the stock to some fisheries and recommends that the Sub-committee on Ecosystems identify indicators of the oceanographic pressures and status of the abundance of swordfish larvae.
- The Group recommends the inclusion of discards in the standardization of catch and effort data as they represent part of the catch.
- Although CPUE by age is the usual input for the age-structured analyses, the Group recognized that this must be based on an increased level of sampling, not merely substitution of the current data. Therefore, it is recommended that increased ageing sampling takes place, so that age-length keys or catch at age and CPUE by age can be developed. To achieve this goal, the Group noted that it is important to collect size and hard parts together with the catch and effort data to provide meaningful CPUEs.

Assessment

- The Group agreed on the increasing importance of the Mediterranean swordfish discards in reference to the total catch, and that part of these discards are due to minimum catch size of 100 cm LJFL [Rec. 16-05, paragraphs 15 and 16]. The Group recommends that for better inclusion of those discards in the assessment models, a more comprehensive reporting of swordfish discards at sea is necessary in both directed and other large pelagic fisheries in the Mediterranean. Similarly, it is recommended to explore integrated assessment models with more fleet, selectivity and environmental options to better model and evaluate the impact of discards, environment and or selectivity modifications/regulations in the dynamics of the stock and its recovery status.
- The Group recommended that the next stock assessment for Mediterranean swordfish should be carried out not before 2024 in order to give more time for additional data to be collected that will allow evaluation of the management measures adopted through Rec. 16-05 and the progress on stock rebuilding. A data preparatory meeting should be conducted in advance to analyze and prepare data for the stock assessment. Nonetheless, the Group should review in 2022 the available fisheries indicators (catch, indices of abundance, etc.) to monitor the trend of the stock status. If, there is a change in stock status indicators during the interim period, as for example a dramatic drop in nominal catches or in average sizes, then the stock assessment should be carried out before 2024.

7.3 Recommendations on management

- Over the last 50 years stock biomass shows declining trends, starting with the period around 19701990, when the fishery was in a strong developing phase. In the following period until about 2010, declining trends were rather modest accompanied by small-scale fluctuations. In the most recent
period, the stock biomass has continued to decline. As expected, fishing mortality followed an opposite trend with sharper increases during the 1980s. Current stock biomass is about 30% lower than that corresponding to MSY, while fishing mortality is around $\mathrm{F}_{\text {MSY. According to the Commission }}$ objectives the stock requires rebuilding and relevant scenarios were simulated assuming different levels of quota. Analysis indicated that the probability of stock rebuilding within the next five years (2025) is slightly over 60% if quota equal to $8,000 \mathrm{t}$ are adopted. The probability increases if lower quota levels are selected. As there are uncertainties on stock productivity these estimates may be over-optimistic and should be interpreted with caution.
- The Group noted that since the establishment of minimum catching sizes, particularly after the recent increase imposed through Rec. 16-05 the discard levels of undersized swordfish are increasing at least for certain fisheries and are largely dead. However, discards are not being reported for all fleets. Though an attempt has been made to statistically estimate discard levels and consider them in stock assessment models, the real volume of total discards is unknown due to this under-reporting. Such under-reporting leads to false estimates of the overall catch volume and consequently bias stock status estimates and projections of future stock size under different management measures.

8. Other matters

8.1 Executive Summary

The Group also revised and updated the Mediterranean Swordfish Executive Summary. However, the final version including figures, tables and minor text additions related to the State of the Stock will be updated during the Species Group meeting in September.

9. Adoption of the report and closure

The report was adopted during the meeting. The Chair and the Secretariat thanked all the participants for their efforts to work effectively and efficiently throughout the meeting. The meeting was adjourned.

References

Anon. 2015. Report of the 2014 ICCAT Mediterranean Swordfish Stock Assessment meeting (Heraklion, Greece, 21-25 July 2014). Collect. Vol. Sci. Pap. ICCAT, 71 (5): 1870-1979

Anon. 2017. Report of the Mediterranean Swordfish Stock Assessment session (Casablanca, Morocco, 1116 July 2016). Collect. Vol. Sci. Pap. ICCAT, 73 (3): 1005-1096

Anon. 2020. In press. Report of the Swordfish Species Group intersessional meeting (Online, 16-19 March 2020): 41 p.

Chang, Y.J., Winker, H., Sculley, M., Hsu, J., 2019. Evaluation of the status and risk of overexploitation of the Pacific billfish stocks considering non-stationary population processes. Deep. Res. Part II Top. Stud. Oceanogr. in press. https://doi.org/10.1016/j.dsr2.2019.104707

Jardim, E., Millar, C.P., Mosqueira, I., Scott, F., Osio, G.C., Ferretti, M., Alzorriz, N., Orio, A., 2015. What if stock assessment is as simple as a linear model? The a4a initiative. ICES J. Mar. Sci. 72, 232-236.

Kell, L.T., Mosqueira, I., Grosjean, P., Fromentin, J., Garcia, D., Hillary, R., Jardim, E., Mardle, S., Pastoors, M.A., Poos, J.J., Scott, F., Scott, R.D., 2007. FLR : an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640-646.

Marisaldi, L., Basili, D., Candelma, M., Sesani, V., Pignalosa, P., Gioacchini, G., and Carnevali, O., 2020. The challenge to assign maturity stages: development of a histology-validated macroscopic criteria based on the GI. Collect. Vol. Sci. Pap. ICCAT, 76(3): 304-314.

Mohn, R., 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES J. Mar. Sci. 56, 473-488. https://doi.org/10.1006/jmsc.1999.0481

Winker, H., Carvalho, F., Kapur, M., 2018. JABBA: Just Another Bayesian Biomass Assessment. Fish. Res. 204, 275-288. https://doi.org/http://doi.org/10.1016/j.fishres.2018.03.01

Winker, H., Mourato, B., Chang, Y. 2020. Unifying parameterizations between age-structured and surplus production models: an application to Atlantic white marlin (kajikia albida) with simulation testing. Collect. Vol. Sci. Pap. ICCAT, 76(4): 219-234.

Table 1. Task 1 nominal catches (T1NC, t) of SWO-M by year, catch type and gear group, between 1950 and 2018. The LL dead discards series between 2008 and 2018, with the exception of EU-Spain (6.7 t in 2015 and 83.5 t in 2018), are preliminary estimates (SCRS/2020/028) adopted by the Group. The total catches used in the 2016 stock assessment (SA2016) is also shown (with the relative difference, \%) for comparison.

Table 2. Standard SCRS catalogue of SWO-M on Task $1 / 2$ data availability by major fishery (flag/gear combinations ranked by order of importance) and year (top panel: 1960-1989; bottom panel: -1989-2018). Only the most important fisheries (representing $\pm 97.5 \%$ of Task 1 total catches) are shown. For each data series, Task 1 (D Set= " t 1 ", in t) is visualised against its equivalent Task 2 availability ($\mathrm{DSet}=$ " t 2 ") scheme. The Task 2 colour scheme has a concatenation of characters (" a "= T2CE exists; "b"= T2SZ exists; "c"= T2CS exists) that represents the Task 2 data availability in the ICCAT-DB system.

Table 3．SWO－M overall catch－at－size（CAS）matrix by year and LJFL 5 cm classes（lower limit）including estimates of dead discards longline fleets $2008-2018$ ．

