Results of the testing of Western Atlantic Skipjack Candidate Management Procedures in a Management Strategy Evaluation Framework

(presented and adopted at the 2023 SCRS Plenary)

Time-line

* A Demonstration MSE framework for Western Skipjack tuna (SCRS/2020/140);

- * Western Atlantic skipjack tuna MSE: RCM (SCRS/2022/097);
- * Western Atlantic skipjack tuna stock assessment (SCRS/2022/098);
- * Operating model conditioning based on the Stock Synthesis model (SCRS/2022/180);
- * COMM adopted conceptual Management Objectives (Res. 22-02);

2021 2023

* Building Capacity on MSE Methods: from concepts to practice (JCAP-2/ICCAT Project);

- * SCRS discussion and testing CMPs based on Management Objectives;
- * COMM intersessional meeting update progress;
- * SCRS incorporation of COMM feedbacks;
- * SCRS CMPs.

Operating Models Structure

Stock Assessment 2022 - W-SKJ

Cardoso et al. (2022) Kimoto et al. (2022)

0	Court de court	Ctooms	elp	
Operating model OM 1	Growth vector	Steepn ess	SigmaR	Scenario
	25th	0.6	0.4	Perfect TAC implementation
OM 2	50th			
OM 3	75th			
OM 4	25th			
OM 5	50th	0.7		
OM 6	75th			
OM 7	25th	0.8		
OM 8	50th			
OM 9	75th			
OM 10	25th	0.6		10% overage TAC error implementation
OM 11	50th			
OM 12	75th			
OM 13	25th	0.7		
OM 14	50th			
OM 15	75th			
OM 16	25th	0.8		
OM 17	50th			
OM 18	75th			
OM 19	25th	0.6		20% overage TAC error implementation
OM 20	50th			
OM 21	75th			
OM 22	25th	0.7		
OM 23	50th			
OM 24	75th			
OM 25	25th	0.8		
OM 26	50th			
OM 27	75th			

Operating Models Structure

Stock Assessment 2022 – W-SKJ

Cardoso et al. (2022) Kimoto et al. (2022)

			-1 -	- 1
Operating model	Growth vector	Steepn ess	SigmaR	Scenario
OM 1	25th		6	Perfect TAC implementation
OM 2	50th	0.6		
OM 3	75th			
OM 4	25th	0.7		
OM 5	50th			
OM 6	75th			
OM 7	25th	0.8		
OM 8	50th			
OM 9	75th			
OM 10	25th	0.6	0.4 10% overage TAC error implementation	
OM 11	50th			10% overage TAC error implementation
OM 12	75th			
OM 13	25th			
OM 14	50th	0.7		
OM 15	75th			
OM 16	25th	0.8		
OM 17	50th			
OM 18	75th			
OM 19	25th	0.6		
OM 20	50th			20% overage TAC error implementation
OM 21	75th			
OM 22	25th	0.7		
OM 23	50th			
OM 24	75th			
OM 25	25th	0.8		
OM 26	50th			
OM 27	75th			

Management Objectives - Performance Metrics

Second Intersessional meeting of Panel 1 on Western Skipjack MSE

(Online, May 5 2023)