$\begin{aligned} & \hline \text { Sum of Catch } \\ & \text { Li }(5 \mathrm{~cm} \text { UF) } \\ & \hline \end{aligned}$																															02																	
30 35	：			\％	\％		：	：					\％	$\stackrel{\circ}{8}$	$\stackrel{\circ}{80}$	$\stackrel{\circ}{3}$			$\stackrel{\circ}{\circ}$		：			${ }_{\substack{34 \\ 365}}^{\text {as }}$		：																						
${ }_{40}$		－		－	－	：	。	－	○	－			。	${ }_{7}$	${ }_{50}$	20	8	${ }_{0}$	8		${ }^{3}$			sis						${ }_{10}$		${ }^{18}$								${ }^{74}$	${ }_{8}$							
45		\therefore		\bigcirc	\bigcirc	：	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\therefore	${ }^{79}$	${ }^{108}$	${ }^{3}$	${ }^{24}$	${ }^{30}$	\bigcirc	\bigcirc	${ }^{83}$		－	\because				\bigcirc		${ }^{20}$	\bigcirc	20］		30	${ }^{19}$		\bigcirc	－		${ }^{74}$	－							
${ }_{5}$		：		：	：			：		：		：	：	${ }_{\substack{155}}^{158}$	${ }_{3}^{32}$	${ }_{12}^{18}$	26	${ }^{88}$	as	${ }^{2} 128$	${ }_{2}^{204}$	${ }_{\substack{323 \\ 122}}$	${ }^{1287}$	8	${ }^{18}$	${ }_{185}$	¢07	${ }_{\substack{186 \\ 8}}$	${ }_{85}$	${ }_{217}^{128}$	。1		${ }_{\text {and }}^{3221}$	${ }_{\substack{\text { ancs } \\ \text { ases }}}$	${ }_{\substack{107 \\ \text { sol }}}$		S128	${ }_{18}^{78}$			$\substack{418 \\ \text { ss }}_{4}$		${ }_{25}^{12}$					
${ }_{6}^{55}$		：		：	\bigcirc		\％ 8	\bigcirc	1.25	${ }^{1.1 .49}$	${ }^{1.108}$	soo		${ }_{\text {ck }}^{18}$	${ }^{3238}$	${ }_{36}^{122}$	${ }_{\substack{26 \\ 88}}^{26}$	${ }_{\text {Leal }}$	asal	${ }_{\text {a }}^{\substack{1.608}}$	$\left.\right\|_{\substack{120 \\ 3,50}}$	${ }_{\substack{1238 \\ 2089}}^{1}$	${ }_{\substack{120 \\ 3,501}}^{\substack{\text { a }}}$		${ }_{\substack{186 \\ 59}}^{\substack{126}}$	$\left.\right\|_{210} ^{123}$		2888	${ }^{20}$	${ }_{\substack{21 \\ 380}}^{21}$	${ }_{\text {arl }}$		${ }_{\text {Leas }}^{\text {Leas }}$			$\xrightarrow{3020}$		\％		${ }^{15889}$			${ }_{26}^{28}$					
70		：		：	：			${ }^{88}$	${ }_{\substack{375}}^{\text {ro }}$	${ }_{\text {mex }}$	${ }_{\substack{38 \\ 735}}$	$\underset{\substack{170 \\ 39}}{ }$	${ }^{3.100}$	2129		cosl	， 1.581	${ }_{\text {coser }}^{2021}$	5os 1	${ }_{\text {cosel }}^{\text {s．asel }}$					${ }_{\text {cre }}^{685}$	$\xrightarrow{\text { Lesel }}$（enel	${ }_{\text {a }}^{\substack{358 \\ \text { 206ed }}}$	$\substack{\text { 12a1 } \\ \text { asa }}$	${ }_{\substack{20.06 \\ \text { sual }}}$	${ }_{\substack{\text { ber }}}^{\text {moga }}$	${ }_{\substack{\text { ana } \\ \text { and } \\ 1020}}$		13，981	cos	${ }_{\substack{32731 \\ 2504}}$	$\xrightarrow{\text { zoanl }}$	${ }^{3} 82$	${ }^{127 a 3}$ II		307a4 \mid	${ }^{2388}$	${ }^{30}$	228	${ }^{585}$	208	${ }^{221}$	${ }^{104}$	
70		：		：	\％		${ }_{\text {¢ }}^{\text {s99 }}$	${ }^{688}$	${ }_{\substack{\text { zoo } \\ \text { 1．50］}}}$	${ }_{1.58}^{76}$	${ }_{\text {238 }}^{\substack{38}}$	${ }_{\text {cral }}^{39}$	$\|$3．300 jose		${ }_{\text {2，}}^{1295}$	${ }_{\text {2 }}^{1.7091}$	｜ismo	${ }_{\substack{5 \\ 65211}}^{5027}$	（17．35］						，		${ }_{\substack{10.659 \\ \text { risal }}}^{\substack{\text { a }}}$	${ }^{3} 2.81$			${ }_{\substack{1.2381 \\ 7 \times 80}}^{\substack{\text { a }}}$	li．cil	${ }_{\text {12923I }}^{129}$	$\underbrace{\substack{\text { a }}}_{\substack{10201 \\ \text { saso }}}$	${ }_{\substack{2595 \\ 4.505}}^{2}$	${ }_{42021}^{7512}$			3，36						${ }_{\text {a }}^{\substack{2589 \\ 3 \text { asa }}}$	$\left.\right\|_{\substack{\text { casal }}} ^{\substack{1.80}}$		
80	1283	12.84	1.581	13.3	1.801	2，s65	206	${ }_{68} 1$	1.500	1.582	1.98	${ }_{\text {er }} 1$	12028 II	n．asel	stas		27，46	030	13.566 I				1523811	22.35				${ }^{1,602} 11$	$12.58{ }^{\text {l }}$	${ }^{1559011}$	速	6.984		Sseil	672	11.381				2mod	12,0	598	4.95			${ }_{2651}$	${ }_{\text {a }}$	
${ }_{901}^{85}$	$\underbrace{}_{\substack{1887 \\ 6045}}$	1.245		${ }_{\substack{1238 \\ 4.651}}^{1}$					${ }_{\text {coser }}^{2009}$	${ }_{\substack{31255 \\ 4.659}}$	$\xrightarrow{2020}$				${ }_{\text {a }}^{\substack{\text { a．ces } \\ \text { 12cese }}}$																																	
	${ }_{5}^{561} 11$					23，011		2.88	${ }_{\text {r，ara }}$	8，1981	，731	${ }_{3} .580011$	11.28001	$1{ }^{23.355}$ I	1.15681		$\square 3.487 \square^{1}$		Dasers																													
	12，960 II	13.581	${ }_{\text {zasael }}$	n．aroll	13.38	1.4 ace		40	s，sa	ssas 1	sra	2971 ｜l	1 15 zal｜	$\square_{\text {22，00 }}$ D	Hears 1			4787	Tase											Soba																		
${ }^{1051}$	9，211	${ }_{688}$｜	200 1	5.351	${ }^{2278}$	2 2as	c，as		sasa	390	2，an	1		$1{ }^{2}$ 2sen II	sorl｜	${ }^{122221}$																																
${ }_{115}^{110}$			Q，		a，nci		\％os										12308																															
120	${ }^{202}$	\％21																	so																													
125																																																
${ }^{130}$	\％，96	2am1	\％		21	${ }^{10}$	\％s	so	S94	S402	520	22	［1．32	चar	goid	28	（2322	cans	－4，7，28		Sms			508						2，51											13.5					12.008	5s3	
		0．7n																																														
${ }^{100}$	som	－	17837	－			${ }^{20.955} 1$					2，as	－	1	2ams	， 175	\square^{8028}		dre		${ }^{21.158]}$	${ }^{1.20071}$	${ }^{12,0650]}$	12，5ul｜	${ }^{1.402021}$	${ }^{\text {12asal }}$	${ }_{12820}$	－			1.12301	20，k	13em	${ }^{12 a 48}$	nest	132	（1512，	12xa	2074．	Hem	1.	$\underset{\substack{1098 \\ 1080}}{1080}$	15		（13720	${ }^{\text {n }}$ Lese	${ }^{4 .}$	
${ }_{12501}^{195}$	18931］	2．asil	usal	1038	1435	Husall	10e	cos 1		｜ 12.55			II 18.741	$]^{150987}$	IsenI	5ost			Hema	［173211	Sesol	${ }^{1220011}$	sal		$\xrightarrow{928}$	${ }_{\substack{8.556 \\ \text { 1260 }}}$	come				${ }_{\substack{1293 \\ \text { asa }}}^{1}$	1.300	${ }_{\substack{1285 \\ 1284}}$	$\underbrace{\substack{\text { a }}}_{\substack{12129 \\ 1520}}$	$c10471 nese$		$\xrightarrow[\substack{1098 \\ 9206}]{ }$		${ }_{\substack{\text { reneoll } \\ \text { asaral }}}^{\substack{\text { a }}}$	${ }_{\text {Resen ll }}^{12}$	${ }_{\text {a }}^{\text {cosald }}$						ms	
${ }_{1511}^{150 \mid}$	\mid					${ }_{\text {d }}^{1.588]}$ seral		ssas 1	${ }_{\text {cser }}^{\text {casil }}$						（1880II		$\underbrace{\substack{\text { and } \\ \text { Bural }}}_{\text {and }}$	cosin		12.8501							${ }_{\text {a }}^{\substack{\text { nesald } \\ \text { nimal }}}$									${ }_{\text {a }}^{128981 \mid}$	$\underbrace{\substack{\text { a }}}_{\substack{9,262 \\ 7,020}}$	ni．ssid		$\xrightarrow{112 a i l}$	${ }_{729}^{9.951}$				\mid			
${ }_{1}^{1601}$	6721	sas3	4.40	33201	5221	48031	7298	star	3.001	3.351	3，941	stsol	¢ sone I	$\\|^{12.4 .45}$	9，971	${ }^{10.02211}$	12781	${ }^{42151}$	${ }_{\text {sama I }}$	1 nomal	${ }^{1.1 .4}$	${ }^{2} \mathbf{3} 5 \mathrm{~s}$｜	ossil	${ }_{722} 1$	b，as 1	${ }_{5031}$	${ }^{2} 2.211$	${ }_{7,582} 1$	8，73	7.005	Gmas｜	do．osa 1	8，70 1	${ }^{10.322} 1$	${ }^{7}$ 7，0e	Q1221	72001	Q3as II	$12.80{ }^{1}$	${ }_{50021}$	${ }_{\text {gar }} 1$	${ }_{\text {ams }}$	6，121	${ }^{600} 1$	8，20｜	${ }^{0.359} 1$	6202	
1155	a，051	4 Ama	${ }^{\text {3，006 }}$	${ }^{2073} 1$	2091	27.75	${ }^{3} 731$	7 73as	${ }^{32721}$	${ }^{\text {3asa }}$	33.8	2 268	${ }^{32211}$	｜ 7 ¢8571	10．20］	7.788	s．4．41	${ }_{4}^{4.459}$｜	${ }_{5}^{5} 545$	${ }_{\text {¢，7a }}$	6.981	g．ass	${ }^{7} 3.31$	4.85	4820	4 4ese 1	6.559	4	72.831	${ }^{63} 31$	${ }_{6} 2381$	${ }^{7,302}$	${ }^{\text {as，} 51 / 1}$	${ }^{11.2921}$	87771	${ }^{82211}$	${ }_{\text {casam }}$	${ }^{2}$ 2，45	${ }^{\text {a，39 }}$	${ }^{3.505}$	5.230	43	4.501	${ }^{4483}$ ！	${ }^{\text {cra }}$	${ }_{5}$ semil		
${ }^{1701}$	${ }^{3052} 1$	3058	${ }^{2738}$	1.909	2287	2090	${ }^{30087}$	$3 \mathrm{3a2} 1$	5204	ssss	s．ant	27 ra	3827	${ }_{6} 1.24 \mid$	72.29	ssas	${ }^{2} .187$	6aral	4821	${ }_{7}^{7,29} 1$	${ }^{6} 784$	s．asol	${ }_{7,073}$	6.001	${ }_{50 \times 31}$	${ }_{5}^{5241}$	${ }_{6098} 1$	${ }^{\text {sasa }}$	${ }_{72,46}$	${ }^{\text {anal }}$	s，az2	s．ove	7.051	${ }_{0.4}^{0.4} 1$	${ }^{7} .7 .45$	${ }_{5}^{5266}$	3，75	s．as		4239	${ }_{\text {s，} 544}$	40.021	$4{ }^{4755}$					
175）	${ }^{2655} 1$	2000	${ }^{226}$	${ }^{1.366}$	${ }^{1,759}$	20as	${ }^{2002}$	${ }^{4} 489$	${ }^{2} 285$	2nge	3．198	${ }^{1.127}$	1，0al	3，5el	${ }^{4285}$	3．3s61	s．asal	${ }^{3223} 1$	${ }^{\text {a }}$ ase 1	${ }^{4}$ ane 1	${ }_{4}^{492}$	a，as		4.451	4.001		${ }^{4037}$｜			3，301	${ }^{3.594}$	${ }^{3.652}$	4．755	${ }^{7}$ 7．ase	5．596			28.8	sses 1	s，7al	4.974							
		1．as					${ }_{\text {a }}^{\substack{3.055 \\ 1,020}}$	13001 2001 1	${ }^{\text {amas }}$		$\underbrace{}_{\substack{3.555 \\ 2 \text { 2es }}}$	${ }_{\substack{2213 \\ 123}}$									${ }_{\substack{\text { 3．as）} \\ 2 \\ 2100}}$	${ }_{\substack{2882}}^{295}$																${ }_{\substack{2305}}^{\substack{\text { asa }}}$			${ }_{\substack{3453 \\ 3227}}$	${ }_{\substack{2082}}^{2038}$						
1851 190 1	${ }_{\text {a }}^{2089}$	${ }_{\substack{\text { 2nas } \\ \text { cis }}}^{2}$	${ }_{\text {l }}^{1.68}$	${ }_{\substack{1331}}^{138}$			${ }^{1.808}$	${ }_{2}^{2159}$		${ }_{\text {2，200 }}^{1020}$		${ }_{39}^{1273}$				${ }_{\text {2．140 }}^{\substack{291 \\ 1.0}}$		cis			$\underbrace{\text { L，} 2100}_{\substack{2120}}$					$\underbrace{2}_{\substack{2255 \\ \text { 1．000 }}}$	2,237 1,622				${ }_{\substack{2.585}}^{\substack{\text { c／s }}}$																	
195	${ }_{\text {\％88 }}$	${ }^{278}$	ss	${ }^{24}$	3	${ }^{19}$		soo	40	${ }^{62}$	${ }_{582}$	170	79	${ }^{75}$	${ }^{821} 1$	1285	${ }^{24}$	${ }^{365}$	1.00	${ }^{1.356} 1$	1.91	${ }^{\text {sal }} 1$	${ }^{1.83}$	${ }^{1.388}$	1.182	mo	${ }^{1083}$			1.40			1.451	2303	${ }^{2588} 1$								${ }^{39}$		971	${ }^{1588}$		
${ }_{205}^{200}$	${ }^{59}$	${ }^{39}$	0	${ }^{15}$	${ }^{157}$	：	－	${ }^{688}$	${ }_{0}^{751}$	${ }_{29}^{78}$	cos	${ }_{3}^{32}$	${ }^{\circ}$	${ }_{18}^{485}$	${ }_{\substack{1,20}}^{\substack{\text { ga }}}$	${ }_{\substack{30 \\ 70}}$	${ }_{\substack{287 \\ 14}}$	${ }_{\text {cid }}^{208}$	${ }_{\text {2，}}^{2 \times 8}$	${ }_{3}^{18}$		1，107	$\underbrace{1}_{\substack{1.068 \\ \text { soc }}}$	1,177 835	1，110	${ }_{\substack{1.368 \\ 799}}^{\text {20，}}$	$\begin{gathered} \text { seng } \\ 400 \end{gathered}$	${ }_{37}^{74}$		${ }_{\substack{1.887 \\ 720}}^{\text {a }}$	${ }_{\substack{\text { sa4 } \\ \text { s．}}}^{\text {d }}$				${ }_{\substack{\text { 238 } \\ 1.389}}$	$\underbrace{\substack{1.062}}_{\text {cos }}$	${ }_{7}^{78}$	${ }_{\text {cre }}^{60}$										
220	\bigcirc	${ }^{168}$	2	\bigcirc	\bigcirc			2	${ }^{1.155}$	${ }^{1.981}$	${ }^{1.37}$	78	\％	${ }^{20}$	150	${ }^{128}$	${ }^{15}$	3	${ }^{39}$	${ }^{178}$	${ }^{39}$	${ }^{205}$	${ }^{1.086}$	${ }^{\text {sas }}$	${ }^{478}$	${ }^{36}$	28	${ }^{4 n}$	260	${ }^{66}$	${ }^{438}$	${ }^{1.000}$	sos	1.144	${ }^{1.44}$		${ }^{\text {re }}$			${ }^{23}$								
225 220 25				${ }_{11}$			8	${ }_{8}^{88}$				${ }_{120}$		${ }_{6}^{60}$	${ }_{\text {mi }}$		${ }_{18}^{28}$	${ }_{8}^{8}$																														
225	${ }^{26}$	${ }^{\prime \prime}$	${ }^{76}$	${ }^{68}$	${ }^{38}$	${ }^{3}$	14	${ }^{68}$	－	\bigcirc		。	${ }_{3}$			。	${ }^{13}$	13	54	137	${ }^{136}$	22	${ }_{251}$	12	\％		30					100				${ }_{8}$		${ }_{28}$		20	${ }_{12}$		40		49			
230 235 25		\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	${ }^{35}$	${ }^{3}$	${ }^{38}$	${ }^{20}$	${ }_{2}^{2}$				\bigcirc		\bigcirc	${ }^{13}$	${ }^{123}$	${ }^{38}$	${ }^{19}$	5	${ }^{6}$		${ }^{56}$	so	\bigcirc		12			${ }^{18}$	${ }^{8}$		${ }^{22}$	$\stackrel{8}{4}$		30			${ }^{39}$	${ }^{32}$	${ }^{26}$			
235 240 240	：			？	：			\bigcirc	${ }^{1}$	\bigcirc		：	2			：	：		：	${ }^{4}$	${ }_{3}^{32}$	${ }^{30}$	${ }^{49}$	${ }_{28}^{73}$	${ }^{3}$		${ }^{\circ}$		${ }_{21}$			${ }^{4}$	${ }_{25}^{106}$	cis	${ }_{7}^{73}$	${ }_{88}^{75}$	${ }_{10}^{118}$	${ }^{56}$		${ }^{102}$			${ }^{156}$					
${ }_{225}^{245}$					－			。		。			。			－	－		－		。			${ }_{3}$				${ }_{8}$	${ }_{15}$					${ }_{15}$						3	${ }^{1}$							
250 255 255	：	－		：	：			：		：			：		4	\bigcirc	\bigcirc		：		：			：			\bigcirc		${ }^{20}$	\bigcirc				${ }^{58}$	${ }^{23}$		${ }^{115}$											
255 260				：	：			：		\bigcirc						${ }^{18}$			：		：								：					15 ${ }_{15}^{15}$			${ }_{\circ}^{\circ}$						${ }^{18}$					
265	。	。		。	。			。	。	。			。			。	。		。		。			。			。	。	。				3	\％			si	－										
270 275				：	：			：		：			：			：			：		：																	\％					:					
${ }^{280}$				－	。			－	。	－			－			－			－		。			－					－									。										
285 290																																																

Table 4. CAA matrix (slicing inverse-VB) including estimated dead discards from longline fleets 2008 2018.

YearC	Age0	Age1	Age2	Age3	Age4	Age5	Age6	Age7	Age8	Age9P	Total
1972	-	51,509	86,268	130,348	49,500	12,958	5,729	2,487	1,260	1,555	341,614
1973	-	41,699	66,501	108,353	28,584	12,387	5,562	2,668	383	1,269	267,408
1974	-	43,590	72,073	138,475	36,981	9,448	4,277	1,445	86	869	307,245
1975	-	37,064	67,107	128,997	30,637	7,184	2,429	1,059	244	708	275,429
1976	-	41,634	59,662	139,719	40,179	9,723	3,061	1,239	126	831	296,174
1977	-	46,227	77,441	159,818	29,754	9,525	3,522	1,356	121	823	328,586
1978	1,719	24,673	86,245	176,070	35,184	12,545	7,005	1,472		882	345,794
1979	628	24,627	61,690	156,909	27,190	15,908	7,913	1,438	1,303	3,318	300,925
1980	2,924	20,169	89,397	195,373	28,570	10,680	6,868	2,906	655	2,402	359,945
1981	3,027	20,971	88,147	174,985	29,926	11,027	8,001	3,044	1,100	3,676	343,904
1982	2,867	19,773	99,263	128,176	25,696	11,586	7,806	3,223	1,017	3,240	302,647
1983	1,322	9,421	129,633	148,057	27,258	10,039	4,909	1,288	271	1,353	333,553
1984	1,690	81,081	187,342	175,704	39,561	10,556	3,618	1,224	146	182	501,102
1985	9,759	106,423	148,484	203,322	36,156	21,783	8,621	2,735	1,497	567	539,346
1986	6,796	64,711	160,481	205,961	49,264	23,653	8,661	4,649	1,347	2,618	528,142
1987	4,207	36,539	138,807	282,198	61,134	20,922	6,952	3,643	1,911	1,202	557,516
1988	8,927	171,055	102,700	281,294	88,991	28,549	9,014	3,729	683	555	695,497
1989	9,368	78,094	109,714	312,367	59,356	16,691	4,759	1,556	456	353	592,715
1990	32,860	200,435	243,816	151,699	30,591	15,416	6,931	3,321	1,411	1,516	687,997
1991	36,704	163,928	201,891	123,822	49,500	20,364	9,334	3,758	2,254	1,594	613,150
1992	34,087	156,586	196,227	100,115	47,036	21,642	9,089	3,725	2,356	2,059	572,921
1993	16,023	226,215	195,220	89,263	32,695	16,825	7,502	3,880	1,510	1,953	591,086
1994	27,569	194,967	216,650	110,454	37,863	22,029	11,044	6,444	3,094	3,756	633,870
1995	19,856	270,687	160,587	80,475	27,189	15,984	8,974	4,538	2,069	2,997	593,356
1996	34,866	222,703	145,767	83,586	29,989	13,968	7,864	3,668	1,794	4,142	548,345
1997	21,846	380,181	194,916	99,174	29,730	16,706	6,280	3,041	1,650	2,358	755,883
1998	32,059	358,399	184,758	83,346	32,913	20,588	8,710	3,406	1,520	1,721	727,421
1999	9,380	182,651	253,000	96,030	36,806	15,237	6,469	3,568	1,590	1,873	606,604
2000	7,605	126,155	276,137	126,774	40,408	23,912	9,385	5,609	1,953	2,108	620,047
2001	17,440	199,737	254,324	111,737	39,390	16,060	7,183	3,109	2,284	3,016	654,281
2002	10,297	195,896	182,016	89,663	34,090	16,831	7,275	3,677	1,656	1,878	543,280
2003	41,176	127,457	266,732	114,886	43,207	20,782	7,929	3,759	2,403	2,749	631,081
2004	53,052	236,338	172,035	88,188	38,879	21,348	8,795	4,744	2,288	3,330	628,998
2005	55,039	149,628	138,038	61,807	41,989	28,867	14,358	8,527	4,213	6,419	508,884
2006	12,977	141,859	197,874	80,525	36,123	22,535	11,945	7,310	3,836	6,004	520,987
2007	37,991	247,354	156,130	90,733	38,425	19,147	8,131	3,840	2,447	2,881	607,077
2008	18,210	301,699	226,448	79,708	30,624	13,863	4,668	2,067	1,159	2,729	681,174
2009	5,421	237,967	224,836	76,306	38,262	19,260	6,210	2,234	1,479	1,751	613,726
2010	40,492	260,375	161,346	90,334	51,109	22,785	8,828	3,917	2,422	2,122	643,729
2011	95,943	218,815	180,005	79,528	39,618	14,373	8,628	3,484	1,369	3,680	645,443
2012	8,635	194,975	134,349	55,873	28,915	15,079	8,387	5,591	2,510	2,454	456,768
2013	3,350	141,875	148,570	63,827	27,361	12,760	6,969	3,555	1,823	2,002	412,092
2014	5,099	95,734	174,082	81,789	32,448	14,888	6,994	2,370	616	2,841	416,862
2015	6,781	186,173	158,819	77,867	29,773	12,709	7,076	3,858	1,841	3,986	488,884
2016	3,325	215,089	163,137	73,755	36,053	18,328	7,314	2,265	1,330	2,837	523,431
2017	3,312	129,145	139,012	45,855	32,518	20,510	9,326	4,358	1,956	1,167	387,158
2018	4,596	115,848	121,877	43,659	27,474	14,710	5,307	2,620	1,462	1,492	339,046

Table 5. CAA matrix (mixture distribution) including estimated dead discards from the longline fleets 2008-2018.