Warrant Oliveian Provide Name II					
Management Objectives (Res. 22-02)	Proposed Corresponding Performance Metric Statistics				
Status The stock should have a 70% or greater probability of occurring in the green quadrant of the Kobe matrix using a 30-year projection period as determined by the SCRS.	PCK and F (FMX) in year 1-3 PCK and F (FMX) in year 4-10 PCK and F (FMX) in year 4-10 PCK and F (FMX) over years 11-30 PCK: Probability of being in the Kobe green quadrant (i.e., SSB > SSBMX and F (FMX) over years 11-30 PCK: Probability of being in the Kobe green quadrant (i.e., SSB > SSBMX and F (FMX) over years 1-30 POF: Probability of F > FMX over years 1-30 PNOF: Probability of F < FMX over years 1-30				
Safety There should be no greater than 10% probability of the stock falling below By (0.4*By) at any point during the 30-year projection period.	LRP (i.e., SSB<0.4*SSB(s)) over years 1-3 LRP (i.e., SSB<0.4*SSB(s)) over years 1-3 LRP (i.e., SSB<0.4*SSB(s)) over years 4-10 LRP (i.e., SSB<0.4*SSB(s)) over years 4-10 LRP: Probability of breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 LRP: Probability of breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 1-30 nlRP (i.e., SSB<0.4*SSB(s)) over years 1-30 nlRP (i.e., SSB<0.4*SSB(s)) over years 1-3 nlRP (i.e., SSB<0.4*SSB(s)) over years 1-3 nlRP (i.e., SSB<0.4*SSB(s)) over years 4-10 nlRP (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30 nlRP: Probability of not breaching the limit reference point (i.e., SSB<0.4*SSB(s)) over years 11-30				
Yield Maximize overall catch levels in the short (1-3 years), medium (4-10 years) and long (11-30 years) terms.	AyC ₃₀₈₀ – Median catches (t) over years 1-3 AyC ₃₀₈₀ – Median catches (t) over years 4-10 AyC ₃₀₈₀ – Median catches (t) over years 11-30				
Stability Any changes in TAC between management periods should be 20% or less.	VarC _{median} – Variation in TAC (%) between management cycles over years 4-10 VarC _{loss} – Variation in TAC (%) between management cycles over years 11-30 Var _{st} – Variation in TAC (%) between management cycles over years 1-30				

Management Objectives

Second Intersessional meeting of Panel 1 o n Western Skipjack MSE (Online, May 5 2023)

Other decisions:

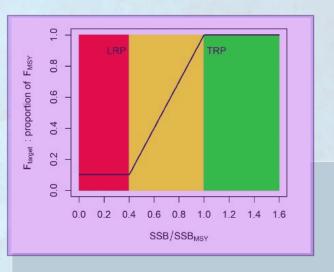
- Management cycle length: 3 years was approved.
- CMP type:
 - Constant catch (CC) and Empirical CMP for comparison only;
 - Model-based CMP for adoption;
- Add climate change robustness test.

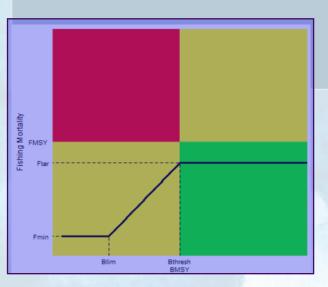
Management Procedures

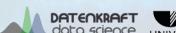
Constant Catch:

- CC 20 kt;
- CC 30 kt;
- CC 40 kt;

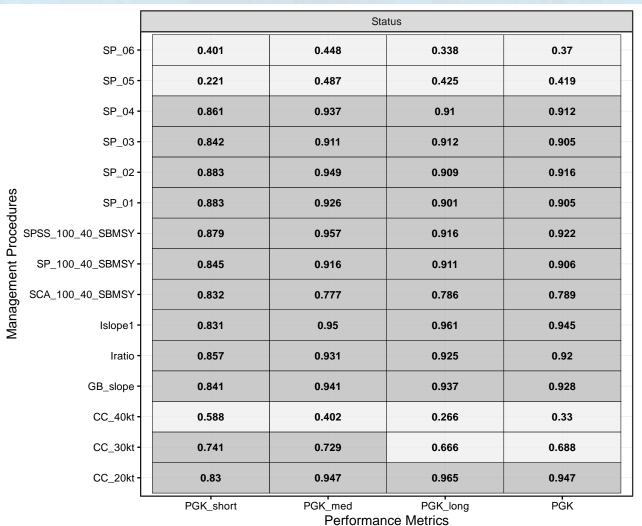
Empirical Rule:

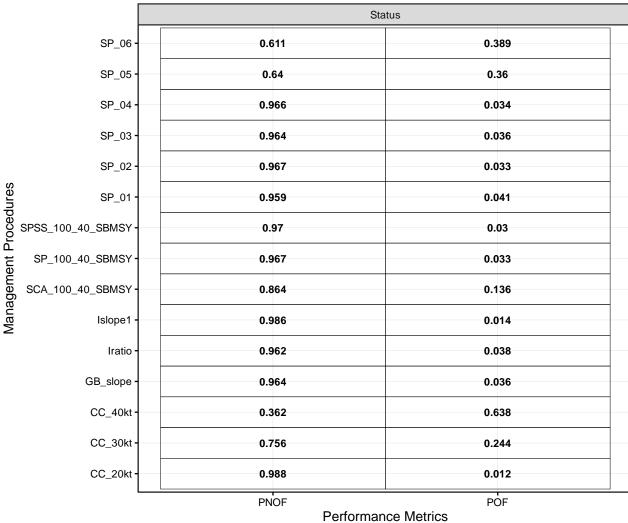

- GB_slope (Geromont and Butterworth, 2014);
- Iratio (Jardim et al., 2015);
- Islope1 (Geromont and Butterworth, 2014; Carruthers et al., 2015);