Year	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6 Plus	Total
1972	1	62,589	116,621	106,369	33,002	13,365	9,666	341,614
1973	1	48,997	91,311	83,476	26,009	10,609	7,005	267,408
1974	1	56,271	104,795	96,560	29,882	12,071	7,665	307,245
1975	1	50,359	94,412	87,458	26,995	10,879	5,325	275,429
1976	0	54,288	100,956	93,752	29,175	11,838	6,164	296,174
1977	1	60,107	112,691	104,214	32,172	12,968	6,433	328,586
1978	878	47,471	114,688	122,526	41,126	19,104	0	345,794
1979	0	53,728	100,796	94,460	28,975	11,746	11,220	300,925
1980	2,026	44,618	118,122	136,674	40,391	18,113	0	359,945
1981	857	30,201	109,296	141,301	42,500	19,749	0	343,904
1982	776	22,008	101,744	118,510	39,628	19,980	0	302,647
1983	678	25,960	114,673	133,611	40,113	18,518	0	333,553
1984	0	95,976	174,096	159,703	50,338	20,852	137	501,102
1985	3,711	100,498	185,390	170,234	55,417	24,096	1	539,346
1986	2,070	80,775	178,200	178,280	60,521	28,295	0	528,142
1987	2,256	86,807	187,699	190,215	61,577	28,962	0	557,516
1988	4,447	135,166	231,918	221,616	71,925	30,426	0	695,497
1989	5,888	109,881	200,117	191,426	60,389	25,013	0	592,715
1990	10,033	136,060	239,899	210,755	65,164	26,077	9	687,997
1991	8,529	119,930	213,274	187,465	59,523	24,424	5	613,150
1992	8,021	111,762	200,132	174,183	55,773	23,050	0	572,921
1993	6,589	121,644	208,714	174,800	56,255	23,084	0	591,086
1994	4,032	121,669	231,397	186,118	62,893	27,761	0	633,870
1995	11,308	120,790	208,645	175,595	54,969	22,047	1	593,356
1996	13	134,877	187,226	151,117	51,335	23,778	0	548,345
1997	3,740	159,523	269,634	222,874	70,993	29,118	1	755,883
1998	14,551	150,363	251,491	216,716	67,415	26,885	1	727,421
1999	3,803	122,369	218,077	181,574	57,740	23,040	2	606,604
2000	0	112,254	240,360	174,117	66,490	26,773	54	620,047
2001	1,896	129,580	239,672	193,452	62,951	26,730	0	654,281
2002	0	109,194	193,543	162,843	53,239	22,715	1,745	543,280
2003	15,107	121,985	219,163	191,461	59,514	23,850	0	631,081
2004	18,431	127,851	214,889	186,521	58,077	23,227	1	628,998
2005	57,643	59,154	187,918	83,771	71,674	48,725	0	508,884
2006	2,006	72,838	209,269	146,896	59,327	30,651	0	520,987
2007	15,370	120,797	209,288	182,444	56,602	22,577	0	607,077
2008	8,988	158,225	394,418	45,192	73,713	2	636	681,174
2009	14	153,431	287,750	82,711	89,195	0	625	613,726
2010	715	141,169	220,860	190,296	63,504	27,185	1	643,729
2011	48,823	250,184	180,587	90,042	52,175	23,633	0	645,443
2012	2,223	97,461	164,453	125,879	45,420	21,332	1	456,768
2013	162	80,799	153,481	114,196	42,481	20,972	1	412,092
2014	6	69,814	162,575	119,991	44,876	19,601	0	416,862
2015	0	84,659	277,608	52,682	59,456	13,604	876	488,884
2016	0	105,987	184,704	155,784	49,946	20,197	6,814	523,431
2017	374	69,451	144,391	110,631	42,255	20,056	1	387,158
2018	3,716	60,439	126,388	97,731	35,161	15,610	0	339,046

Table 6. Relative abundance indices available for the 2020 Mediterranean swordfish stock assessment.

Period	1987-2018	1987-2018	2010-2019	2010-2019	2012-2018	1988-2018	1988-2018	1999-2011	1991-2009	1990-2009	1991-2009
SCRS paper	SCRS/2020/021	SCRS/2020/021	SCRS/2020/027	SCRS/2020/027	SCRS/2020/026	SCRS/2020/043	SCRS/2020/043	SCRS/2010/083	SCRS/2014/105	SCRS/2010/085	SCRS/2014/112
Country/Location	Greece	Greece	Liguria	Liguria	Morocco	Spain	Spain	Morocco	Sicily	Sicily	Ligurian Sea
Gear	Longline	Longline	Longline (meso)	Longline (meso)	Longline	Longline	Longline	Gillnet	Longline	Gillnet	Longline
Unit	weight	number	weight	number	weight	number	weight	weight	weight	weight	
Used in 2016 XSA	Yes	No	No	No	Yes	No	No	No	No	No	No
Use in 2020 SA	Use				Use	Use		No	No	No	Sensitivity only
Year	GRC_LL	GRC_LL	LIG_LL	LIG_LL	MOR_LL	SPN_LL	SPN_LL	MOR_GN	SIC_LL	SIC_GN	LIG_LL
1987	214.7	9.55									
1988	238.2	10				3.40	127.76				
1989						2.33	115.50				
1990	234.5	14.87				2.46	124.56			8.3	
1991	316.8	10.86				2.92	85.88		100.3	9.8	88.5
1992	127.4	4.01				3.05	74.20		98.5	16.9	66.1
1993	211.4	13.27				3.04	98.34			13.0	68.8
1994	298.4	10.38				3.28	120.48		99.5	9.5	90.6
1995	181.4					3.11	96.20		124.2	14.7	94.6
1996						2.73	82.06			9.3	94.3
1997						2.68	83.99		75.9	14.0	101.1
1998	250.2	5.66				2.89	93.77		127.6	10.1	144.9
1999	172.7	5.87				2.67	87.30	58.3	151.5	12.7	101.9
2000	125.9	4.69				2.47	122.76	66.7	93.3	14.9	134.7
2001	130.6	4.95				2.75	85.68	43.1	144.0	13.1	181.6
2002	107.3	4.41				3.37	128.38	56.0	204.8		140.3
2003	128.6	3.88				2.90	81.83	48.2	82.2		152.3
2004	125.6	8.88				2.56	61.26	58.4	111.2	15.2	98.9
2005	131.5	4.8				2.79	84.28	70.7	123.2	12.1	80.8
2006	136.5	5.8				2.89	112.69	66.2	140.6	30.7	125.0
2007	140.6	5.31				3.17	120.07	63.2	81.1		240.0
2008	134.0	5.31				3.10	152.84	69.2	87.0	3.3	208.2
2009	121.9	5.53				2.54	98.10	55.6	99.1	2.0	123.4
2010	141.4	6.51	332.03	7.95		2.64	106.68	51.9			
2011	116.3	5	239	7.17		2.77	102.68	46.5			
2012	106.5	4.94	143.5	5.29	276.9	3.07	131.75				
2013	167.9	8.69	158.52	5.03	164.0	2.82	88.38				
2014	128.4	5.72	224.52	8.01	190.5	2.85	95.17				
2015	115.7	5.82	160.05	5.14	156.8	2.85	86.05				
2016	125.5	6.32	145.51	5.62	59.0	2.86	70.79				
2017	70.7	3.7	118.75	4.19	67.9	2.79	122.10				
2018	84.3	4.65	88.53	3.38	91.4	2.57	106.27				

Table 7. Summary of the evaluation CPUE table for the Mediterranean swordfish stock assessment.

SCRS Doc No.	SCRS/2020/021	SCRS/2020/027	SCRS/2020/026	SCRS/2020/043	SCRS/2010/083	SCRS/2014/105	SCRS/2010/085
Index Name:	Greece longline	Liguria longline	Morocco longline	Spain longline Biomass	Morocco gillnet	Sicily longline	Sicily gillnet
Data Source (state if based on logbooks, observer data etc)	Observations	vations at landings and a	Fish market statistics	Observer aboard	Fish market statistics	Observations	Observations
Do the authors indicate the percentage of total effort of the fleet the CPUE data represents?	No	No	No	Yes on catches	No	No	No
If the answer to 1 is yes, what is the percentage?				43\% latest years			
Are sufficient diagnostics provided to assess model performance??	Sufficient						
How does the model perform relative to the diagnostics ?	Well						
Documented data exclusions and classifications?	NA	NA	NA	Yes	NA	NA	NA
Data exclusions appropriate?	NA	NA	NA	Yes	NA	NA	NA
Data classifications appropriate?	NA	NA	NA	Yes	NA	NA	NA
Geographical Area	East Med	Ligurian Sea	St. Gibrartar, West Med	Western Med	$\begin{gathered} \hline \begin{array}{c} \text { Strait of Gibraltar, West } \\ \text { Med } \end{array} \\ \hline \end{gathered}$	Central Med	Central Med
Data resolution level	trip						
Ranking of Catch of fleet in TINC database (use data catalogue)	1-5	NA	6-10	1-5	1-5	NA	NA
Length of Time Series	longer than 20 years	$6-10$ years	$6-10$ years	longer than 20 years	11-20 years	$11-20$ years	$11-20$ years
Are other indices available for the same time period?	Few						
Are other indices available for the same geographic range?	None	None	Few	Few	Few	None	None
Does the index standardization account for Known factors that influence catchability/selectivity? (eg. Type of hook, bait type, depth etc.)	Yes						
Estimated annual CV of the CPUE series	Medium	Medium	Low	Low	Low	Medium	Medium
Annual variation in the estimated CPUE exceeds biological plausibility	Unlikely						
\qquad purposes	Yes						
Is this standardised CPUE time series continuous?	No	Yes	Yes	Yes	No	No	No
For fisheries independent surveys: what is the survey type?							
For 19: Is the survey design clearly described?							
Other Comments	Index both Numbers and Biomass Localised (<10×10 degrees)	Index in Numbers and biomass. Recommend to use Biomass index	Localised (<10×10 degrees)	Index both Numbers and biomass Recommend use Biomass index	Localised (<10×10 degrees)	Localised (<10×10 degrees)	Localised (<10×10 degrees)

Table 8. XSA control settings for Continuity run and Candidate runs for the Mediterranean swordfish.

Parameters	Continuity run	Candidate runs
shk.n	TRUE	TRUE
shk.yrs	10	10
rage	1	1
maxit	100	100
shk.f	TRUE	TRUE
shk.ages	2	4
fse	0.5	0.5
min.nse	0.3	0.3
qage	6	6
window	100	100
tsrange	10	20
tspower	1	1
vpa	TRUE	TRUE
F range:minbar	2	2
maxfbar	4	4

Table 9. Parameter settings applied to a4a for the Mediterranean swordfish.

Parameters	Settings
the initial age structure N1	a smoother $(\mathrm{N}: \sim \mathrm{s}($ age, $\mathrm{k}=3))$
the recruitment R	a smoother (R: $\sim \mathrm{s}($ year, $\mathrm{k}=15)$
separable F model	with age and year effect modeled using splines $(\sim \mathrm{s}($ year, $\mathrm{k}=17)+\mathrm{s}($ age, $\mathrm{k}=3)$
the catchability of the surveys q	a constant model (~ 1) was assumed for the Greek, Spanish and Sicilian longline indices, while a smoothing effect on the year was assumed for Moroccan and Ligurian longlines, due to the trend in the residuals.

Table 10. Results for r prior distributions and median shape parameter with corresponding $B_{M S Y} / K_{\text {values }}$ generated an Age-Structured Equilibrium Model (ASEM) with a Beverton-Holt Stock-Recruitment relationship using Monte-Carlo simulations.

Parameter	Scenario			
Reference	\boldsymbol{M} Constant	\boldsymbol{M} Lorenzen	Joint	
r	0.49	0.186	0.176	0.181
sd of $\log (r)$	0.47	0.198	0.207	0.204
B_{MSY} / K	0.5	0.38	0.38	0.38
shape m	2	1.06	1.08	1.07

Table 11. Summary of posterior quantiles presented in the form of marginal posterior medians and associated with the 95% credibility intervals of parameters for the Bayesian state-space surplus production models for Mediterranean swordfish.

	Reference model			ASEM model		
Estimates	Median	$\mathbf{2 . 5 0 \%}$	$\mathbf{9 7 . 5 0 \%}$	Median	$\mathbf{2 . 5 0 \%}$	$\mathbf{9 7 . 5 0 \%}$
K	135017	79495	259387	194523	139243	290538
r	0.414	0.219	0.748	0.188	0.129	0.268
ق(psi)	0.996	0.821	1.204	0.994	0.820	1.200
$\sigma_{\text {proc }}$	0.094	0.045	0.163	0.084	0.038	0.150
$F_{\text {MSY }}$	0.207	0.11	0.374	0.176	0.121	0.251
$B_{\text {MSY }}$	67509	39748	129693	73928	52919	110417
$M_{S Y}$	13811	11275	21476	12931	10709	17468
B_{1950} / K	0.991	0.755	1.265	0.989	0.758	1.25
B_{2018} / K	0.329	0.186	0.597	0.296	0.155	0.51
$B_{2018} / B_{\text {MSY }}$	0.65	0.376	1.33	0.777	0.404	1.41
$F_{2018} / F_{\text {MSY }}$	0.99	0.312	1.686	0.880	0.373	1.679

Table 12. Summary Mohn's rho statistic computed for a retrospective evaluation period of five years. The larger the threshold the stronger the retrospective bias.

	Stock Quantity					
Scenario	\boldsymbol{B}	\boldsymbol{F}	$\boldsymbol{B} / \boldsymbol{B}_{\text {MSY }}$	$\boldsymbol{F} / \boldsymbol{F}_{\text {MSY }}$	$\boldsymbol{B} / \boldsymbol{K}$	$\boldsymbol{M S Y}$
Reference	0.061	-0.057	0.158	-0.173	0.158	0.045
ASEM	0.086	-0.078	0.101	-0.132	0.101	0.042

Table 13. Estimates of biomass, fishing mortality, biomass relative to $B_{m s y}$, and fishing mortality relative to Fmsy between 1950 and 2018 in the form of joint MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models) for Mediterranean Swordfish with 95\% credibility intervals.

	Biomass			Fishing mortality			B/E mss			F/Fems\%		
Year	Median	95\% LCI	95\%UCI	Median	95\% LCI	95\%UCI	Median	95\%LCI	95\%UCI	Median	95\%LCI	95\%UCI
1950	166334	79573	286551	0.004	0.002	0.007	2.271	1.581	3.185	0.019	0.013	0.028
1951	164594	79509	285516	0.004	0.002	0.007	2.228	1.586	3.165	0.019	0.013	0.028
1952	163633	79219	283719	0.002	0.001	0.004	2.217	1.573	3.151	0.011	0.008	0.016
1953	163179	79329	283636	0.003	0.002	0.006	2.208	1.578	3.135	0.017	0.011	0.024
1954	162847	79952	282616	0.003	0.002	0.006	2.199	1.569	3.135	0.015	0.010	0.022
1955	162326	79948	283488	0.002	0.001	0.004	2.195	1.564	3.138	0.011	0.008	0.017
1956	162337	79673	281358	0.002	0.001	0.005	2.199	1.557	3.135	0.013	0.009	0.019
1957	161879	79847	280619	0.004	0.002	0.008	2.193	1.567	3.131	0.022	0.015	0.032
1958	161739	79766	278276	0.006	0.003	0.011	2.188	1.561	3.118	0.031	0.021	0.045
1959	161463	79369	278628	0.004	0.002	0.008	2.180	1.551	3.102	0.020	0.014	0.030
1960	161406	79398	278104	0.003	0.002	0.006	2.182	1.549	3.112	0.018	0.012	0.026
1961	161173	79502	277125	0.004	0.002	0.008	2.181	1.552	3.106	0.021	0.014	0.031
1962	161469	79224	277061	0.004	0.003	0.009	2.179	1.548	3.118	0.024	0.016	0.035
1963	161350	79104	275819	0.004	0.003	0.009	2.177	1.546	3.104	0.025	0.016	0.036
1964	161295	79118	273488	0.005	0.003	0.010	2.177	1.550	3.116	0.027	0.018	0.040
1965	161066	79351	274834	0.011	0.006	0.022	2.175	1.554	3.110	0.060	0.040	0.088
1966	159640	78183	273633	0.011	0.006	0.022	2.154	1.538	3.091	0.060	0.040	0.088
1967	158869	77861	271862	0.008	0.005	0.017	2.143	1.524	3.080	0.045	0.030	0.067
1968	158665	77567	271166	0.022	0.013	0.044	2.148	1.523	3.060	0.119	0.080	0.175
1969	156275	76452	268793	0.024	0.014	0.049	2.114	1.502	3.038	0.130	0.087	0.191
1970	154805	75384	267637	0.022	0.012	0.044	2.091	1.480	3.032	0.118	0.078	0.174
1971	154066	74867	266397	0.032	0.019	0.066	2.082	1.473	3.012	0.177	0.117	0.260
1972	151665	73390	263596	0.074	0.042	0.152	2.050	1.450	2.976	0.403	0.266	0.595
1973	143866	67157	254272	0.061	0.034	0.130	1.939	1.345	2.862	0.334	0.216	0.497
1974	140688	65924	250399	0.069	0.039	0.147	1.901	1.310	2.810	0.381	0.243	0.569
1975	136419	64412	244661	0.062	0.035	0.132	1.850	1.271	2.752	0.343	0.217	0.516
1976	134562	64248	243216	0.071	0.039	0.149	1.836	1.254	2.730	0.388	0.245	0.585
1977	132439	63700	239539	0.076	0.042	0.158	1.803	1.235	2.692	0.415	0.260	0.629
1978	129766	62606	237620	0.087	0.048	0.181	1.773	1.212	2.644	0.476	0.297	0.724
1979	126340	61332	233153	0.084	0.046	0.174	1.727	1.178	2.592	0.460	0.284	0.700
1980	124651	60256	229208	0.096	0.052	0.198	1.707	1.162	2.563	0.523	0.322	0.790
1981	121748	59556	224779	0.097	0.052	0.198	1.671	1.137	2.520	0.527	0.320	0.803
1982	119512	58454	221246	0.085	0.046	0.174	1.643	1.108	2.481	0.465	0.283	0.708
1983	119182	59525	218892	0.090	0.049	0.180	1.647	1.119	2.446	0.488	0.297	0.734
1984	118598	60695	217038	0.115	0.063	0.225	1.644	1.127	2.419	0.627	0.383	0.927
1985	114963	59123	211464	0.133	0.072	0.259	1.594	1.100	2.347	0.724	0.435	1.062
1986	110034	56682	205567	0.152	0.082	0.296	1.530	1.054	2.270	0.830	0.488	1. 208
1987	104322	53667	199440	0.176	0.092	0.341	1.459	0.990	2.168	0.958	0.546	1.388
1988	98083	50778	191426	0.208	0.106	0.401	1.374	0.924	2.066	1.134	0.626	1.639
1989	90257	45160	181231	0.197	0.098	0.393	1.265	0.834	1.955	1.077	0.575	1.575
1990	87056	43657	177013	0.184	0.090	0.367	1.223	0.800	1.908	1.007	0.528	1.482
1991	82948	41330	169480	0.190	0.093	0.381	1.166	0.755	1.823	1.037	0.546	1.543
1992	76613	37407	157851	0.192	0.093	0.393	1.079	0.686	1.676	1.048	0.554	1.580
1993	79223	39283	162197	0.167	0.082	0.338	1.113	0.717	1.752	0.916	0.473	1.365
1994	82428	41658	169040	0.195	0.095	0.386	1.154	0.752	1.845	1.072	0.543	1.593
1995	75904	37559	157345	0.171	0.083	0.347	1.067	0.681	1.692	0.938	0.479	1.409
1996	73171	36084	151294	0.165	0.080	0.334	1.031	0.649	1.631	0.900	0.465	1.373
1997	73902	36924	150474	0.199	0.098	0.398	1.040	0.660	1.624	1.084	0.567	1.653
1998	74352	37475	152588	0.193	0.094	0.383	1.045	0.669	1.644	1.059	0.541	1.592
1999	71484	35912	147776	0.192	0.093	0.381	1.005	0.644	1.592	1.048	0.532	1.569
2000	69840	35525	144374	0.223	0.108	0.438	0.983	0.630	1.571	1.218	0.621	1.827
2001	65922	32955	137542	0.228	0.109	0.455	0.929	0.591	1.477	1.244	0.629	1.880
2002	64292	32010	135982	0.199	0.094	0.400	0.907	0.574	1.461	1.088	0.544	1.654
2003	63567	32101	132689	0.247	0.118	0.489	0.899	0.571	1.420	1.347	0.688	2.029
2004	61467	30675	129320	0.234	0.111	0.470	0.868	0.549	1.382	1.279	0.654	1.936
2005	63760	31906	134533	0.229	0.109	0.458	0.900	0.574	1.444	1.251	0.633	1.886
2006	67307	33970	142006	0.222	0.105	0.439	0.949	0.606	1.544	1.213	0.603	1.813
2007	69367	34803	147313	0.205	0.097	0.409	0.976	0.621	1.615	1.124	0.547	1.687
2008	70578	35110	149833	0.194	0.091	0.390	0.995	0.628	1.669	1.059	0.508	1.614
2009	69186	34298	146824	0.191	0.090	0.386	0.973	0.613	1.616	1.048	0.510	1.588
2010	70193	34956	149730	0.210	0.099	0.422	0.989	0.626	1.656	1.150	0.555	1.747
2011	66251	32151	142839	0.191	0.088	0.393	0.931	0.577	1.571	1.047	0.496	1.610
2012	64573	30669	140029	0.171	0.079	0.360	0.908	0.554	1.539	0.939	0.442	1.470
2013	63632	30508	136378	0.158	0.074	0.330	0.894	0.551	1.499	0.867	0.414	1.349
2014	62625	30445	133253	0.175	0.082	0.360	0.881	0.542	1.473	0.960	0.461	1.492
2015	58467	28354	125152	0.205	0.096	0.423	0.823	0.505	1.371	1.122	0.539	1.754
2016	54019	25725	118294	0.228	0.104	0.478	0.763	0.457	1.284	1.244	0.590	1.996
2017	51258	23105	115903	0.203	0.090	0.450	0.725	0.409	1.262	1.106	0.510	1.870
2018	50692	22101	116525	0.171	0.074	0.393	0.719	0.382	1.278	0.929	0.421	1.680

Table 14. Summary of reference points (median and 95\% credibility intervals) presented in the form of joint MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models) for Mediterranean swordfish.

Estimates	Median	Lower $\mathbf{9 5 \% C I}$	Upper $\mathbf{9 5 \% C I}$
B_{0}	169231	85506	274312
$F_{\text {MSY }}$	0.186	0.116	0.344
$B_{\text {MSY }}$	71319	42562	113758
$M S Y$	13325	10899	17346
B_{2018}	50692	22101	116525
F_{2018}	0.171	0.074	0.393
B_{2018} / B_{0}	0.312	0.168	0.557
$B_{2018} / B_{\text {MSY }}$	0.719	0.382	1.278
$F_{2018} / F_{\text {MSY }}$	0.929	0.421	1.680

Table 15. Estimated probabilities of the Mediterranean swordfish stock being above Bmsy (not overfished) for a range of fixed total catches of $0-15,000$ tonnes over the projection horizon 2021-2028 based on joint projection MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models).

TAC Y Year	2021	2022	2023	2024	2025	2026	2027	2028
0	31	52	71	84	92	96	98	99
7000	31	41	51	59	67	73	77	81
8000	31	39	47	55	61	67	71	75
9000	31	38	44	50	56	60	64	68
10000	31	36	41	46	50	53	57	60
10250	31	36	40	45	49	52	55	58
10500	31	35	39	43	47	50	53	56
10750	31	35	39	42	45	48	51	53
11000	31	34	38	41	44	47	49	51
11250	31	34	37	40	43	45	47	49
11500	30	34	37	39	41	44	45	47
11750	31	33	36	38	40	42	43	45
12000	30	33	35	37	38	40	41	43
12250	30	32	34	35	37	38	39	40
12500	30	31	32	34	35	36	37	38
12750	29	31	32	33	33	34	35	35
13000	29	30	31	31	32	33	33	33
14000	25	25	25	25	25	25	25	24
15000	21	20	20	19	18	18	17	17

Table 16. Estimated probabilities of the Mediterranean swordfish stock being below Fmsy (overfishing not occurring) for a range of fixed total catches of $0-15,000$ tonnes over the projection horizon 2021-2028 based on joint projection MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models).

TAC \| Year	2021	2022	2023	2024	2025	2026	2027	2028
0	100	100	100	100	100	100	100	100
7000	84	87	90	91	93	94	94	95
8000	76	80	83	85	87	88	90	91
9000	68	72	75	77	80	81	82	84
10000	58	62	65	68	70	72	73	74
10250	56	60	62	65	67	69	71	72
10500	54	57	60	62	64	66	68	69
10750	51	54	57	59	61	63	64	66
11000	49	52	55	57	59	60	61	63
11250	47	50	52	54	56	57	58	59
11500	45	47	49	51	53	54	55	56
11750	43	45	47	48	50	51	52	53
12000	41	43	44	46	47	48	49	50
12250	39	40	42	43	44	45	45	46
12500	37	38	39	40	41	42	42	43
12750	35	36	37	38	38	39	39	40
13000	33	34	35	35	36	36	36	36
14000	27	27	27	26	26	26	26	25
15000	22	21	20	20	19	18	18	17

Table 17. Estimated probabilities of the Mediterranean swordfish stock being above Bmsy and below Fmsy (green zone) for a range of fixed total catches ($0-15,000 \mathrm{t}$) over the projection horizon 2021-2028 based on joint projection MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models).

TAC \| Year	2021	2022	2023	2024	2025	2026	2027	2028
0	31	52	71	84	92	96	98	99
7000	31	41	51	59	67	73	77	81
8000	31	39	47	55	61	67	71	75
9000	31	38	44	50	56	60	64	68
10000	31	36	41	46	50	53	57	60
10250	31	36	40	45	49	52	55	58
10500	31	35	39	43	47	50	53	56
10750	31	35	39	42	45	48	51	53
11000	31	35	38	41	44	47	49	51
11250	31	34	37	40	43	45	47	50
11500	31	34	37	39	42	44	45	47
11750	31	34	36	38	40	42	43	45
12000	31	33	35	37	39	41	42	43
12250	31	33	35	36	37	38	39	40
12500	31	32	33	35	36	37	38	38
12750	31	32	33	34	35	35	36	36
13000	31	32	33	33	33	34	34	34
14000	31	30	30	29	29	28	28	27
15000	31	29	27	26	24	23	22	21

Figure 1. SWO-M total nominal catches (T1NC, t) by year, showing total landings (LL and other gears) and dead discards (reported and estimated in SCRS/2020/028). The total catches used in the 2016 stocks assessment (SA2016) is shown for comparative purposes.

Figure 2. Task 1 nominal catches (T1NC, t) covered by size information in each year. Series in "blue" represent raised T2SZ data. Series in "green" represent T2CS (re-raised or not) data. The series in "red" indicate that no size information exists and a substitution was made. Whereas the top panel shows cumulative T1NC absolute catch series, the bottom panel shows the relative ratio.

Figure 3. Weighted (flag and gear) yearly mean weights (kg) obtained from the two CAS matrices estimated and used in the 2016 and the 2020 stock assessments (respectively SA2016 and SA2020 series). The 5 -year period moving average is shown only for the latest series (SA2020).

Figure 4. Relative age proportions of the two slicing approaches used (top: slicing with inverse VB; bottom: mixture distribution).

Figure 5. Indices of abundance in biomass (scaled to the mean) used for the Med-SWO stock assessment models.

Figure 6. Indices of abundance in numbers (scaled to the mean) used for the Med-SWO stock assessment models.

Figure 7. Time series of scaled standardized CPUE indexes by fleet: GR_LL= Greek longline, SP_LL=Spanish longline, MO_LL=Moroccan longline, LI_LL=Ligurian Longline.

Figure 8. XSA time series estimates for the base run.

- GR_LL
- SP_LL
- MO_LL
- LI_LL

Figure 9. XSA time series estimates by CPUE, for the base run.

Figure 10. Retrospective plot for the XSA base run.

Figure 11. XSA time series estimates for the discard run.

Figure 12. XSA time series estimates by CPUE for the discard run.

Figure 13. Retrospective plot for the XSA discard run.

Figure 14. Comparison of estimates among base and discard XSA runs.

Time series of standardized CPUE indices

Figure 15. Time series of scaled standardized CPUE indexes by fleet: GR_LL = Greek longline, SP_LL = Spanish longline, MO_LL = Moroccan longline, LI_LL = Ligurian longline, SI_LL = Sicilian longline, LI_SUR = Ligurian surface longline.

Figure 16. a4a constant M run without Discards. Summary of assessment results. Trends in recruitment, spawning stock biomass (tonnes), catch (tonnes) and fishing mortality for ages $2-4.10 \%, 25 \%, 75 \%$ and 90\% CIs.

Figure 17. a4a constant M run with Discards. Summary of assessment results. Trends in recruitment, spawning stock biomass (tonnes), catch (tonnes) and fishing mortality for ages $2-4.10 \%, 25 \%, 75 \%$ and 90\% CIs.

Figure 18. a4a constant M run without discards. Retrospective plot.

Figure 19. a4a constant M run with discards. Retrospective plot.

- Constant_M
- Discards

Figure 20. a4a Comparative plot between Constant M run and Discards.

Figure 21. Results of Age-Structured Equilibrium Model (ASEM) with a Beverton-Holt Stock-Recruitment relationship using Monte-Carlo simulations. Left panel: Estimates of yield curves by M; Right panel: Density distributions of simulated r values by M.

Figure 22. Time-series of observed (circle) with error 95\% CIs (error bars) and predicted (solid line; upper panels) and runs tests (bottom panels) for CPUE of Mediterranean swordfish for the Bayesian state-space surplus production model JABBA for the 'Reference' scenario. Runs tests evaluate the randomness of the time series of CPUE residuals by fleet. Green panels indicate no evidence of lack of randomness of timeseries residuals ($p>0.05$), while red panels (not shown here) indicate the opposite. The inner shaded area shows three standard errors from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3 x sigma rule).

Figure 23. Time-series of observed (circle) with error 95\% CIs (error bars) and predicted (solid line; upper panels) and runs tests (bottom panels) for CPUE of Mediterranean swordfish for the Bayesian state-space surplus production model JABBA for the 'ASEM' scenario. Runs tests evaluate the randomness of the time series of CPUE residuals by fleet. Green panels indicate no evidence of lack of randomness of time-series residuals ($p>0.05$) while red panels (not shown here) indicate the opposite. The inner shaded area shows three standard errors from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3 x sigma rule).

Figure 24. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario (Left: Reference model; Right: ASEM model) for Mediterranean swordfish. Top panels: Boxplots indicating the median and quantiles of all residuals available for any given year, and solid black lines indicate a loess smoother through all residuals. Bottom panels: Process error deviates (median: solid line) with shaded grey area indicating 95\% credibility intervals.

Figure 25. Prior and posterior distributions of various model and management parameters for the Bayesian state-space surplus production model for Mediterranean swordfish. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of Variances. Upper panels: 'Reference’ model and; Bottom panels: ‘ASEM' model.

Figure 26. Trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{\mathrm{MSY}}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 27. Retrospective analysis performed to the Reference model, by removing one year at a time sequentially ($\mathrm{n}=5$) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 28. Retrospective analysis performed to the ASEM model, by removing one year at a time sequentially ($\mathrm{n}=5$) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 29. Jackknife index analysis performed to the Reference model, by removing one CPUE fleet at a time and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY $\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 30. Jackknife index analysis performed to the ASEM model, by removing one CPUE fleet at a time and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 31. Alternative catch time series used in sensitivity runs to explore potential impacts of underreporting of early catches 1950-1986 by 20\% (HistCx1.2), 50\% (HistCx1.5), 100\% (HistCx2) and 200\% (HistCx3) on the JABBA assessment outputs.