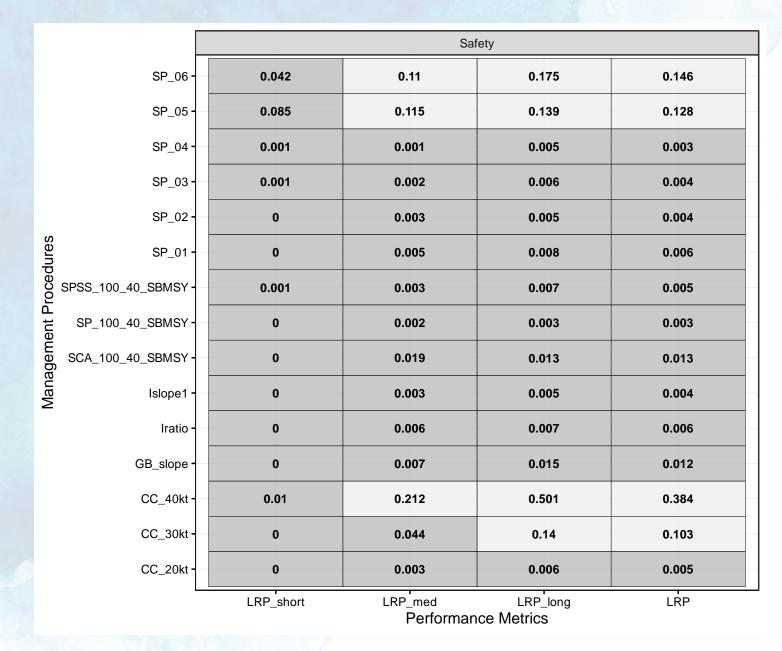
Management Procedures - Model Based



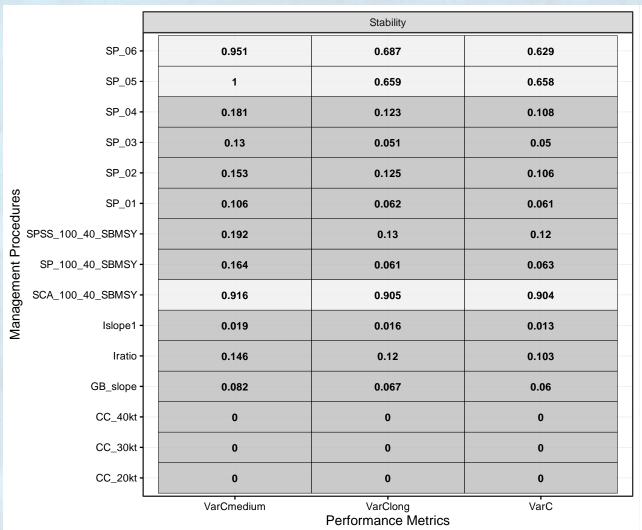


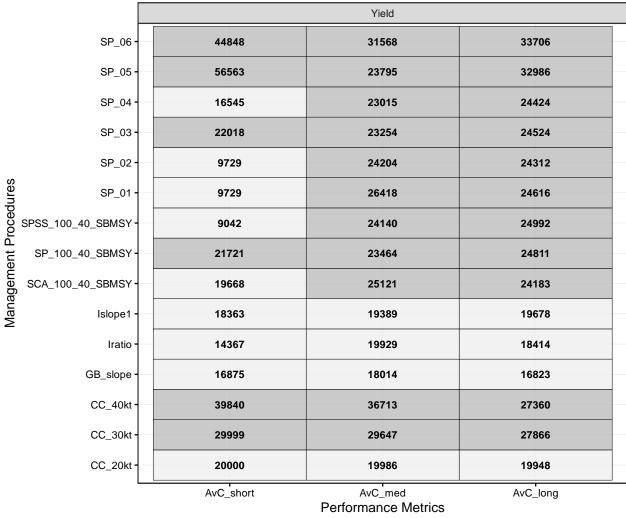
- SCA_100_40_SBMSY A statistical catch-at-age model with an 100-40 control rule based on spawning biomass at MSY level and minimum F at 10% of FMSY;
- SP_100_40_SBMSY A surplus production model with an 100-40 control rule based on spawning biomass at MSY level and minimum F at 10% of FMSY;
- SPSS_100_40_ SBMSY A state-space surplus production model with an 100-40 control rule based on spawning biomass at MSY level and minimum F at 10% of FMSY;
- **SP_01** A surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY with fixed TAC for the 1st management cycle;
- SP 02 A state-space surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY with fixed TAC for the 1st management cycle;
- SP_03 A surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY without fixed TAC for the 1st management cycle;
- SP_04 A state-space surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY without fixed TAC for the 1st management cycle;
- SP_05 A surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY without fixed TAC for the 1st management cycle. For this CMP F was set three times larger;
- **SP 06** A state-space surplus production model with an 100-40 control rule based on spawning biomass at MSY level with associated maximum F at 80% and minimum F at 10% of FMSY without fixed TAC for the 1st management cycle. For this CMP F was set three times larger.