Figure 32. Sensitivity analysis performed to the Reference model for each assumption with regard to historical catches (multiplying the early catches from 1950 to 1986 by factors of $1.2,1.5,2$ and 3) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{\mathrm{MSY}}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 33. Sensitivity analysis performed to the ASEM model for each assumption with regard to historical catches (multiplying the early catches from 1950 to 1986 by factors of $1.2,1.5,2$ and 3) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to $B_{M S Y}\left(B / B_{M S Y}\right)$ and fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$ (middle panels) and biomass relative to $K(B / K)$ and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits to Mediterranean swordfish.

Figure 34. JABBA surplus production phase plot for the Reference Model (left panels) and the ASEM model (right panels) showing trajectories of the catches in relation to $B_{\text {MSY }}$ and $M S Y$ (top panels) and Kobe phase plot showing estimated trajectories (1959-2018) of $B / B_{\text {MSY }}$ and $F / F_{\text {MSY }}$ for the Bayesian state-space surplus production model for the Mediterranean swordfish (bottom panels). Different grey shaded areas denote the $50 \%, 80 \%$, and 95% credibility interval for the terminal assessment year. The probability of terminal year points falling within each quadrant is indicated in the figure legend.

Figure 35. Illustration of catch series (1950-2018) relative to estimates of MSY (Catch/MSY) for the XSA final run including discards and combined JABBA model ('Reference' and 'ASEM') on the left y-axis and the corresponding model-precited trajectories of $S S B / S S B M S Y$ and $B / B_{M S Y}$, respectively, on right y-axis. The green-shaded areas demarcate the period (1950-1985) when catches remained below MSY and, accordingly, the stock would be expected to be in the green quadrant of the Kobe phase plot ($B>B_{M S Y}$ and $F<F_{M S Y}$) . Dashed black horizontal line denote catch and biomass levels at MSY, respectively and dashed red line denotes biomass level at $50 \% B_{M S Y}$.

Figure 36. Process error deviates on the estimated biomass on log-scale (median: solid line) for JABBA models (Reference and ASEM models). Blue vertical lines show the year 1987 when relative abundances indices started to inform the model and red lines denote 2004 as the approximate year when the minimum size regulation was put in place.

Figure 37. Final JABBA assessment model results for the Mediterranean swordfish in the form of joint MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models). (a) Catch time series depicting the $M S Y$ estimate with associated 95% credibility interval (dashed line); (b) biomass relative to $B_{0}\left(B / B_{0}\right)$ (upper panels); (c) trends in biomass and (d) fishing mortality; (e) trends of biomass relative to $B_{M S Y}$ ($B / B_{M S Y}$); and (f) fishing mortality relative to $F_{M S Y}\left(F / F_{M S Y}\right)$.

Figure 38. Kobe phase plot showing the combined posteriors of $B_{2018} / B_{\mathrm{MSY}}$ and $F_{2018} / F_{\mathrm{MSY}}$ presented in the form of joint MCMC posteriors of JABBA model runs ('Reference' and 'ASEM' models) for Mediterranean swordfish. The probability of posterior points falling within each quadrant is indicated in the pie chart.

Figure 39. Trends of projected relative stock biomass (upper panel, В/Вмяз) and fishing mortality (bottom panel, $F / F_{\text {MSY }}$) of Mediterranean swordfish under different TAC scenarios ($0-15,000 \mathrm{t}$), based on the combined projections of JABBA model runs ('Reference' and 'ASEM' models). Each line represents the median of 30000 MCMC iterations by projected year.

Appendix 1

Agenda

1. Opening, adoption of agenda and meeting arrangements
2. Summary of available data submitted according to the swordfish intersessional meeting deadlines
2.1 Catches
2.2 Length compositions
2.3 Catch at size/age data
2.4 Indices of abundance
2.5 Biology
2.6 Other relevant data
3. Relative abundance indices: overview of indexes to be potentially used based on the output of the swordfish intersessional meeting
4. Stock assessment methods and other data relevant to the assessment based on the output of the swordfish intersessional meeting
4.1. Assessments models and Preliminary runs
4.1.1. XSA
4.1.2. a4a
4.1.3. JABBA SPM
4.2. New information for assessment. Historical data
5. Stock Assessment results
5.1. Results
5.1.1. XSA
5.1.2. a4a
5.1.3. JABBA SPM
5.2. Synthesis of Stock Status and Final results
6. Projections
7. Recommendations
7.1. Recommendations with financial implications
7.2. Recommendations without financial implications
7.3. Recommendations on management
8. Other matters
8.1. Executive Summary
9. Adoption of the report and closure

List of Participants
Intersessional Meeting of the Swordfish tuna Species Group (Online, 16-20 March 2020)

CONTRACTING PARTIES

ALGERIA

Bennoui, Azzeddine
Chercheur au Centre de Recherche et de Développement pour la Pêche et de l'Aquaculture (CNRDPA), 11
Bouevard Colonel Amirouche, 42415 Bou Ismail, Tipaza
Tel: +213 243264 10, Fax: +213 243264 11, E-Mail: bennoui_azeddine@yahoo.fr
Cheniti, Sarah
Sous Directrice des Pêcheries Hauturières et spécialisées, Ministère de la pêche et des Productions Halieutiques, Route des Quatre Canons, 1600
Tel: +213 214332 56, Fax: +213 214332 56, E-Mail: chenitisarah@yahoo.fr
Kouadri-Krim, Assia
Chef de Bureau, Ministère de la Pêche et des Productions Halieutiques, Direction du développement de la pêche, Rue des 04 Canons, 16000
Tel: +213 558642 692, Fax: +213 214331 97, E-Mail: dpmo@mpeche.gov.dz; assiakrim63@gmail.com

BRAZIL

Leite Mourato, Bruno
Profesor Adjunto, Laboratório de Ciências da Pesca - LabPesca Instituto do Mar - IMar, Universidade Federal de São Paulo - UNIFESP, Rua Carvalho de Mendoça, 144, Encruzilhada, 11070-100 Santos, SP
Tel: +55 1196765 2711, Fax: $+55 \quad 113714$ 6273, E-Mail: bruno.mourato@unifesp.br; bruno.pesca@gmail.com; mourato.br@gmail.com

CANADA

Gillespie, Kyle
Fisheries and Oceans Canada, St. Andrews Biological Station, Population Ecology Division, 125 Marine Science Drive, St. Andrews, New Brunswick, E5B 0E4
Tel: +1 506529 5725, Fax: +1 506529 5862, E-Mail: kyle.gillespie@dfo-mpo.gc.ca
Hanke, Alexander
Scientist, St. Andrews Biological Station/ Biological Station, Fisheries and Oceans Canada, 125 Marine Science Drive, St. Andrews, New Brunswick E5B 2T0
Tel: +15065295912, Fax: +1506529 5862, E-Mail: alex.hanke@dfo-mpo.gc.ca

EGYPT

Abdelnaby Kaamoush, Mohamed Ibrahim
National Institute of Oceanography and Fisheries (NIOF), 14 Aly Abn Aby Taalep, Abo Qir, 11694 Alexandria, Cairo
Tel: +227 943 226, Fax: +227 921 339, E-Mail: ma_fotouh@outlook.com

EUROPEAN UNION

Biagi, Franco

Directorate General for Maritime Affairs and Fisheries (DG-Mare) - European Commission, Rue Joseph II, 99, 1049 Bruxelles, Belgium
Tel: +322 299 4104, E-Mail: franco.biagi@ec.europa.eu
Coco, Ornella
Oceanis Srl, 80056 Ercolano, Napoli, Italy
Tel: +39 342582 8477, E-Mail: ornellacoco.biomol@gmail.com

Di Natale, Antonio
Aquastudio Research Institute, Via Trapani 6, 98121 Messina, Italy
Tel: +39 336333366, E-Mail: adinatale@acquariodigenova.it
Garibaldi, Fulvio
Laboratorio di Biologia Marina e Ecologia Animale Univ. Degli Studi di Genova, Dipartimento si Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Corso Europa, 26, 16132 Genova, Italy
Tel: +39 335666 0784; +39 010353 8576, Fax: +39 010357 888, E-Mail: largepel@unige.it; garibaldi.f@libero.it

Gioacchini, Giorgia
Universita Politecnica delle Marche ANCONA, Dipartimento Scienze della Vita e dell'Ambiente, Via Breccie Bianche 131, 60131 Ancona, Italy
Tel: +39 071220 4990; +39 712204 693, E-Mail: giorgia.gioacchini@univpm.it
Macías López, Ángel David
Ministerio de Ciencia, Innovación y Universidades, Instituto Español de Oceanografía, C.O. de Málaga, Puerto pesquero s/n, 29640 Fuengirola Málaga, España
Tel: +34 952197 124; +34 619022 586, Fax: +34 952463 808, E-Mail: david.macias@ieo.es

Mantopoulou - Palouka, Danai

76A, Vouliagmenis Ave., 16452 Athens Attica, Greece
Tel: +306 948727 339, E-Mail: danaim@hcmr.gr
Molina Schmid, Teresa
Subdirectora General Adjunta, Subdirección General de Acuerdos y Organizaciones Regionales de Pesca, Dirección General de Recursos Pesqueros, Ministerio de Agricultura, Pesca y Alimentación, Secretaría General de Pesca, C/ Velázquez, 144 2 $^{\text {a }}$ Planta, 28006 Madrid, España
Tel: +34 9134760 47; +34 656333 130, Fax: +34 9134760 42, E-Mail: tmolina@mapa.es
Ortiz de Urbina, Jose María
Ministerio de Ciencia, Innovación y Universidades, Instituto Español de Oceanografía, C.O de Málaga, Puerto Pesquero s/n, 29640 Fuengirola, Málaga, España
Tel: +34 952197 124, Fax: +34 952463 808, E-Mail: urbina@ieo.es
Pappalardo, Luigi
Scientific Advisor, OCEANIS SRL, Vie Maritime 59, 80056 Ercolano (NA), Napoili, Italy
Tel: +39 081777 5116; +39 345689 2473, E-Mail: oceanissrl@gmail.com; gistec86@hotmail.com
Peristeraki, Panagiota (Nota)
Hellenic Center for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 2214, 71003 Iraklion, Greece
Tel: +30 2810337 830, Fax: +30 2810337 822, E-Mail: notap@hcmr.gr
Pignalosa, Paolo
Technical Director, Oceanis Srl, Via Marittima, 59, 80056 Ercolano - Napoli, Italy
Tel: +39 81777 5116; +39 335669 9324, E-Mail: oceanissrl@gmail.com
Poisson, François
IFREMER -- Centre de Recherche Halieutique, UMR MARBEC (Marine Biodiversity Exploitation and Conservation), Avenue Jean Monnet, CS 30171, 34203 Sète, France
Tel: +33 4995732 45; +33 6790573 83, E-Mail: francois.poisson@ifremer.fr; fpoisson@ifremer.fr

Saber Rodríguez, Sámar

Ministerio de Ciencia, Innovación y Universidades, Instituto Español de Oceanografía. Centro Oceanográfico de Málaga, Puerto Pesquero s/n, 29460 Fuengirola, Málaga, España
Tel: +34 952197 124, Fax: +34 952581 388, E-Mail: samar.saber@ieo.es

Thasitis, Ioannis

Department of Fisheries and Marine Research, 101 Vithleem Street, 2033 Nicosia, Cyprus
Tel: +35722807840, Fax: +35722775 955, E-Mail: ithasitis@dfmr.moa.gov.cy
Tserpes, George
Hellenic Center for Marine Research (HCMR), Institute of Marine Biological Resources, P.O. Box 2214, 71003 Heraklion, Crete, Greece
Tel: +30 2810 337851, Fax: +30 2810337822 , E-Mail: gtserpes@hcmr.gr

MOROCCO

Abid, Noureddine
Chercheur et ingénier halieute au Centre Régional de recherche Halieutique de Tanger, Responsable du programme de suivi et d'étude des ressources des grands pélagiques, Centre régional de L'INRH à Tanger/M'dig, B.P. 5268, 90000 Drabed, Tanger
Tel: +212 53932 5134, Fax: +212 53932 5139, E-Mail: noureddine.abid65@gmail.com
Bensbai, Jilali
Chercheur, Institut National de Recherche Halieutique à Casablanca - INRH/Laboratoires Centraux, Rue Sidi Abderrhman / Ain Diab, 90000 Casablanca
Tel: +212 66159 8386, Fax: +212 522397 388, E-Mail: bensbaijilali@gmail.com

Ikkiss, Abdelillah

Chercheur, Centre régional de l'Institut national de Recherche Halieutique, Dakhla
Tel: +212 662276 541, E-Mail: ikkiss.abdel@gmail.com

Jghab, Ayman

Biologiste, Institut National de Recherche Halieutique, Centre Régional de Tanger, Km 7, Route Ksar Sghir. Malabata. B.P 5268. Dradeb, 90000 Tanger
Tel: +212 657454 451, Fax: +212 593231 593, E-Mail: jghabayman@gmail.com

TUNISIA

Zarrad, Rafik

Institut National des Sciences et Technologies de la Mer (INSTM), BP 138 Ezzahra, Mahdia 5199
Tel: +216 73688 604; +216 972 92111, Fax: +216 73688 602, E-Mail: rafik.zarrad@instm.rnrt.tn; rafik.zarrad@gmail.com

UNITED STATES

Brown, Craig A.
Chief, Highly Migratory Species Branch, Sustainable Fisheries Division, NOAA Fisheries Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +1 305586 6589, Fax: +1 305361 4562, E-Mail: craig.brown@noaa.gov
Schirripa, Michael
NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +1 305361 4568; +1 786400 0649, Fax: +1 305361 4562, E-Mail: michael.schirripa@noaa.gov

OBSERVERS FROM NON-GOVERNMENTAL ORGANIZATIONS

WORLD WIDE FUND FOR NATURE - WWF
Buzzi, Alessandro
WWF Mediterranean, Via Po, 25/c, 00198 Roma, Italy
Tel: +39 346235 7481, Fax: +39 068413 866, E-Mail: abuzzi@wwfmedpo.org

SCRS CHAIRMAN

Melvin, Gary
SCRS Chairman, St. Andrews Biological Station - Fisheries and Oceans Canada, Department of Fisheries and Oceans, 285 Water Street, St. Andrews, New Brunswick E5B 1B8, Canada
Tel: +150665295783, E-Mail: gary.d.melvin@gmail.com; gary.melvin@dfo-mpo.gc.ca

SCRS VICE-CHAIRMAN

Coelho, Rui

SCRS Vice-Chairman, Portuguese Institute for the Ocean and Atmosphere, I.P. (IPMA), Avenida 5 de Outubro, s/n, 8700-305 Olhão, Portugal
Tel: +351 289700 504, E-Mail: rpcoelho@ipma.pt

INVITED EXPERT

Winker, Henning
Joint Research Centre - European Commission, Ispra, Italy, 21027 Ispra, Italy
Tel: +27 725126 558, E-Mail: henning.winker@ec.europa.eu

ICCAT Secretariat

C/ Corazón de María 8 - 6th floor, 28002 Madrid - Spain Tel: +34 9141656 00; Fax: +34 9141526 12; E-mail: info@iccat.int

Neves dos Santos, Miguel
Ortiz, Mauricio
Palma, Carlos
Kimoto, Ai
Mayor, Carlos

List of Papers and Presentations

Number	Title	Authors			
SCRS/2020/028	Estimation of undersize Mediterranean swordfish (Xiphias gladius) catches by the main longline fleets between 2008-2018	Ortiz M.			
SCRS/2020/043	Standardized Catch Rates for Mediterranean Swordfish (Xiphias gladius Linnaeus, 1758) from the Spanish Longline Fishery: 1988-2018.	Saber S., Macías D., García S., Riojax P., Góomez-Vives M.J., Godoy D., Meléndes M.J., Puerto M.A., and Ortiz de Urbina J.			
SCRS/2020/058	Additions to the Italian annotated bibliography on swordfish (Xiphias gladius, Linnaeus, 1758) and comprehensive overview.	Di Natale A.	$	$	A clarification about stage 2 maturity in female
:---					
SCRS/2020/074					
swordfish (Xiphias gladius, Linnaeus, 1758)		Di Natale A., Garibaldi F., and			
:---					
Corriero A.					

SCRS/P/2020/028	Stock status, projections and K2SM for an ensemble of two JABBA assessment scenarios for Mediterranean swordfish (Xiphias gladius)	Winker H., Kimoto A., Mourato B.L., Tserpses G., and Ortiz M.
SCRS/P/2020/029	Final Assessment of the Mediterranean swordfish stock by means of extended survivor analysis (XSA)	Tserpes G.,and Mantopoulou- Palouka D.
SCRS/P/2020/030	Final Assessment of the Mediterranean swordfish stock by means of assessment for all initiative (a4a)	Mantopoulou-Palouka D., and Tserpes G.

SCRS Document and Presentations Abstracts as provided by the authors

SCRS/2020/028 - Estimates of undersize Mediterranean swordfish catches were estimated using the size samples (task2sz) from the longline gear for 2008-2018. ICCAT minimum size landing regulations were implemented in 2014 (90 cm LJFL) and updated again in 2017 (100 cm LJFL). Prior research indicated that not all fleets have reported undersized catches/discards that can account for a significant percentage of the swordfish caught by the longline operations, which is currently the main fishing gear in the Mediterranean Sea. Estimated discards since 2008 represent overall about 12% to 14% between 2008 and 2017, and this increased to 24% in 2017/18 when the current minimum size was implemented.

SCRS/2020/043 - Standardized relative abundance indices for swordfish (Xiphias gladius Linnaeus, 1758) caught by the Spanish surface longline in the western Mediterranean Sea were estimated for the period 1988-2018. Standardized CPUEs in number were estimated through a General Linear Mixed Modelling (GLMM) approach under a negative binomial (NB) error distribution assumption. Standardized CPUEs in biomass were estimated through a General Linear Mixed Modelling (GLMM) approach under a log-normal error distribution assumption. The main factors in the standardization analysis were fishing area and time of the year (quarter). The standardized indices showed notable annual fluctuations without any definite trend for the period under study.

SCRS/2020/058 - After the very first attempt to list together the many papers published so far on swordfish (Xiphias gladius) by Italian scientists, concerning the biology of this species, the fisheries and many other scientific and cultural issues, it was necessary to prepare an addition to the annotated bibliography published in 2019. Therefore, the present paper provides 185 additional papers, all annotated with specific keywords, which brings the available papers on this species up to 715 , all duly annotated. This paper also provides an overview of the papers published over the centuries and decades, the main authors and the score of the main topics and themes included in the papers. This updated bibliography was set together to serve the scientists and to help them in finding some rare references that might be useful for their work.

SCRS/2020/074 - Recent documents generically provided the misleading information that most of the previous assessment of stage 2 maturity in female swordfish (Xiphias gladius) were erroneous. This short paper provides the augmented evidence that stage 2 maturity was always correctly attributed to female gonads which were in a developing stage and not mature. This clarification is important for avoiding uncertainties and spending unnecessary funds for searching what is already established since many decades.

SCRS/2020/076 - Catch-at-Size and catch-at-age of Mediterranean swordfish was estimated and preliminary analyses performed for its use within the stock evaluation models. The estimates used the size/catch at size data and or catch-at age data submitted to the Secretariat by CPCs under the Task II requirements, and new information from data recovery projects. With the new information it was possible to estimate and revise the CAS from 1972 to 2018, updating also the fishing gear associated with most of the annual catches within this period. Catch at age was estimated using two approaches; an estimation based on decomposing size mixture distributions and a monthly age-slicing growth function inversion. Both approaches assumed the current von Bertalanffy growth model for Mediterranean swordfish with estimates of variance of size at age. Results indicated that about 70% of the total catch is of ages 1,2 , and 3. Preliminary estimates of overall mortality were also produced from a catch curve analysis indicating on average total mortality Z of 0.56 (± 0.15 st.dev) and full fishery selectivity at age 2-3.

SCRS/2020/077 - Updated assessments of the Mediterranean swordfish stock are performed by means of Extended Survivors Analysis (XSA). They include a continuity run employing the model settings used in the 2016 ICCAT assessment, as well as candidate runs using modified model settings and two different assumptions regarding natural mortality-at-age. Additionally, scenarios assuming discards have been considered. All assessment runs indicate that the stock is overexploited and the current fishing mortality rates are higher than those corresponding to maximum sustainable yield (MSY) levels.

SCRS/2020/078 - Assessments of the Mediterranean swordfish stock are performed using a statistical catch-at-age model, developed in the framework of the Assessment for All (a4a) Initiative of the European Commission Joint Research Centre. Four runs are presented, including assumptions on natural mortality
and the presence of discards in the catch. The model structural components are kept the same for each run. All of the assessment runs indicate that the stock is overexploited and the current fishing mortality rates are higher than those corresponding to maximum sustainable yield (MSY) levels.

SCRS/2020/082 - Bayesian State-Space Surplus Production Models were fitted to Mediterranean swordfish (Xiphias gladius) catch and CPUE data using the 'JABBA' R package. This document presents details on the model diagnostics and stock status estimates for two preliminary scenarios. For the 'Reference' model we used an existing prior distribution for r with $\log (r) \sim N(\log (0.45), 0.46)$ with a fixed input value of BMSY/K $=0.5$ (Schaefer model-type), while for the 'ASEM' model we derived a new r prior with $\log (\mathrm{r}) \sim$ $\mathrm{N}(\log (0.206), 0.2)$ and a fixed input value of $B M S Y / K=0.38$ (Pella-Tomlinson model type) from an Agestructured Equilibrium Model with Monte-Carlo simulations.. In general, our results suggest that both candidate models provide reasonably robust fits to the data as judged by the presented model diagnostic results. The only notably difference in terms of performance is the slightly improved retrospective pattern for the 'ASEM' model. Both models predicted an overall similar exploitation history, with the peak in total catches in 1982 ($\sim 20,000$ tons) also demarcating the onset of an extended period of overfishing. This was associated with continuous declines in stock biomass and eventually led to an overfished stock. The modelspecific stock status posteriors for 2018 showed that the 'ASEM' model was more optimistic with a cumulative probability of over 60% (yellow + green) that current fishing mortality is currently sufficiently low enough to facilitate stock rebuilding. The 'Reference' model, by contrast, suggests that there is a more than 50% probably that stock remains overfish and that overfishing is still occurring. However, sensitivity analysis with regards various levels of under reporting early catches prior to 1987 revealed that the JABBA assessment result strongly dependent on the reliability of the historical catch time series. Raising the historical catch by a factor three would result a decrease in biomass levels of about 50% of B/BMSY by 1990, which would be broadly comparable to the otherwise considerably more pessimistic 2016 XSA assessment model predictions.

SCRS/P/2020/028 - Summary of the Mediterranean swordfish assessment results applying Bayesian StateSpace Surplus Production Models (JABBA) in SCRS/2020/082 was provided with the Kobe plot, Chicken feet plots and Kobe 2 matrix based on the agreed projection settings by the Group for "Reference" and "ASEM" models. The projections were conducted for a range constant catch scenarios, including a reference scenario of zero catch and then covering a range from $9000 t$ to $15,000 t$ at specific intervals and for a period of 10 years (2019-2028). The catches for 2019 and 2020 were set to be $9,879 \mathrm{t}$ and $9,583 \mathrm{t}$, which corresponds to the TAC set for 2019 and 2020, respectively.

SCRS/P/2020/029 - Updated assessments of the Mediterranean swordfish stock are performed by means of Extended Survivors Analysis (XSA) during the meeting based on SCRS/2020/077. Two runs are developed using the Spanish longline index in number, with and without discards. Results indicate that recruitment follows a decreasing trend, particularly in the last decade while current SSB levels are less than half of those observed at the beginning of the period.
$S C R S / P / 2020 / 030$ - Further stock assessment results applying a4a to the Mediterranean swordfish stocks were provided for the requests by the Group based on SCRS/2020/078. The Ligurian surface longline index from 1991 to 2009 was additionally incorporated, and the two new runs results were provided with their reference points assuming constant M with/without discards. The updated results were similar to those in SCRS/2020/078, and the Group accepted those runs as final a4a results.

XSA FINAL RUNS

Table 1. Control settings for the XSA runs.

Parameters	Settings
shk.n	TRUE
shk.yrs	10
rage	1
maxit	100
shk.f	TRUE
shk.ages	4
fse	0.5
min.nse	0.3
qage	6
window	100
tsrange	20
tspower	1
vpa	TRUE
F range:minbar	2
maxfbar	4

a. Base run

Table 2. Estimates of stock number-at-age for the base run.
age 1985 19861987198819891990
$01.2342 \mathrm{e}+061.2608 \mathrm{e}+061.2960 \mathrm{e}+061.2736 \mathrm{e}+061.2578 \mathrm{e}+061.2099 \mathrm{e}+06$ $19.9524 e+051.0067 e+061.0307 e+061.0589 e+061.0383 e+061.0241 e+06$ $27.1831 \mathrm{e}+057.2933 \mathrm{e}+057.5615 \mathrm{e}+057.6961 \mathrm{e}+057.5197 \mathrm{e}+057.5689 \mathrm{e}+05$ $34.3199 \mathrm{e}+054.2551 \mathrm{e}+054.4068 \mathrm{e}+054.5496 \mathrm{e}+054.2689 \mathrm{e}+054.4040 \mathrm{e}+05$ $41.9422 \mathrm{e}+051.9654 \mathrm{e}+051.8446 \mathrm{e}+051.8665 \mathrm{e}+051.6873 \mathrm{e}+051.7326 \mathrm{e}+05$ $59.3050 \mathrm{e}+041.0660 \mathrm{e}+051.0379 \mathrm{e}+059.2859 \mathrm{e}+048.4970 \mathrm{e}+048.0926 \mathrm{e}+04$ $64.6495 \mathrm{e}-012.2168 \mathrm{e}+001.7596 \mathrm{e}+001.9186 \mathrm{e}+001.2792 \mathrm{e}+005.1920 \mathrm{e}-01$
age $1991 \quad 1992 \quad 1993 \quad 1994 \quad 1995 \quad 1996$
$01.2423 e+061.2567 e+061.2201 e+061.2847 e+061.4294 e+061.3292 e+06$ $19.8120 \mathrm{e}+051.0089 \mathrm{e}+061.0212 \mathrm{e}+069.9271 \mathrm{e}+051.0479 \mathrm{e}+061.1601 \mathrm{e}+06$ $27.2301 \mathrm{e}+057.0143 \mathrm{e}+057.3097 \mathrm{e}+057.3208 \mathrm{e}+057.0821 \mathrm{e}+057.5396 \mathrm{e}+05$ $34.0946 \mathrm{e}+054.0499 \mathrm{e}+053.9869 \mathrm{e}+054.1487 \mathrm{e}+053.9651 \mathrm{e}+053.9476 \mathrm{e}+05$ $41.6632 \mathrm{e}+051.6255 \mathrm{e}+051.7106 \mathrm{e}+051.6583 \mathrm{e}+051.6788 \mathrm{e}+051.6524 \mathrm{e}+05$ $57.9824 e+047.9648 e+048.0122 e+048.6508 e+047.6665 e+048.5283 e+04$ $61.0600 \mathrm{e}+011.1466 \mathrm{e}-011.0407 \mathrm{e}+001.0089 \mathrm{e}+001.3154 \mathrm{e}+003.8134 \mathrm{e}+03$
age 1997 $1998 \quad 1999 \quad 2000 \quad 2001 \quad 2002$
$01.2903 \mathrm{e}+061.2950 \mathrm{e}+061.2130 \mathrm{e}+061.3371 \mathrm{e}+061.2590 \mathrm{e}+069.8627 \mathrm{e}+05$ $11.0883 \mathrm{e}+061.0529 \mathrm{e}+061.0470 \mathrm{e}+069.9110 \mathrm{e}+051.0947 \mathrm{e}+061.0287 \mathrm{e}+06$ $28.3678 \mathrm{e}+057.5494 \mathrm{e}+057.3322 \mathrm{e}+057.5226 \mathrm{e}+057.1476 \mathrm{e}+057.8549 \mathrm{e}+05$ $34.5205 \mathrm{e}+054.4817 \mathrm{e}+053.9779 \mathrm{e}+053.9351 \mathrm{e}+054.0404 \mathrm{e}+053.7557 \mathrm{e}+05$ $41.7995 \mathrm{e}+051.6515 \mathrm{e}+051.6772 \mathrm{e}+051.7043 \mathrm{e}+051.6181 \mathrm{e}+051.5203 \mathrm{e}+05$ $58.6839 \mathrm{e}+047.9816 \mathrm{e}+047.1075 \mathrm{e}+048.2619 \mathrm{e}+047.7562 \mathrm{e}+047.2902 \mathrm{e}+04$ $62.5433 \mathrm{e}+007.5124 \mathrm{e}-019.8436 \mathrm{e}-011.3544 \mathrm{e}+005.4097 \mathrm{e}-011.3812 \mathrm{e}+04$
age $2003 \quad 2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008$
$01.1083 \mathrm{e}+061.0635 \mathrm{e}+069.8586 \mathrm{e}+051.2255 \mathrm{e}+061.1229 \mathrm{e}+069.4534 \mathrm{e}+05$ $18.0749 \mathrm{e}+058.9355 \mathrm{e}+058.5403 \mathrm{e}+057.5341 \mathrm{e}+051.0011 \mathrm{e}+069.0551 \mathrm{e}+05$ $27.4935 \mathrm{e}+055.5802 \mathrm{e}+056.2235 \mathrm{e}+056.4558 \mathrm{e}+055.5152 \mathrm{e}+057.1655 \mathrm{e}+05$
$34.7460 \mathrm{e}+054.2106 \mathrm{e}+052.6909 \mathrm{e}+053.4234 \mathrm{e}+053.4523 \mathrm{e}+052.6824 \mathrm{e}+05$ $41.5606 \mathrm{e}+052.1160 \mathrm{e}+051.7234 \mathrm{e}+051.4444 \mathrm{e}+051.4509 \mathrm{e}+051.1523 \mathrm{e}+05$ $57.4652 \mathrm{e}+047.1087 \mathrm{e}+041.1789 \mathrm{e}+057.7345 \mathrm{e}+046.4388 \mathrm{e}+046.4915 \mathrm{e}+04$ $61.0293 \mathrm{e}+001.4869 \mathrm{e}+005.7480 \mathrm{e}-011.2341 \mathrm{e}+001.3012 \mathrm{e}+001.8418 \mathrm{e}+03$
age $2009 \quad 2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014$
$08.5267 \mathrm{e}+059.7132 \mathrm{e}+058.5398 \mathrm{e}+057.4769 \mathrm{e}+058.4627 \mathrm{e}+056.3066 \mathrm{e}+05$ $17.6529 \mathrm{e}+056.9810 \mathrm{e}+057.9459 \mathrm{e}+056.5258 \mathrm{e}+056.1099 \mathrm{e}+056.9270 \mathrm{e}+05$ $26.4149 \mathrm{e}+055.2453 \mathrm{e}+054.7600 \mathrm{e}+054.6709 \mathrm{e}+054.7412 \mathrm{e}+054.4875 \mathrm{e}+05$ $33.1029 \mathrm{e}+053.4559 \mathrm{e}+052.7794 \mathrm{e}+052.8117 \mathrm{e}+052.6930 \mathrm{e}+052.7984 \mathrm{e}+05$ $41.6443 \mathrm{e}+051.5350 \mathrm{e}+051.4128 \mathrm{e}+051.3586 \mathrm{e}+051.3491 \mathrm{e}+051.3040 \mathrm{e}+05$ $53.3272 \mathrm{e}+047.0501 \mathrm{e}+047.4571 \mathrm{e}+047.1432 \mathrm{e}+047.5835 \mathrm{e}+047.6539 \mathrm{e}+04$ $61.3666 \mathrm{e}+034.5857 \mathrm{e}-011.9034 \mathrm{e}+001.8562 \mathrm{e}+002.3768 \mathrm{e}-019.1212 \mathrm{e}-01$
age $2015 \quad 2016 \quad 2017 \quad 2018$
$05.8328 \mathrm{e}+054.7859 \mathrm{e}+055.9481 \mathrm{e}+055.8293 \mathrm{e}+05$
$15.1634 \mathrm{e}+054.7755 \mathrm{e}+053.9183 \mathrm{e}+054.8662 \mathrm{e}+05$
$25.3089 \mathrm{e}+053.8666 \mathrm{e}+053.2289 \mathrm{e}+053.0422 \mathrm{e}+05$
$32.5558 \mathrm{e}+052.6395 \mathrm{e}+051.9181 \mathrm{e}+051.8823 \mathrm{e}+05$
$41.3534 \mathrm{e}+051.3246 \mathrm{e}+051.0133 \mathrm{e}+058.9787 \mathrm{e}+04$
$56.9523 \mathrm{e}+046.1405 \mathrm{e}+047.1211 \mathrm{e}+044.7828 \mathrm{e}+04$
$61.6656 e+043.7343 e+042.2439 e+006.4978 e-01$