Results - PMs vs MPs

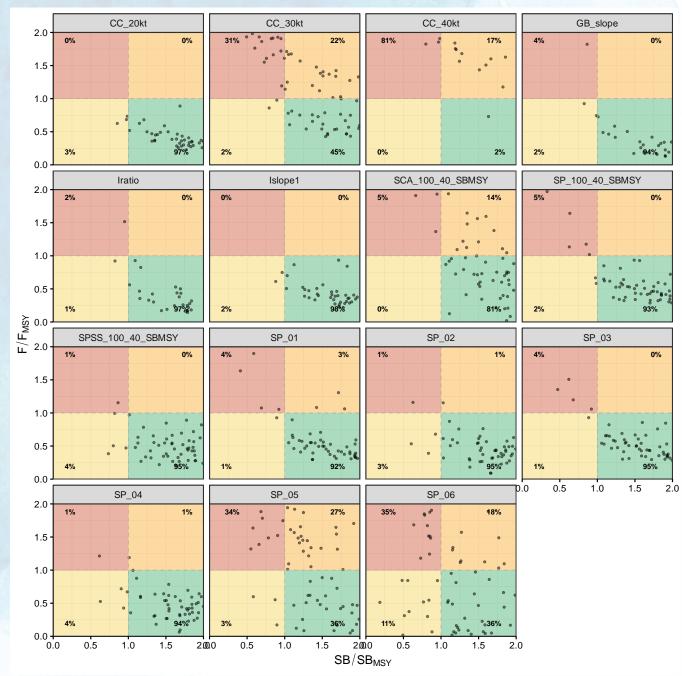


Results - PMs vs MPs

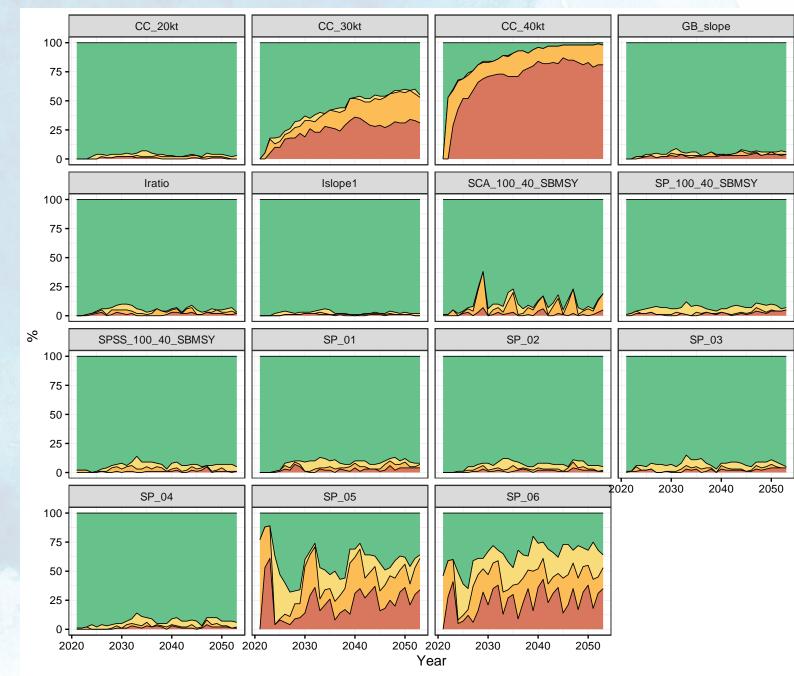




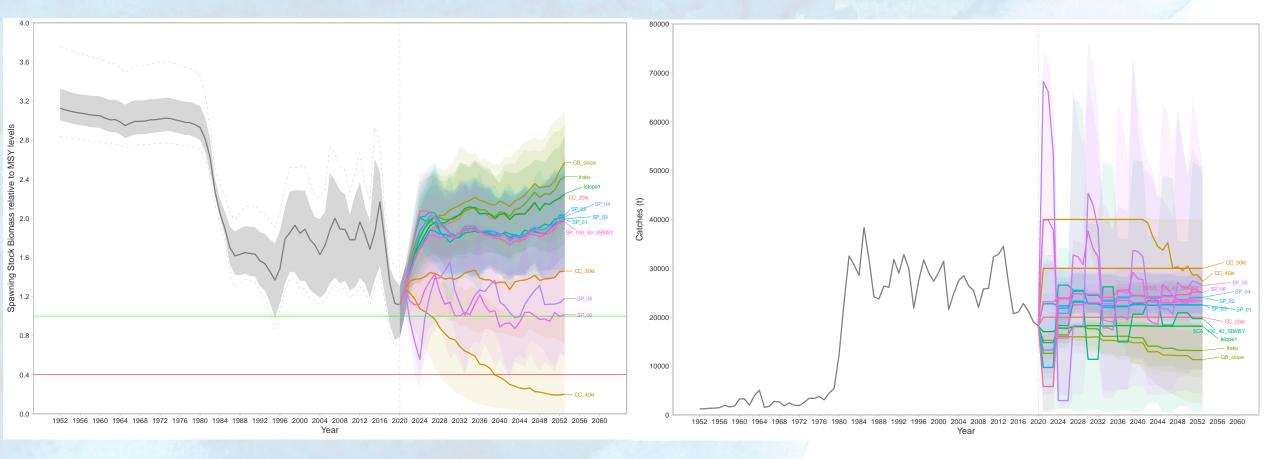
Results - PMs vs MPs



Results - Kobe for the last year



Results - Kobe by year



Results - Trajectories