Table 3. Estimates of harvest-at-age for the base run.
age 1985 $1986 \quad 1987 \quad 1988 \quad 1989 \quad 1990$ 0 3.6919e-03 1.5087e-03 2.0751e-03 4.2898e-03 5.5152e-03 9.4804e-03 $11.1086 \mathrm{e}-018.6216 \mathrm{e}-029.2098 \mathrm{e}-021.4228 \mathrm{e}-011.1611 \mathrm{e}-011.4816 \mathrm{e}-01$ $23.2361 \mathrm{e}-013.0380 \mathrm{e}-013.0804 \mathrm{e}-013.8934 \mathrm{e}-013.3503 \mathrm{e}-014.1437 \mathrm{e}-01$ $35.8752 \mathrm{e}-016.3587 \mathrm{e}-016.5910 \mathrm{e}-017.9190 \mathrm{e}-017.0177 \mathrm{e}-017.7375 \mathrm{e}-01$ 4 3.9988e-01 4.3856e-01 4.8634e-01 5.8693e-01 5.3476e-01 5.7494e-01 5 3.5546e-01 3.6611e-01 3.8639e-01 4.7761e-01 4.2191e-01 4.7781e-01 $63.5546 \mathrm{e}-013.6611 \mathrm{e}-013.8639 \mathrm{e}-014.7761 \mathrm{e}-014.2191 \mathrm{e}-014.7781 \mathrm{e}-01$
age 1991 $1992 \quad 1993 \quad 1994 \quad 1995 \quad 1996$
0 8.1095e-03 7.5182e-03 6.2385e-03 3.7254e-03 8.7756e-03 1.6187e-09 $11.3565 \mathrm{e}-011.2222 \mathrm{e}-011.3284 \mathrm{e}-011.3771 \mathrm{e}-011.2922 \mathrm{e}-011.2668 \mathrm{e}-01$ 2 3.7956e-01 3.6493e-01 3.6640e-01 4.1319e-01 3.8445e-01 3.1155e-01 $37.2384 \mathrm{e}-016.6183 \mathrm{e}-016.7721 \mathrm{e}-017.0471 \mathrm{e}-016.7529 \mathrm{e}-015.8561 \mathrm{e}-01$ $45.3631 \mathrm{e}-015.0746 \mathrm{e}-014.8180 \mathrm{e}-015.7154 \mathrm{e}-014.7729 \mathrm{e}-014.4335 \mathrm{e}-01$ $54.4384 \mathrm{e}-014.1411 \mathrm{e}-014.1456 \mathrm{e}-014.5678 \mathrm{e}-014.1656 \mathrm{e}-013.6680 \mathrm{e}-01$ $64.4384 \mathrm{e}-014.1411 \mathrm{e}-014.1456 \mathrm{e}-014.5678 \mathrm{e}-014.1656 \mathrm{e}-013.6680 \mathrm{e}-01$
age $19971998 \quad 1999 \quad 2000 \quad 2001 \quad 2002$
0 3.3944e-03 1.2547e-02 2.0485e-03 1.2958e-05 2.0115e-03 6.5333e-09 1 1.6570e-01 1.6181e-01 1.3065e-01 1.2688e-01 1.3193e-01 1.1688e-01 $24.2438 \mathrm{e}-014.4072 \mathrm{e}-014.2236 \mathrm{e}-014.2158 \mathrm{e}-014.4351 \mathrm{e}-013.0385 \mathrm{e}-01$ $38.0691 \mathrm{e}-017.8290 \mathrm{e}-016.4760 \mathrm{e}-016.8865 \mathrm{e}-017.7743 \mathrm{e}-016.7821 \mathrm{e}-01$ $46.1296 \mathrm{e}-016.4315 \mathrm{e}-015.0805 \mathrm{e}-015.8725 \mathrm{e}-015.9733 \mathrm{e}-015.1124 \mathrm{e}-01$ $55.0249 \mathrm{e}-015.0715 \mathrm{e}-014.2716 \mathrm{e}-014.5885 \mathrm{e}-015.0870 \mathrm{e}-014.2876 \mathrm{e}-01$ $65.0249 \mathrm{e}-015.0715 \mathrm{e}-014.2716 \mathrm{e}-014.5885 \mathrm{e}-015.0870 \mathrm{e}-014.2876 \mathrm{e}-01$
age 2003 $2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008$
0 1.5370e-02 1.9378e-02 6.8906e-02 2.2437e-03 1.5203e-02 1.1296e-02 $11.6953 \mathrm{e}-011.6170 \mathrm{e}-017.9816 \mathrm{e}-021.1193 \mathrm{e}-011.3444 \mathrm{e}-011.4471 \mathrm{e}-01$ $23.7643 \mathrm{e}-015.2935 \mathrm{e}-013.9768 \mathrm{e}-014.2595 \mathrm{e}-015.2080 \mathrm{e}-016.3692 \mathrm{e}-01$ $36.0775 \mathrm{e}-016.9333 \mathrm{e}-014.2222 \mathrm{e}-016.5849 \mathrm{e}-018.9725 \mathrm{e}-012.8937 \mathrm{e}-01$ $45.8632 \mathrm{e}-013.8499 \mathrm{e}-016.0117 \mathrm{e}-016.0791 \mathrm{e}-016.0425 \mathrm{e}-011.0422 \mathrm{e}+00$

```
5 ~ 4 . 7 2 7 5 e - 0 1 ~ 4 . 8 1 7 9 e - 0 1 ~ 5 . 8 3 4 8 e - 0 1 ~ 5 . 5 4 9 1 e - 0 1 ~ 5 . 3 3 2 0 e - 0 1 ~ 5 . 2 7 5 5 e - 0 1 ~
6 4.7275e-01 4.8179e-01 5.8348e-01 5.5491e-01 5.3320e-01 5.2755e-01
age 2009 2010 2011 2012 2013 2014
    0 2.1610e-09 8.2627e-04 6.8961e-02 1.9157e-03 2.4618e-04 2.2476e-07
    1 1.7775e-01 1.8295e-01 3.3131e-01 1.1948e-01 1.0860e-01 6.6050e-02
    2 4.1852e-01 4.3509e-01 3.2647e-01 3.5068e-01 3.2726e-01 3.6294e-01
    35.0381e-01 6.9450e-01 5.1581e-01 5.3437e-01 5.2525e-01 5.2640e-01
    4 6.4688e-01 5.2195e-01 4.8202e-01 3.8304e-01 3.6677e-01 4.2893e-01
    5 3.3503e-01 5.1559e-01 3.9366e-01 3.3577e-01 3.0832e-01 3.0085e-01
    6 3.3503e-01 5.1559e-01 3.9366e-01 3.3577e-01 3.0832e-01 3.0085e-01
```

age 2015 $2016 \quad 2017 \quad 2018$
$02.5404 \mathrm{e}-089.9621 \mathrm{e}-07$ 7.5485e-04 3.5328e-03
$18.9225 \mathrm{e}-021.9135 \mathrm{e}-015.3090 \mathrm{e}-026.8659 \mathrm{e}-02$
2 4.9880e-01 5.0104e-01 3.3965e-01 3.3155e-01
$34.5726 \mathrm{e}-017.5734 \mathrm{e}-015.5905 \mathrm{e}-015.3277 \mathrm{e}-01$
$45.9031 \mathrm{e}-014.2063 \mathrm{e}-015.5079 \mathrm{e}-014.2985 \mathrm{e}-01$
$52.0524 \mathrm{e}-013.5724 \mathrm{e}-014.2669 \mathrm{e}-013.9316 \mathrm{e}-01$
$62.0524 \mathrm{e}-013.5724 \mathrm{e}-014.2669 \mathrm{e}-013.9316 \mathrm{e}-01$

Figure 1. Residuals against fitted value for the base run.

Figure 2. Residuals by fleet against year for the base run.

Figure 3. Calibration regression plots for age 2 for the base run. The blue line is a linear regression fitted to the residual pairs and the black line is the $\mathrm{y}=\mathrm{x}$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

hat
Figure 4. Calibration regression plots for age 3 for the base run. The blue line is a linear regression fitted to the residual pairs and the black line is the $y=x$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

Figure 5. Calibration regression plots for age 4 for the base run. The blue line is a linear regression fitted to the residual pairs and the black line is the $y=x$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

Figure 6. AR plots of lagged residuals for the base run. Blue line is the regression fitted to the data pairs. If residuals are uncorrelated then the slope of the regression should be 0 .

Figure 7. QQ plots to check for log normality (i.e. points and line should coincide) for the base run.

Figure 8. Weights for terminal year Ns for each CPUE observation and shrinkage to the mean F(fshk) for the base run. The vertical line identifies the range used for shrinkage to age in the terminal ages. Points correspond to individual cohorts.

b. Discard run

Table 4. Estimates of stock number-at-age for the discard run.

```
age 1985 1986 1987 1988 1989 1990
    01.2342e+06 1.2608e+06 1.2960e+06 1.2736e+06 1.2578e+06 1.2099e+06
    19.9524e+05 1.0067e+06 1.0307e+06 1.0589e+06 1.0383e+06 1.0241e+06
    27.1831e+05 7.2933e+05 7.5615e+05 7.6961e+05 7.5198e+05 7.5689e+05
    34.3199e+05 4.2551e+05 4.4068e+05 4.5496e+05 4.2690e+05 4.4040e+05
    41.9422e+05 1.9654e+05 1.8446e+05 1.8665e+05 1.6873e+05 1.7326e+05
    5 9.3051e+04 1.0660e+05 1.0379e+05 9.2859e+04 8.4970e+04 8.0927e+04
    64.6495e-01 2.2168e+00 1.7596e+00 1.9186e+00 1.2792e+00 5.1920e-01
```

age $1991 \quad 19921993199419951996$
$01.2423 \mathrm{e}+061.2567 \mathrm{e}+061.2202 \mathrm{e}+061.2848 \mathrm{e}+061.4295 \mathrm{e}+061.3295 \mathrm{e}+06$
$19.8121 \mathrm{e}+051.0089 \mathrm{e}+061.0212 \mathrm{e}+069.9276 \mathrm{e}+051.0480 \mathrm{e}+061.1602 \mathrm{e}+06$
$27.2302 \mathrm{e}+057.0144 \mathrm{e}+057.3098 \mathrm{e}+057.3210 \mathrm{e}+057.0825 \mathrm{e}+057.5403 \mathrm{e}+05$
$34.0946 \mathrm{e}+054.0500 \mathrm{e}+053.9870 \mathrm{e}+054.1488 \mathrm{e}+053.9653 \mathrm{e}+053.9480 \mathrm{e}+05$
$41.6632 \mathrm{e}+051.6255 \mathrm{e}+051.7107 \mathrm{e}+051.6584 \mathrm{e}+051.6789 \mathrm{e}+051.6526 \mathrm{e}+05$
$57.9825 e+047.9649 e+048.0123 e+048.6511 e+047.6669 e+048.5291 e+04$
$61.0600 \mathrm{e}+011.1466 \mathrm{e}-011.0407 \mathrm{e}+001.0089 \mathrm{e}+001.3154 \mathrm{e}+003.8137 \mathrm{e}+03$
age 199719981999200020012002
$01.2911 \mathrm{e}+061.2961 \mathrm{e}+061.2142 \mathrm{e}+061.3392 \mathrm{e}+061.2602 \mathrm{e}+069.8803 \mathrm{e}+05$
$11.0885 \mathrm{e}+061.0535 \mathrm{e}+061.0479 \mathrm{e}+069.9211 \mathrm{e}+051.0964 \mathrm{e}+061.0297 \mathrm{e}+06$
$28.3687 \mathrm{e}+057.5517 \mathrm{e}+057.3375 \mathrm{e}+057.5298 \mathrm{e}+057.1558 \mathrm{e}+057.8692 \mathrm{e}+05$
$34.5211 e+054.4824 e+053.9797 e+053.9393 e+054.0462 e+053.7624 e+05$
$41.7998 \mathrm{e}+051.6520 \mathrm{e}+051.6777 \mathrm{e}+051.7058 \mathrm{e}+051.6216 \mathrm{e}+051.5251 \mathrm{e}+05$
$58.6852 e+047.9837 e+047.1112 e+048.2665 e+047.7683 e+047.3183 e+04$
$62.5437 e+007.5144 e-019.8488 e-011.3551 e+005.4182 e-011.3865 e+04$
age 200320042005200620072008
$01.1021 \mathrm{e}+061.0707 \mathrm{e}+069.7041 \mathrm{e}+051.3209 \mathrm{e}+061.3947 \mathrm{e}+061.0717 \mathrm{e}+06$
$18.0893 \mathrm{e}+058.8846 \mathrm{e}+058.5994 \mathrm{e}+057.4076 \mathrm{e}+051.0792 \mathrm{e}+061.1280 \mathrm{e}+06$
$27.5016 \mathrm{e}+055.5920 \mathrm{e}+056.1818 \mathrm{e}+056.5042 \mathrm{e}+055.4117 \mathrm{e}+057.8049 \mathrm{e}+05$
$34.7576 \mathrm{e}+054.2172 \mathrm{e}+052.7005 \mathrm{e}+053.3894 \mathrm{e}+053.4918 \mathrm{e}+052.5980 \mathrm{e}+05$
$41.5660 \mathrm{e}+052.1255 \mathrm{e}+051.7287 \mathrm{e}+051.4522 \mathrm{e}+051.4232 \mathrm{e}+051.1842 \mathrm{e}+05$
$57.5040 \mathrm{e}+047.1531 \mathrm{e}+041.1866 \mathrm{e}+057.7781 \mathrm{e}+046.5026 \mathrm{e}+046.2664 \mathrm{e}+04$
$61.0347 \mathrm{e}+001.4962 \mathrm{e}+005.7857 \mathrm{e}-011.2411 \mathrm{e}+001.3141 \mathrm{e}+001.6382 \mathrm{e}+03$
age $2009 \quad 2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014$
$01.0340 \mathrm{e}+061.1289 \mathrm{e}+069.8426 \mathrm{e}+057.8385 \mathrm{e}+051.0782 \mathrm{e}+068.3685 \mathrm{e}+05$
$18.6933 \mathrm{e}+058.4657 \mathrm{e}+059.2362 \mathrm{e}+057.6178 \mathrm{e}+056.3975 \mathrm{e}+058.8260 \mathrm{e}+05$
$27.8098 e+055.7365 e+055.6602 e+055.3152 e+055.3587 e+054.5098 e+05$
$32.8736 e+053.8168 e+052.7195 e+053.0145 e+052.8763 e+053.0096 e+05$
$41.7203 \mathrm{e}+051.6102 \mathrm{e}+051.4279 \mathrm{e}+051.4192 \mathrm{e}+051.3423 \mathrm{e}+051.3330 \mathrm{e}+05$
$53.1571 \mathrm{e}+046.8922 \mathrm{e}+047.5002 \mathrm{e}+047.0175 \mathrm{e}+047.5455 \mathrm{e}+047.1796 \mathrm{e}+04$
$62.2850 \mathrm{e}+031.5430 \mathrm{e}+002.6183 \mathrm{e}-011.6989 \mathrm{e}+001.8414 \mathrm{e}+001.4985 \mathrm{e}+00$
age $2015 \quad 2016 \quad 2017 \quad 2018$
$07.6740 \mathrm{e}+056.4841 \mathrm{e}+058.0051 \mathrm{e}+058.7248 \mathrm{e}+05$
$16.8515 \mathrm{e}+056.2830 \mathrm{e}+055.3087 \mathrm{e}+056.5506 \mathrm{e}+05$
$26.5964 \mathrm{e}+054.8466 \mathrm{e}+054.1899 \mathrm{e}+053.7207 \mathrm{e}+05$
$32.2358 \mathrm{e}+052.9183 \mathrm{e}+052.3144 \mathrm{e}+052.1363 \mathrm{e}+05$
$41.3903 \mathrm{e}+051.3570 \mathrm{e}+051.0019 \mathrm{e}+059.0753 \mathrm{e}+04$
$56.8908 \mathrm{e}+046.0675 \mathrm{e}+046.6368 \mathrm{e}+044.4249 \mathrm{e}+04$
$64.4352 \mathrm{e}+032.0470 \mathrm{e}+042.3355 \mathrm{e}+008.1960 \mathrm{e}-01$

Table 5. Estimates of harvest-at-age for the discard run.
age 1985 $1986 \quad 1987 \quad 1988 \quad 1989 \quad 1990$
0 3.6919e-03 1.5087e-03 2.0751e-03 4.2897e-03 5.5152e-03 9.4803e-03
$11.1086 \mathrm{e}-018.6216 \mathrm{e}-029.2098 \mathrm{e}-021.4228 \mathrm{e}-011.1610 \mathrm{e}-011.4816 \mathrm{e}-01$ $23.2361 \mathrm{e}-013.0380 \mathrm{e}-013.0803 \mathrm{e}-013.8934 \mathrm{e}-013.3503 \mathrm{e}-014.1437 \mathrm{e}-01$ $35.8752 \mathrm{e}-016.3586 \mathrm{e}-016.5910 \mathrm{e}-017.9190 \mathrm{e}-017.0177 \mathrm{e}-017.7375 \mathrm{e}-01$ 4 3.9988e-01 4.3856e-01 4.8634e-01 5.8692e-01 5.3475e-01 5.7494e-01 $53.5546 \mathrm{e}-013.6611 \mathrm{e}-013.8639 \mathrm{e}-014.7761 \mathrm{e}-014.2191 \mathrm{e}-014.7780 \mathrm{e}-01$ $63.5546 \mathrm{e}-013.6611 \mathrm{e}-013.8639 \mathrm{e}-014.7761 \mathrm{e}-014.2191 \mathrm{e}-014.7780 \mathrm{e}-01$
age 1991 $1992 \quad 1993 \quad 1994 \quad 1995 \quad 1996$
0 8.1094e-03 7.5180e-03 6.2382e-03 3.7251e-03 8.7748e-03 1.6182e-09 $11.3565 \mathrm{e}-011.2222 \mathrm{e}-011.3284 \mathrm{e}-011.3770 \mathrm{e}-011.2921 \mathrm{e}-011.2667 \mathrm{e}-01$ $23.7955 \mathrm{e}-013.6493 \mathrm{e}-013.6639 \mathrm{e}-014.1317 \mathrm{e}-013.8442 \mathrm{e}-013.1152 \mathrm{e}-01$ $37.2383 \mathrm{e}-016.6182 \mathrm{e}-016.7719 \mathrm{e}-017.0468 \mathrm{e}-016.7525 \mathrm{e}-015.8554 \mathrm{e}-01$ $45.3630 \mathrm{e}-015.0745 \mathrm{e}-014.8179 \mathrm{e}-015.7151 \mathrm{e}-014.7725 \mathrm{e}-014.4330 \mathrm{e}-01$ $54.4383 \mathrm{e}-014.1410 \mathrm{e}-014.1455 \mathrm{e}-014.5676 \mathrm{e}-014.1653 \mathrm{e}-013.6676 \mathrm{e}-01$ $64.4383 \mathrm{e}-014.1410 \mathrm{e}-014.1455 \mathrm{e}-014.5676 \mathrm{e}-014.1653 \mathrm{e}-013.6676 \mathrm{e}-01$
age $1997 \quad 1998 \quad 1999 \quad 2000 \quad 2001 \quad 2002$
0 3.3923e-03 1.2537e-02 2.0464e-03 1.2937e-05 2.0096e-03 6.5216e-09 1 1.6566e-01 1.6170e-01 1.3053e-01 1.2674e-01 1.3171e-01 1.1677e-01 $24.2433 \mathrm{e}-014.4056 \mathrm{e}-014.2199 \mathrm{e}-014.2108 \mathrm{e}-014.4287 \mathrm{e}-013.0321 \mathrm{e}-01$ 3 8.0676e-01 7.8272e-01 6.4718e-01 6.8760e-01 7.7575e-01 6.7651e-01 $46.1284 \mathrm{e}-016.4290 \mathrm{e}-015.0783 \mathrm{e}-015.8656 \mathrm{e}-015.9561 \mathrm{e}-015.0918 \mathrm{e}-01$ $55.0240 \mathrm{e}-015.0697 \mathrm{e}-014.2688 \mathrm{e}-014.5853 \mathrm{e}-015.0768 \mathrm{e}-014.2672 \mathrm{e}-01$ $65.0240 \mathrm{e}-015.0697 \mathrm{e}-014.2688 \mathrm{e}-014.5853 \mathrm{e}-015.0768 \mathrm{e}-014.2672 \mathrm{e}-01$
age $2003 \quad 2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008$
0 1.5458e-02 1.9247e-02 7.0041e-02 2.0814e-03 1.2224e-02 9.2943e-03 $11.6920 \mathrm{e}-011.6271 \mathrm{e}-017.9246 \mathrm{e}-021.1395 \mathrm{e}-011.2410 \mathrm{e}-011.6763 \mathrm{e}-01$ $23.7594 \mathrm{e}-015.2789 \mathrm{e}-014.0096 \mathrm{e}-014.2204 \mathrm{e}-015.3381 \mathrm{e}-017.9918 \mathrm{e}-01$ $36.0574 \mathrm{e}-016.9179 \mathrm{e}-014.2037 \mathrm{e}-016.6775 \mathrm{e}-018.8131 \mathrm{e}-012.1226 \mathrm{e}-01$ $45.8358 \mathrm{e}-013.8292 \mathrm{e}-015.9865 \mathrm{e}-016.0346 \mathrm{e}-016.2029 \mathrm{e}-011.1220 \mathrm{e}+00$ $54.6966 \mathrm{e}-014.7799 \mathrm{e}-015.7839 \mathrm{e}-015.5081 \mathrm{e}-015.2639 \mathrm{e}-015.5253 \mathrm{e}-01$ $64.6966 \mathrm{e}-014.7799 \mathrm{e}-015.7839 \mathrm{e}-015.5081 \mathrm{e}-015.2639 \mathrm{e}-015.5253 \mathrm{e}-01$
age 2009 $2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014$ 0 1.5045e-05 6.9921e-04 5.6230e-02 3.1339e-03 1.6575e-04 7.3432e-06 $12.1571 \mathrm{e}-012.0256 \mathrm{e}-013.5257 \mathrm{e}-011.5176 \mathrm{e}-011.4966 \mathrm{e}-019.1175 \mathrm{e}-02$ $25.1595 \mathrm{e}-015.4641 \mathrm{e}-014.3003 \mathrm{e}-014.1406 \mathrm{e}-013.7693 \mathrm{e}-015.0163 \mathrm{e}-01$ 3 3.7919e-01 7.8319e-01 4.5036e-01 6.0903e-01 5.6907e-01 5.7227e-01 4 7.1469e-01 5.6404e-01 5.1041e-01 4.3171e-01 4.2575e-01 4.5984e-01 5 3.5652e-01 5.6413e-01 4.2346e-01 4.0519e-01 3.6357e-01 3.5588e-01 $63.5652 \mathrm{e}-015.6413 \mathrm{e}-014.2346 \mathrm{e}-014.0519 \mathrm{e}-013.6357 \mathrm{e}-013.5588 \mathrm{e}-01$
age $2015 \quad 2016 \quad 2017 \quad 2018$
$01.0066 \mathrm{e}-103.7639 \mathrm{e}-085.1508 \mathrm{e}-044.7104 \mathrm{e}-03$ 1 1.4618e-01 2.0516e-01 1.5545e-01 1.0716e-01 2 6.1552e-01 5.3913e-01 4.7362e-01 4.6508e-01 $32.9933 \mathrm{e}-018.6905 \mathrm{e}-017.3618 \mathrm{e}-016.9124 \mathrm{e}-01$ $46.2916 \mathrm{e}-015.1524 \mathrm{e}-016.1728 \mathrm{e}-015.5095 \mathrm{e}-01$ $52.4454 \mathrm{e}-014.5336 \mathrm{e}-014.0227 \mathrm{e}-014.8793 \mathrm{e}-01$ $62.4454 \mathrm{e}-014.5336 \mathrm{e}-014.0227 \mathrm{e}-014.8793 \mathrm{e}-01$

Figure 9. Residuals against fitted value for the discard run.

Figure 10. Residuals by fleet against year for the discard run.

Figure 11. Calibration regression plots for age 2 for the discard run. The blue line is a linear regression fitted to the residual pairs and the black line is the $y=x$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

hat
Figure 12. Calibration regression plots for age 3 for the discard run. The blue line is a linear regression fitted to the residual pairs and the black line is the $y=x$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

Figure 13. Calibration regression plots for age 4 for the discard run. The blue line is a linear regression fitted to the residual pairs and the black line is the $y=x$ line. If the index is proportional to stock abundance, then the blue and black lines should coincide.

Figure 14. AR plots of lagged residuals for the discard run. The blue line is the regression fitted to the data pairs. If residuals are uncorrelated then the slope of the regression should be 0 .

Figure 15. QQ plots to check for \log normality (i.e. points and line should coincide) for the discard run.

Figure 16. Weights for terminal year Ns for each CPUE observation and shrinkage to the mean F(fshk) for the discard run. Vertical line identifies the range used for shrinkage to age in the terminal ages. Points correspond to individual cohorts.

A4A FINAL RUNS

1. Introduction

The final runs of the Mediterranean Swordfish, using statistical catch-at-age method a4a, are presented in the current document. Following the recommendation of the Group, the assessments assumed a constant natural mortality considered adequate to assess the status of the stock. The Group requested for two final a4a runs, assuming constant mortality vector with and without discards. The final runs took into consideration an additional standardized CPUE index, the one of the Ligurian surface longliners, expressed in biomass.

2. Materials and Methods

The final a4a runs used CAA data from 1985 to 2018 and five standardized CPUE biomass indices were considered. The first run assumed a constant mortality vector $M=0.2$, while the second assumed also a constant M including discards estimates as derived from the SCRS/2020/028. The six CPUE indices are: Greek longliners (SCRS/2020/021), Moroccan longliners (SCRS/2020/026), Spanish longliners (SCRS/ 2020/043), Ligurian longliners (SCRS/2020/027), Sicilian longliners (SCRS/2014/105) and the historical Ligurian surface longliners (SCRS/2014/112) as suggested by the Group. All indices were considered representative of ages $2-4$. The standardized CPUE indices are shown in Figure 1.

The same final model setup was applied in the two runs and the structure of submodels can be found in Table 1. Age plus group was set to 5 and the F range was set to ages $2-4$.

3. Results

The results among the runs were considered similar, besides the estimated recruitment in recent years where the discards run estimation was a bit higher. A downward trend in the residuals, begging in the mid1990s is present in both runs. Moreover, the uncertainty around estimates of the recruitment appeared high in both cases at the end of the time series. The trajectory of SSB revealed a slight declining trend and after the mid-2000s fluctuated around 7,500 t. The results of the two final runs are plotted in Figures $\mathbf{2}$ and 3. Diagnostic tests were performed for both CAA and standardized CPUE indices residuals and are presented in Figures 4-7. A negative pattern in the recruitment residuals is present in both runs, where it should be noted that this was probably the result of lack of a tuning index for age 0 . Quantile - quantile plots for both CAA and standardized CPUE indices showed some heavy tails in the recruitment and are presented in Figures 8 and 9. Retrospective analysis conducted for both cases did not show any particular pattern, except some discrepancies that were observed for recruitment. The retrospective analysis for each run is presented in Figures 10 and 11. MCMC runs were performed for the two final runs as an alternative to the maximum likelihood estimation (MLE) that is being used as a default estimation procedure in the assessment. The plots comparing maximum likelihood estimation and MCMC are presented in Figures 12 and 13. Comparisons of the results between the two approaches are presented in Figure 14. For the estimation of biological reference points, a Beverton Holt Stock Recruitment relationship was assumed. Given the lack of sufficient data, an empirical relationship with high steepness value was developed. The reference points values along the final year's estimation for the SSB and F are presented in Table 2.

Table 1. Sub-models set up for the final a4a runs assuming constant M and discards run. ~ 1 stands for the constant model while $\sim s$ () are thin plate regression splines.

$$
\begin{aligned}
\text { F-at-age } & \boldsymbol{F} \\
\text { Recruitment } & \boldsymbol{R} \\
\text { Catchability } & \boldsymbol{Q}
\end{aligned}
$$

Observation Variance of the catch $\boldsymbol{\sigma}^{2}$
Observation Variance of the $\boldsymbol{\tau}^{2}$
indices
Initial age structure N
\sim s(year, $\mathrm{k}=17$) $+\mathrm{s}($ age, $\mathrm{k}=3)$
\sim s(year, $k=15$)
~1 for GG_LL, SP_LL, SI_LL
$\sim s($ year, $k=3)$ for MO_LL
$\sim s$ (year, $k=3$) for LI_LL
$\sim s$ (year, $k=9$) for LI_SUR
$\sim s($ age, $\mathrm{k}=3)$
~ 1 for all indices
$\sim s($ age,$k=3)$

Table 2. Biological reference points and terminal values for F and SSB for the two a4a final runs.

Estimates	Constant M	Discards
F_{2018}	0.536	0.702
$S S B$	7312	6332
$M S Y$	14548	13783
$F_{M S Y}$	0.383	0.375
$B_{M S Y}$	45862	43513
$F / F_{M S Y}$	1.397	1.871
$B / B_{M S Y}$	0.500	0.518

Figure 1. Time series of scaled standardized CPUE indices by fleet: GR_LL = Greek longline, SP_LL = Spanish longline, MO_LL = Moroccan longline, LI_LL = Ligurian longline, SI_LL = Sicilian longline. LI_SUR = Ligurian Surface longline.

Figure 2. Estimated time series for the Constant M run. 50\% and 90\% CIs.

Figure 3. Estimated time series for the Discards run. 50\% and 90\% CIs.

Figure 4. Standardized residuals for catch numbers for Constant M run.

Figure 5. Standardized residuals for biomass indices for Constant M run.

Figure 6. Standardized residuals for catch numbers for Discards run.

Figure 7. Standardized residuals for biomass indices for Discards run.
quantile-quantile plot of log residuals of catch and abundance indices

Figure 8. Quantile - quantile plots for catch numbers and biomass indices for Constant M run.
quantile-quantile plot of log residuals of catch and abundance indices

Figure 9. Quantile - quantile plots for catch numbers and biomass indices for Discards run.

Figure 10. Retrospective plots for Constant M run.

Figure 11. Retrospective plots for Discards run.

- MLE
- MCMC

Figure 12. Comparative plot between MLE fit and MCMC for Constant M run.

Figure 13. Comparative plot between MLE fit and MCMC for Discards run.

- Constant_M
- Discards

Figure 14. Comparative plot between Constant M run and Discards.

